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shared molecular networks in
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Most B cells produced in the bone marrow have some level of autoreactivity.

Despite efforts of central tolerance to eliminate these cells, many escape to

periphery, where in healthy individuals, they are rendered functionally non-

responsive to restimulation through their antigen receptor via a process termed

anergy. Broad repertoire autoreactivity may reflect the chances of generating

autoreactivity by stochastic use of germline immunoglobulin gene segments or

active mechanisms may select autoreactive cells during egress to the naïve

peripheral B cell pool. Likewise, it is unclear why in some individuals

autoreactive B cell clones become activated and drive pathophysiologic

changes in autoimmune diseases. Both of these remain central questions in

the study of the immune system(s). In most individuals, autoimmune diseases

arise from complex interplay of genetic risk factors and environmental

influences. Advances in genome sequencing and increased statistical power

from large autoimmune disease cohorts has led to identification of more than

200 autoimmune disease risk loci. It has been observed that autoantibodies are

detectable in the serum years to decades prior to the diagnosis of autoimmune

disease. Thus, current models hold that genetic defects in the pathways that

control autoreactive B cell tolerance set genetic liability thresholds across

multiple autoimmune diseases. Despite the fact these seminal concepts were

developed in animal (especially murine) models of autoimmune disease, some

perceive a disconnect between human risk alleles and those identified in

murine models of autoimmune disease. Here, we synthesize the current

state of the art in our understanding of human risk alleles in two prototypical

autoimmune diseases – systemic lupus erythematosus (SLE) and type 1

diabetes (T1D) along with spontaneous murine disease models. We compare

these risk networks to those reported in murine models of these diseases,

focusing on pathways relevant to anergy and central tolerance. We highlight

some differences between murine and human environmental and genetic
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factors that may impact autoimmune disease development and expression and

may, in turn, explain some of this discrepancy. Finally, we show that there is

substantial overlap between the molecular networks that define these disease

states across species. Our synthesis and analysis of the current state of the field

are consistent with the idea that the same molecular networks are perturbed in

murine and human autoimmune disease. Based on these analyses, we

anticipate that murine autoimmune disease models will continue to yield

novel insights into how best to diagnose, prognose, prevent and treat human

autoimmune diseases.
KEYWORDS

systemic lupus erythematosus (SLE), autoimmune type 1 diabetes mellitus (T1D),
polygenic, monogenic, genome-wide association study (GWAS), autoimmune
disease mouse model, central and peripheral tolerance (anergy), B cell receptor
(BCR) signaling pathway
Introduction: B cell development,
autoimmunity and autoimmune
pathology

Upwards of 75% of bone marrow produced B cells express

B cell antigen receptors (BCRs) that bind self-antigen (1–8).

Several mechanisms conspire to remove these autoreactive

BCRs from the diverse repertoire needed to provide effective

protective humoral immunity without autoimmunity. These

mechanisms act both centrally by receptor editing and clonal

deletion and peripherally by anergy (7). Central tolerance

mechanisms typically remove clones from the wild type

repertoire with the most avid interaction with autoantigens.

However, peripheral tolerance or anergy is the operative

mechanism that silences most autoreactive B cells (3–6).

Anergy arises as a consequence of chronic antigen receptor

stimulation in the absence of second signals (4, 7, 8). It is

defined by non-responsiveness to re-stimulation through the

BCR. Importantly, in several B-cell dependent human

autoimmune diseases, most individuals with clinically

apparent autoimmune disease develop serologically

detectable autoantibodies prior to clinical diagnosis (9–13).

While we would define B cell dependence as the ability of a B

cell depleting therapy to prevent or treat human disease, the

inclusion of type 1 diabetes and multiple sclerosis as a B-cell

dependent diseases is not universally accepted. However,

paired with the clinical efficacy of B-cell targeted therapies

either in prevention or treatment of diverse autoimmune

pathologies (11, 13–29) these observations implicate

dysregulation of central tolerance mechanisms, peripheral

tolerance mechanisms or both in the etiopathogenesis of
02
these diseases. Evidence supporting regulatory defects in both

central (30–33) and peripheral (31, 32) tolerance mechanisms

have been described in numerous human autoimmune

pathologies. Central B cell tolerance defects have been

described in human SLE (34–36), T1D (37), RA (38, 39) and

Sjogren’s Syndrome (40). Peripheral B cell tolerance defects

have been described in T1D (41), Autoimmune Thyroid

Disease (AITD) (42), SLE (43–46), RA (47–49) and anti-

neutrophil cytoplasmic antibody (ANCA)–associated

vascluitis (AAV) (50). Current immunologic paradigms hold

that immune systems have been selected to balance response to

pathogens with damage to self (51–53). If this dominant

theoretical framework of immunology is correct, the

observation that such high levels of autoreactivity are the

norm in some ways challenges our teleology of (auto-)

immunity. Indeed, this apparent paradox is perhaps not

surprising, as our aim is to reduce a complex system that has

evolved to specifically, efficiently and flexibly respond to a

universe of molecules with a range of approximately quintillion

possibilities (54) to a simple and understandable set of rules.

There are obvious (and non-obvious) differences and

drawbacks inherent in extrapolating principles to human

pathologies from animal model systems (55). Nevertheless,

our understanding of the mechanisms that regulate both

central (33) and peripheral B cell tolerance (3, 56, 57)as well

as the development of autoreactive B-cell dependent

autoimmune pathologies (58–61) has been informed by

frameworks developed in murine animal models. Indeed, our

current models of the etiopathogenesis of human autoimmune

pathology largely consist of a consilience of inductions from

both observation and experimentation on living humans,

model systems comprised of human tissues/cells and study of
frontiersin.org
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murine model systems. However, several have challenged the

use of animal models to understand autoimmune pathologies

(55). One reason cited for this challenge is that advanced tools

for studying human immune responses (62–66) (i.e. CyToF,

single cell RNA-sequencing, spectral flow cytometry) now

allow more precise definition of human immune responses.

Another reason cited for this challenge are high-profile failures

in translating findings from animal model of autoimmune

disease to humans (67, 68) (some oft cited failures in

translation include: oral tolerance with insulin in type 1

diabetes prevention (69), subcutaneous administration of

partial agonists to induce antigen-specific T cell tolerance in

multiple sclerosis (70–72), the use of interferon gamma (73)

and inhibition of TNF-alpha (74, 75) in multiple sclerosis).

Importantly, the most often cited high-profile failures in

translation have arisen from observations in the EAE

(Experimental Autoimmune/Allergic Encephalitis) murine

model of multiple sclerosis. Notwithstanding the difference

between mice and human beings, challenges in translation are

perhaps not surprising, given that clinically defined human

phenotypes may well represent congeries of etiopathogenic and

pathogenetic mechanisms (76–78). That is, in these diseases

each individual actually takes a single path to disease

development out of many possible routes. Likewise, each

murine model system of autoimmune pathology may well

represent a single pathogenetic route to disease development.

Here we synthesize the recent advances in our understanding

of the complex genetic basis of two paradigmatic human B-cell

dependent autoimmune diseases: Systemic Lupus Erythematosus

(SLE) and Type 1 Diabetes Mellitus (T1D). SLE is the prototypical

protean multi-system autoimmune disease, whereas type 1

diabetes is the prototypical organ-specific autoimmune disease

invariably leading to pancreatic beta-cell destruction. Importantly,

both of these disease states have long been modeled with mouse

strains that spontaneously develop disease features that closely

resemble several of the key phenotypes and pathophysiologies of

the human diseases being modeled. Because of the long history of

investigation of the cellular and molecular mechanisms of these

models, we expect that models of these two diseases are likely to

have a more complete list of the genetic contributors and

understanding of the relevant cellular and molecular

mechanisms leading to murine autoimmune disease.

To address this overlap, we also synthesize what is known

regarding the function of putative causal genes across murine

models of both systemic autoimmune pathologies (SLE and

T1D) and autoreactive B cell tolerance. We discuss several

plausible potential explanations for the non-monotonic

relationship between currently known human and murine

autoimmune risk alleles. Through this analysis, we show that

the molecular networks comprised of putative human and

murine risk alleles for B-cell dependent autoimmunity and

autoimmune pathology substantially overlap. Finally, we

propose a framework for steps toward more successful
Frontiers in Immunology 03
translation of findings from murine model systems to clinical

application in humans.
SLE and T1D: Heritability and
epidemiology

In humans both SLE and T1D have heritable component

with sibling recurrence risk ratios (lambda S) indicating a

substantive genetic contribution (Lambda S SLE = 20, Lambda

S T1D = 15) (79). Both are incompletely penetrant, with the

monozygotic twin concordance rate estimated to be at most 40-

50% but likely substantially lower for both diseases (79). Thus,

for both of these autoimmune pathologies, non-heritable factors

also impact disease development. These non-heritable risk

factors are often assumed to represent exposure to one or

more environmental triggers. Other stochastic events, such as

somatic mutation or particular antigen receptor rearrangement

towards a pathologic autoantigen could also plausibly

contribute. In SLE the non-heritable component has been

estimated to account for ~56% of disease risk (80) and in

T1D, this has been estimated at ~34% (81).

In terms of epidemiology, SLE is both more prevalent and

more severe in several populations of predominately non-

European ancestry than in populations with European

ancestry (82). A recent cause of death analysis puts these

differences in stark contrast (83). Whereas SLE is the 10th

leading cause of death in all female persons aged 15-24 in the

US, it is the 5th leading cause of death in African American and

Hispanic female persons. Similarly, a recent population-based

registry reported approximately 30%mortality within 10 years of

diagnosis in Black SLE patients, whereas white SLE patients from

the same population exhibited approximately 10% mortality.

These differences are likely due to a complex mixture of factors.

Potential contributions to these disparities likely include

systematic population level differences in access to healthcare

and possibly also genetic variants that are exclusive to a

particular ancestral group (84, 85). However, population level

genetic differences explain only 16% of genetic variability in

human populations (86). Therefore, systemic population level

differences in access to care may have a greater impact on

outcome differences in SLE. A recent report estimates that SLE

occurs in US male persons at a rate of 8 to 53 per 100 000 and US

female persons at a rate of 84 to 270 per 100 000, depending on

the population (87). Importantly, SLE exhibits sexual

dimorphism, occurring more commonly in female persons at

rate of 9:1 (87). A caveat to the studies referenced above is that

they rely on medical record abstraction and administrative data

analysis methods that by their nature preclude obtaining sex,

gender, race and ethnicity self-identification.

In terms of epidemiology, T1D is reported to be more

prevalent in persons who self-identify as non-Hispanic white,

followed by non-Hispanic black, Hispanic and other racial/
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ethnic identities (0.35 to 2.55 per 1 000) with approximately

equal prevalence in boys and girls in the US (1.93 per 1 000) (88).

T1D incidence increases with age, peaking between 10-14 years

of age. Notably, cases with onset < six months of age are not

entirely uncommon (89). However, for reasons that remain

incompletely clear, the overall incidence of T1D is increasing

according to several studies performed in the US (90–92). As a

result, based on anticipated demographic shifts, the prevalence is

projected to increase from 2.13 per 1 000 in 2010 to 5.20 per 1

000 by 2050 (88). Increasing incidence in recent decades is not

unique to type 1 diabetes amongst other autoimmune

diseases (93).

When taken together with the observations that different

geographies have different rates of autoimmune diseases (94)

and autoimmunity (at least the rate of antinuclear antibody

seropositivity) has also increased over the same time course (95),

these data have been interpreted to strongly imply a changing

autoimmunity/autoimmune disease risk environmental

exposure has change in recent decades, as the kinetics seem

too fast for a genetic explanation.

Several environmental factors have been associated with

SLE, including smoking, silica exposure, exogenous sex

hormones and infection, especially prior Epstein-Barr virus

infection (96, 97). Similarly, in T1D, microbiome,

micronutrient, diet, early life metabolism and immune stimuli

(infection and vaccination) have been implicated with risk for

incident disease (98).

In sum, both SLE and T1D in humans are complex diseases

where both genetic and environmental factors contribute both to

disease development and disease manifestations.

Nosology and classification
– Autoimmune T1D and the
heterogeneity of SLE

Both SLE and autoimmune type 1 diabetes pose practical

challenges in disease definition, diagnosis and classification that

should be considered when evaluating the utility and

applicability of any disease model. One cannot evaluate

whether a model recapitulates human disease pathogenesis if

the definition of disease is unclear.

The particular nomenclature of autoimmune type 1 diabetes

may strike the reader as oddly redundant, but it makes the point

that type 1 diabetes is a clinical diagnosis. This diagnosis is made

in part through typical seropositive autoimmunity to several

pancreatic islet expressed proteins (insulin, ZnT8, IA-2, GAD65)

(9) in the setting of insulin deficiency. This clinical scenario has

been alternately referred to as type 1a diabetes or as immune-

mediated type 1 diabetes (99–101). However, a small proportion

of individuals clinically diagnosed with type 1 diabetes in large

cohort studies have been found to have an alternative etiology

for their disease that is non-autoimmune. These individuals
Frontiers in Immunology 04
commonly have either childhood onset monogenic type 2

diabetes (102) or fulminant onset diabetes with non-

autoimmune beta-cell destruction. This latter category of

disease has been alternatively referred to as type 1b diabetes,

idiopathic type 1 diabetes or nonautoimmune diabetes plus IS

(Insulin Sensitivity) (99–101). In some type 1 diabetes cohorts

this proportion may be as high as 10% (103). Prior decades of

careful phenotyping and molecular characterization has led to

description of several subphenotypes of what would have

previously considered either type 1 diabetes (young onset,

insulin sensitive and autoimmune) or type 2 diabetes (later

onset, insulin resistant non-autoimmune). These include latent

autoimmune diabetes of adults (LADA), type 1.5 diabetes,

ketosis-prone type 2 diabetes and maturity-onset diabetes of

the young. See (104) for an excellent review of the nosological

challenges of clinical diabetes classification. Our distinction in

nomenclature seeks to differentiate monogenic causes of clinical

type 1 diabetes with pathologic autoimmunity from monogenic

causes of diabetes that clinically resemble autoimmune type 1

diabetes, but arise from non-autoimmune causes. This

distinction is clinically important, as management is

substantially different (insulin replacement vs. sulfonylureas

and other therapies) (105). Indeed, cohorts clinically

diagnosed and treated as type 1 diabetics with potential

alternative etiologic explanations have been described (106).

There is a growing body of literature that using polygenic risk

scores (106) and/or sequencing panels of non-autoimmune

monogenic risk alleles can help distinguish these two

phenotypes. This approach may even be cost effective in select

situations (107). Further highlighting the potential for case

misclassification in type 1 diabetes cohorts, several recent

studies applied type 1 diabetes polygenic risk scores (PRS) to

define individuals with clinical type 1 diabetes with low genetic

risk (108–110). As expected, these analyses identified rare T1D

risk variants in or near genes with well-known effects on

immune responses. In addition, these studies identified several

rare risk variants in genes with metabolic function or impacts on

obesity and no known function in immune responses. Taken

together, they suggest that many of the type 1 diabetes cohorts

used for GWAS studies likely include a mixture of individuals

with autoimmune type 1 diabetes (T1aD) and individuals with

non-autoimmune type 1 diabetes (T1bD).

By the same token, SLE is a clinical diagnosis. In order to

develop homogeneous patient populations for clinical studies,

several iterations of classification criteria have been developed

(111–115). The most recent revision was published in 2019

(115). However, most studies of SLE in the past two decades

defined SLE cases according to the 1997 revised classification

criteria (113). It has been observed that the 1997 criteria lead to

330 possible combinations of clinical manifestations that could

satisfy SLE classification (76). Thus, despite being unified by

anti-nucleic acid/anti-nucleoprotein autoimmunity (116),

human SLE remains a clinically heterogenous disease state.
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Since particular patients differ in which features of SLE they

manifest, attention must be paid to which features of human SLE

a particular murine model recapitulates.

Genetic structure: The usual
structure of human autoimmune
diseases is polygenic

It is becoming increasingly clear that in most humans who

develop autoimmune disease, disease most commonly arises

from a complex interplay between many polygenic risk factors

and one or more environmental triggers (79). Decreased cost of

genotyping and the increasing size of autoimmune disease

genetic cohorts has led to a seemingly ever-increasing list of

disease risk loci. Indeed, for several common autoimmune

diseases, the number of risk genetic loci across the genome

now exceeds 200 (117). Each of these loci makes at most a

modest contribution to relative risk of disease (odd ratio < 1.2)

(117) and most are favored to act by regulating target causal

genes (118–120). Together these risk alleles are thought to set a

liability threshold that allows the development of autoimmune

pathology in certain circumstances. These rules for human

autoimmune pathologies appear to generally apply in the case

of SLE and T1D with some subtle differences (caveats)?. One

notable difference is that of association genetic association with

the Major Histocompatibility Complex (MHC)/Human

Leukocyte Antigen(HLA) Locus. In T1D, specific HLA alleles

are associated with disease. Together, three amino acid variants

account for nearly 30% of the phenotypic variance in T1D in

European ancestry populations (121). This is similar to the case

in RA, where specific HLA alleles have been shown to facilitate

binding and presentation of the classic RA autoantigen,

citrullinated peptides (122). In SLE, on the other hand, the

major contribution to genetic association with the MHC/HLA

locus has been mapped to Complement component 4 (C4A &

C4B) gene copy number (123). Both C4A and C4B are genes that

lie within the SLE association interval within the MHC/HLA

locus. It has been shown that, in contrast to RA and T1D, the

contribution of amino acid sequence variants to the SLE

association at the MHC/HLA locus is minimal. HLA is not

uninvolved in SLE etiopathogenesis, as there are additional

contributions to SLE risk at this complex genetic locus that are

attributable to regulation of MHC class II expression (123).

However, the bulk of the risk from HLA in SLE arises from

regulation of the complement system and not specific MHC

alleles (123).

In terms of genetic structure, SLE is most commonly

polygenic (117), but numerous monogenic forms of SLE have

been described, 51 of which we are aware (124–196).

Monogenic SLE presents more commonly with childhood

onset and a severe disease phenotype (117, 124–126). It

appears that in addition a minority of childhood onset cases,
Frontiers in Immunology 05
currently estimated at approximately 15% exhibit a probable

mix of monogenic and polygenic genetic etiologies (197, 198).

Ongoing studies suggest that rare or private mutations also

partially contribute to risk in multipatient SLE pedigrees.

However, the extent to which such mutations contribute to

SLE risk is still being defined (199). To synthesize what is

known about polygenic causes of SLE, we applied a previously

described approach to published SLE risk variants in the

NHGRI-EBI GWAS catalog (117). First, we grouped SLE risk

variants listed in the GWAS catalog (200) into loci/regions,

then integrated published results the from Open Targets

Genetics (201) Locus to Gene (L2G) (202) algorithm. L2G is

a machine learning pipeline that predicts a causal gene by

integrating several sources of evidence. These sources include

distance from causal credible set variants to gene, molecular

QTL co-localisation, chromatin interaction data and where

applicable variant pathogenicity prediction from the variant

effect predictor algorithm. This evidence is then weighted by

gold-standard functionally demonstrated causal variants from

different GWAS studies. For loci where L2G was able to be

confidently annotate a likely causal gene, that gene was

included in the molecular network. This list is not

comprehensive. Our approach to region definition obscures

several known regions with multiple independent genetic

effects. Despite this, we find 182 polygenic human SLE

risk loci. By applying the L2G automated machine learning

pipeline and manual annotation our final list includes 109

loci with assignable putative causal genes within these

loci (Supplementary Table 2A).

In contradistinction to SLE, only very few (8 of which we are

aware – Supplementary Table 1B) monogenic causes of

autoimmune type 1 diabetes have been described (203–213).

Monogenic autoimmune T1D arises in genetic syndromes of

polyendocrinopathy. These autoimmune diseases are

characterized by autoimmunity that adversely impacts multiple

endocrine organs, not merely the pancreas. Only eight

monogenic routes to autoimmune diabetes have been

described provides a contrast to SLE. This may be in part due

to the diffuse, systemic nature of SLE versus the more narrow

target organ range of T1D. While SLE exhibits considerable

clinical and phenotypic heterogeneity (214) that is unified

around anti-nucleic acid/anti-nucleoprotein autoimmunity

(116), type 1 diabetes leads to autoimmune pancreatic beta cell

destruction. So, it may merely be that in this case there are more

opportunities to develop an immune dysregulation syndrome

resembling one or more features of SLE, as the manifestations of

SLE are both numerous and diverse.

In individuals with T1D, the disease more commonly arises

from the aggregate effects of polygenic risk alleles, just as with

SLE. Indeed, in the comprehensive review of monogenic

autoimmune type 1 diabetes to date reflects the experience of

approximately 500 individuals worldwide (203). Thus,

monogenic genetic effects or rare genetic effects of large effect
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size do not likely explain a significant proportion of type 1

diabetes patients and this also appears to be the case in several

autoimmune diseases (215). To explore this risk gene network

we applied the same approach to define a high confidence causal

polygenic risk gene network in human type 1 diabetes. This

analysis of type 1 diabetes risk loci from the GWAS catalog

yields a list of 131 polygenic human T1D risk loci. The L2G

algorithm was able to confidently identify 63 putative causal

genes within these loci (Supplementary Table 2B). Again, our

approach likely obscures the presence of multiple independent

signals in a particular region. A recent GWAS meta-analysis of

T1D reported that 33% of the independent association signals

occurred in loci with multiple independent association signals

within the same locus. These independent signals within the

same locus might exert their biological effects on disease risk

through the same gene. Alternately, these multiple independent

signals might exert their biological effects on disease risk through

multiple independent genes.

IL2RA stands out as an algorithmically defined putative

causal genes that is also present in the list of monogenic

autoimmune type 1 diabetes genes (Supplementary Table 1B)

as has been observed by others (216). Like SLE (Figure 1), the

monogenic and polygenic type 1 diabetes risk networks overlap

at this hub node (Figure 2). This suggests that these hub nodes

may be particularly attractive as targets that span disease states

based on their central location in both monogenic and polygenic

disease molecular networks. In sum, the overlap between

polygenic and monogenic disease genetic networks in both

human autoimmune Type 1 Diabetes and SLE indicates that
Frontiers in Immunology 06
the monogenic forms of these diseases perturb the same diseases

networks as polygenic disease.

Beyond polygenic genetic structure:
Human autoimmune disease and the
omnigenic model

A few general points concerning polygenic genetic structure

should be considered. One objection that has been raised to

polygenic structure in complex human disease is that sporadic

cases are common. Sporadic refers to cases without a known

family history of disease. However, statistical genetic models

predict that sporadic cases of complex genetic disease will

commonly occur even in disease with a polygenic genetic

structure (217). Second, the bulk of polygenic risk alleles

reported to date in common autoimmune disease only have

small effects. In human SLE, as an example, only a handful of

common genetic risk factors (four that we know of) impact

disease relative risk from 2-10-fold (117). Applying knowledge

of population prevalence, the genetic factor with the largest effect

would change the absolute risk of SLE from approximately 0.1%

to 0.4% (117). This kind of polygenic genetic architecture is

present in many human phenotypes. This observation prompted

the proposal of the Omnigenic model of complex traits (218). In

this model, larger effect size variants (>1.1-fold increase in

relative risk) operate within core disease pathways. However,

thousands of loci with infinitesimally small effect size spanning

the entire genome change absolute genetic liability (218). In this
FIGURE 1

Monogenic and Polygenic human SLE risk gene networks overlap at hub genes. Light blue diamond – Monogenic human SLE genes; dark blue
hexagon – Polygenic human SLE genes; Yellow circles – overlapping genes. Downloadable/Interactive network diagram can be found at:
https://doi.org/10.18119/N9231T.
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model, the entire genome is ultimately involved in disease risk,

with each variation outside of the core disease pathway adding a

very tiny amount of residual risk. In simple terms, it seems

perhaps tautological to state that the whole genome is involved

in any given trait, even if only slightly changing the trait. It is

worth noting that predictions of this model appear to hold in

other complex human genetic traits, such as height (219).

As an aside, the omnigenic model provides a potential

explanation for why autoimmune disease genes have not been

eliminated via natural selection. If most of the hundreds of core

risk alleles are inherited independently (low correlation or

linkage disequilibrium) and they each have a small effect, then

selective pressure would not be expected to be strong in

individuals with polygenic autoimmune disease. By way of

analogy, being related to someone who wins the lottery does

not make winning the lottery more likely for you, unless you buy

more lottery tickets. On the other hand, many monogenic

disease genes represent either de novo mutations or recent

founder effects. Therefore, monogenic mutations have not had

a very long to be subject to natural selection. These observations

when combined with theoretical frameworks describing the

balance between host collateral damage from immune

responses and microbe clearance (51–53) may also explain the

retention of these alleles in the wider gene pool. That is, there are

several ways in which immune responses can be balanced to

avoid damage to host. Genetic variation that modulates an

immune response that is too weak or too strong for one

context, may, in another context or in another generation

better strike that balance.

If the omnigenic model is correct and thousands of risk loci

are involved in determination of common polygenic traits, then

sample sizes of > 1 000 000 affected individuals may be needed to

develop risk scores that capture enough variants to explain the

majority of variation in genetic risk (220). For most autoimmune

diseases, these samples exceed the total number of affected

individuals living on entire continents. If true, it would make
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systematically dissecting genetic network interaction with

environmental disease triggers so complicated as to be

potentially intractable. Our aim is to deconstruct disease

processes, in order to improve our ability to diagnose,

prognose, prevent and treat autoimmune diseases. Therefore,

we must reduce the complexity of the systems we aim to

deconstruct. In this way, we can build conceptual models of

autoimmune disease development and maintenance that we can

actually comprehend.

One approach is murine models. Such models may strike an

appropriate balance between over-simplification and a sufficient

degree of biological complexity such that core disease relevant

cellular and molecular networks are conserved. Thus, findings

can be expected to translate to humans. When proper controls

and careful attention to potential confounders is observed,

mouse models of disease have been very powerful in

advancing our understanding of autoimmune pathologies (59).

Even the lousiest models of
autoimmune disease would predict
success if considered in context

Having an intermediate model of sufficient biological

complexity is likely necessary for many types of causal

evidence that allow inference regarding mechanism in cellular

and molecular disease networks. In many cases this kind of

inference cannot be achieved for either ethical or technical

reasons in humans and are inadequately modeled in vitro.

Many therapies that are promising in vitro do not stand up to

testing in the more complex biological system that a whole

organism in vivo represents. One recent example of relevance to

autoimmune disease is that of hydroxychloroquine (a mainstay

of SLE and Rheumatoid Arthritis therapy (221)) in the treatment

of COVID-19. Indeed, hydroxychloroquine robustly inhibited

SARS-CoV-2 (and other coronaviruses) in vitro (222), but was
FIGURE 2

IL2RA is the link between Monogenic and Polygenic human type 1 diabetes risk gene networks; light orange parallelogram– human monogenic
autoimmune type 1 diabetes gene; dark orange octagon– human polygenic autoimmune type 1 diabetes gene; Yellow circles – overlapping
genes.Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/N94W34.
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shown to be ineffective in prevention of SARS-CoV-2 infection

and treatment of COVID-19 in randomized controlled trials in

humans (223–226). While it is a moot point now that the high-

quality human data exist, an intermediate in vivo model system

may have been able to predict and understand this therapeutic

failure and thereby reprioritized COVID-19 patients for more

suitable trials.

Several criticisms of mouse models of human autoimmune

pathologies specifically and human disease writ large (with the

use of SOD1-deficient mice in Amyotrophic Lateral Sclerosis

representing a high-profile model with several issues of

phenotypic non-correspondence) have been raised [notably

(55, 67, 227, 228)]. See section 5 for our attempt at a

comprehensive list of some key variables to consider in

modeling human autoimmune disease in mice.

One major criticism that has been raised for why mouse

models of human autoimmune disease are ‘lousy’ is failures in

translation from experimental autoimmune/al lergic

encephalomyelitis into successful therapy for multiple

sclerosis. However, we would submit that careful attention to

both the details of the murine and human pathology and careful

reexamination of models in light of the clinical, phenotypic,

cellular and molecular features of the human diseases we seek to

model would have predicted successful therapeutic targets even

in this ‘lousiest’ of autoimmune disease models.

Failed trials of TNF-alpha inhibitors as well as oral and IV

tolerance autoantigen-specific tolerance protocols that

succeeded in mice, but failed in MS patients are often cited.

Incidentally, TNF-alpha inhibition did not merely fail, but was

subsequently discovered to be a risk factor for incident

demyelination, just as it is a cause of drug-induced lupus. It is

worth noting that despite many high-profile therapeutic failures,

reassessment of successes, failures and refinement of models

have led to several successful novel therapeutic approaches for

MS treatment in the interim (68). Subsequently, phenomenally

successful trials of B cell-depleting monoclonal antibodies

directed against CD20 were performed in MS. In fact, B cells

are so important in this autoimmune disease, that B cell

depletion using anti-CD20 monoclonal antibodies is now the

mainstay of therapy. This is not necessarily a conclusion that

would have been reached by solely relying on data from the EAE

model (229–234), even though careful experimentation

ultimately revealed an important contributory role for B cells

once early studies demonstrated the efficacy of anti-CD20

therapies in human MS (235). Subsequent work by many

groups has demonstrated that antigen presenting B cells play a

central role in the pathogenesis of human MS (236). Building on

the principle of the oral tolerance studies in MS, re-enforcing

tolerance in formerly anergic B cells remains an active area of

investigation (237). More recent data has further advanced our

understanding of the role of B cells in MS, as prior Epstein-Barr

virus infection (but not other common latent viral infections)

was shown to be an independent risk factor for MS development
Frontiers in Immunology 08
(238), leading commenters to infer that “These findings provide

compelling data that implicate EBV as the trigger for the

development of MS” (239). These data led to pan-proteome

analysis of the auto-specificities of the pathognomonic

oligoclonal bands found in the CSF of MS patients.

Crossreactivity was shown between a human CNS autoantigen,

GlialCAM and the EB viral latency transcription factor EBNA-1

(240). Indeed, as a final attempt to prove etiopathogenesis of

EBV in MS – using a modified version of Koch’s postulates, the

authors of the latter paper immunized EAE mice and concluded

that “EBNA1 immunization aggravates EAE”. In doing so, they

have nominated yet another potential therapeutic approach for

MS that relies, in part, on the EAE model, the prevention of EB

virus infection. In retrospect, the story of the EAE model seems

to us more like the typical pattern of advances in science where

models are challenged by data and refined so that the model

predictions better fit the observed data. Indeed, it now appears

that the use of proper controls, challenging murine models with

ideas from human data and vice versa has an aggregate effect of

reducing the influence of potential confounders. In so doing this

approach would be expected to lead to a more accurate model

autoimmune etiopathogeneis than either approach would have

been able to do on its own (60). (many important potential

variables are detailed in section 5.)

Thus, despite oft being cited as a model of autoimmune

disease with high profile failures in translation, careful attention

to the human processes being modeled by the EAE model

continues to yield insight into MS pathology. In a similar

manner, we expect that careful attention to potential

confounders of lupus and T1D models, the use of multiple

models and iterative comparison to intermediate human disease

phenotypes would be expected to yield important insight into

these human autoimmune pathologies.
Gene networks for murine
autoimmune type 1 diabetes, lupus,
central and peripheral B cell
tolerance overlap

To better understand the relationship between human

autoimmune pathology and murine models of autoimmune

disease, we compared their respective gene networks. We have

focused on making our comparison in long-standing murine

disease models of two human autoimmune diseases that are

fairly-well characterized in terms of correspondence across

spontaneous disease models. For models of both diseases,

excel lent reviews of the convergent and divergent

immunopathogenic bases for disease development between

mice and humans have been written and we refer the

interested reader to read them: [murine lupus (60, 61, 241,

242): murine type 1 diabetes (243, 244)].
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The prevailing model of autoimmune disease risk is that the

genetic networks regulating lymphocyte tolerance are core to

autoimmune disease and span multiple autoimmunities (56, 57,

245, 246). That is, human genetic risk alleles shared across

multiple autoimmune diseases perturb the normal function of

lymphocyte self-tolerance networks. To begin both to evaluate

this model more systematically and to more fully understand the

differences between the murine and human autoimmune disease

genetic risk networks, we reviewed the literature and collected

lists of putative causal genes in murine models of SLE and type 1

diabetes, as well as genes whose disruption lead to B cell central

or peripheral tolerance defects (247–450). Together, each of

these sets of genes comprise a molecular network and many of

the genes in each network overlap with those in the other

networks (Figure 3). Taken together, these data point towards

an important role of B cell central and peripheral tolerance

regulatory networks in murine models of type 1 diabetes

and SLE.
Risk gene networks for murine
autoimmune type 1 diabetes, lupus,
central and peripheral B cell
tolerance overlap with risk gene
networks for human SLE and
autoimmune type 1 diabetes

To understand how autoimmune disease gene networks

overlap, we merged the murine and human risk gene networks

for SLE and T1D in several ways. Our goal was to evaluate

whether the published studies support the prevailing model
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– that the genes regulating tolerance induction and escape of

autoreactive B cells are central to the risk gene network of these

seropositive autoimmune diseases. First, we combined risk genes

from monogenic human SLE (Supplemental Table 1A),

polygenic human SLE (Supplemental Table 2A) and murine

Lupus genes (Supplemental Table 3) into a single network

(Figure 4). Second, we combined gene from monogenic

human T1D (Supplemental Table 1B), polygenic human T1D

(Supplemental Table 2B) and murine autoimmune diabetes

(Supplemental Table 3) genes into a single network (Figure 5).

Finally, we combined both of the disease-specific networks (from

Figures 4, 5) along with both B cell central (Supplemental

Table 3) and peripheral tolerance (Supplemental Table 3) gene

networks into a single network (Figure 6). Strikingly each of

these gene sets formed a distinct protein-protein interaction

network with greater overlap than expected by chance (Table 1).

Further, the human monogenic and polygenic and murine

genetic networks overlap 16-fold to 63-fold more than would

be expected by chance (Table 2). Likewise, these networks

overlap with one another or the overall B cell tolerance and

murine disease networks between 15-fold and 86-fold more

often than expected by chance (Table 3).

Overall, this analysis reveals a densely interconnected core

autoimmunity gene network centered around genes that regulate

B cell peripheral tolerance. This observation provides some

degree of support for the prevailing model in the field, that the

genes regulating tolerance induction and escape of autoreactive

B cells are central to the risk gene network of these seropositive

autoimmune diseases. Intermixed within this core are the

murine type 1 diabetes and lupus gene networks. While this

approach has utility in providing a high-level overview of

autoimmune disease risk regulatory networks, it does have
FIGURE 3

Murine autoimmune diabetes and lupus networks are densely connected to peripheral autoreactive B cell tolerance networks; dark green
triangle – murine lupus gene; light green rounded rectangle – murine peripheral B cell tolerance gene; Yellow circles – overlapping genes.
Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/N9161J.
frontiersin.org
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some drawbacks. In each particular network, there are several

putative causal genes that are not well connected to the central

network. Certainly, it is possible that these genes have yet to be

discovered function in the genesis of autoimmunity. However,

there are other potential explanations for lack of connection to

this central network. In some cases, these may represent

misattribution of causality. For example, while the L2G
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algorithm nominated PTTG1 as a putative causal gene for SLE,

we have previously shown that altered function of the

microRNA, MIR146A, likely better explains the observed

association with SLE at this locus (454). Alternately, these

genes may impact lupus function in a way that has not yet

been represented in the molecular networks of the STRING

database. For example, recent work has established DNASE1L3
FIGURE 4

Murine Lupus risk genes connect to Polygenic Human SLE risk genes at the periphery of the core network in a manner similar to the monogenic
risk SLE network; Light blue diamond – Monogenic human SLE gene; dark blue hexagon – Polygenic human SLE gene; dark green triangle
– murine lupus gene; yellow circles – Overlapping genes. Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/
N9WC8P.
FIGURE 5

Murine autoimmune diabetes risk genes connect to Polygenic Human T1D risk genes at the periphery of the core network in a manner similar
to the monogenic risk T1D network dark red inverted triangle – murine autoimmune type 1 diabetes gene; light orange parallelogram– human
monogenic autoimmune type 1 diabetes gene; dark orange octagon– human polygenic autoimmune type 1 diabetes gene. Downloadable/
Interactive network diagram can be found at: https://doi.org/10.18119/N9RP6S.
frontiersin.org
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as casual for SLE. First, non-synonymous coding changes in

DNASE1L3 explain the bulk of the genetic association with SLE

near the PXK locus (455). Second, germline mutations in this

gene have been described as a monogenic route to lupus (198,

456–458). Third, titers of autoantibodies against this enzyme

correlate with disease flare in patients with lupus nephritis (459).

Fourth, functional studies implicate the function of this secreted,

extracellular DNAse in digesting the nucleic acids present in

autoantigenic debris from dying cells (460–462). Thus, while the

role of DNASE1L3 in SLE risk is becoming abundantly clear, the
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STRING database (451) has not yet codified this new

understanding. At the same time, there may be other

information missing from the gene network as we have

defined it. At this same locus, DNASE1L3-PXK, an additional

contribution to genetic association with SLE is seen (455). This

additional association is due to variation near PXK, a phox-

homology kinase implicated in B-cell receptor endocytosis (463).

There is evidence for a potential role of PXK in modulating B-

cell receptor signaling and generating autoreactivity. However,

the automated algorithmic approach that we used did not place
TABLE 1 Network characteristics.

Network #nodesa #edgesb degreec clusteringd exp. Edgese Pf

Monogenic SLE 54 169 6 0.65 33 1.0E-16

Polygenic SLE 127 497 8 0.44 107 1.0E-16

Monogenic T1D 8 12 3 0.64 3 2.8E-05

Polygenic T1D 70 140 4 0.37 22 1.0E-16

murine lupus 92 523 11 0.58 111 1.0E-16

murine T1D 20 31 3 0.58 3 1.0E-16

peripheral toleranceg 22 63 6 0.58 8 1.0E-16

central toleranceg 7 7 2 0.24 1 6.7E-04
frontier
Network characteristics for each string protein-protein interaction network reveals a highly connected disease network in each gene list.
a#nodes indicates the number of genes in the network. b#edges indicates the number of pairwise predicted protein-protein interactions according to the default settings in the string database
(http://www.string-db.org) (451). cDegree indicates average node degree. Per the string database manual: “The average node degree is a number of how many interactions (at the score
threshold) that a protein have on the average in the network”. dClustering indicates the average clustering coefficient. Per the string database manual: “The clustering coefficient is a measure
of how connected the nodes in the network are. Highly connected networks have high values”. eExp. Edges indicates “The expected number of edges gives how many edges is to be expected
if the nodes were to be selected at random.”. fP indicates the P value for enrichment of this protein-protein interaction network. “A small PPI enrichment p-value indicate that the nodes are
not random and that the observed number of edges is significant.” Note: the minimum enrichment p-value reported by string is 1E-16.gperipheral tolerance and central tolerance indicate
networks of genes implicated in peripheral and central B cell tolerance.
FIGURE 6

Murine autoimmune disease model genes center around the autoreactive B cell peripheral tolerance network in the middle of combined human
autoimmune disease polygenic risk networks. Light blue diamond – Monogenic human SLE gene; dark blue hexagon – Polygenic human SLE
gene; dark green triangle – murine lupus gene; light green rounded rectangle – murine peripheral B cell tolerance gene; light red rectangle
– murine central B cell tolerance gene; dark red inverted triangle – murine autoimmune type 1 diabetes gene; light orange
parallelogram– human monogenic autoimmune type 1 diabetes gene; dark orange octagon– human polygenic autoimmune type 1 diabetes
gene; yellow circles – Overlapping genes. Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/N9MW3G.
sin.org
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PXK within the polygenic SLE risk network. While this approach

provides a useful overview of the interrelationships between gene

networks, by its nature, it also provides an incomplete picture of

disease risk due to incomplete information.

On a more granular level, these analyses revealed

overlapping networks between monogenic and polygenic SLE.

This overlap was between complement, cytosolic nucleic acid

sensors, Ikaros and NF-kB pathways (Figure 1). In terms of

monogenic and polygenic autoimmune type 1 diabetes, not

surprisingly, there is limited overlap (Figure 2). However,

there is still more than expected by chance. This includes a

preponderance of key transcriptional regulators (STAT1, STAT3,

FOXP3, AIRE) that are central regulators of T lymphocyte

development in monogenic T1D. Close inspection of these

networks shows that they do not overlap at AIRE. This lack of

overlap highlights one of the drawbacks of the automated,

algorithmic approach to putative causal gene definition. A rare

variation in AIRE, rs74203920, was recently reported in a large

GWAS of human autoimmune type 1 diabetes (464). This non-
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synonymous variation results in an amino acid change that is

predicted to be deleterious. It has a minor allele frequency of

~2% in individuals with European continental ancestry in the

1000 Genomes project. Further, using Bayesian statistical

approaches, the authors report a posterior probability of

association > 99% (464). There are examples of non-

synonymous coding changes in GWAS genes whose biological

effects on disease risk may be through modulation of gene

expression (465). However, it seems most parsimonious to

conclude that AIRE is, in fact, the likely causal gene at this

T1D risk locus. That our approach using L2G did not identify

this particular variant and it therefore did not overlap with the

monogenic T1D risk network highlights one of the drawbacks of

this approach in terms of misattrubtion. It further suggests that

our overlaps are more likely to represent a lower bound on the

overlap between the true disease risk networks than an

upper bound.

Turning to the network that combnines murine lupus,

murine T1D and murine B cell tolerance gene networks, we
TABLE 3 Overlaps of disease networks supporting Figures 3 (Murine T1D, Lupus, Peripheral and Central tolerance) and Figure 6 (all 8 networks
combined).

Network Overlaps in Figure 3 Overlaps in Figure 6

Exp. Overlapsa Fold O-Rb Pc Exp. Overlapsa Fold O-Rb Pc

Monogenic SLE X X X 0.92 18 1.5E-17

Polygenic SLE X X X 2.17 15 1.5E-28

Monogenic T1D X X X 0.14 22 2.6E-04

Polygenic T1D X X X 1.19 16 4.3E-18

murine lupus 0.58 26 1.9E-17 1.57 16 1.9E-23

murine T1D 0.13 32 6.8E-06 0.34 26 1.6E-11

peripherald 0.14 86 1.5E-21 0.38 51 2.2E-31

centrald 0.04 45 8.2E-04 0.12 17 5.8E-03
frontier
Overlap of disease networks supporting Figures 3 (Murine T1D, Lupus, Peripheral and Central tolerance) and Figure 6 (all 8 networks combined). aExp. Overlaps indicate the number of
expected overlapping nodes. Assuming similar length lists were randomly selected from the genome (unassociated). bFold O-R indicates the fold over-representation compared to
expectation. cP indicates p-value for hypergeometric distribution assuming independence of the two networks. dperipheral and central indicate networks of genes implicated in peripheral
and central B cell tolerance. As a negative control, comparison was made to the L2G predicted causal genes in a large GWAS of osteoarthritis (452) and type 2 diabetes (453). In both cases,
overlap was substantially less than in the table above. A single putative causal gene out of 19 for osteoarthritis overlapped with the network in Figure 6. This corresponds to 3-fold
overrepresentation with P-value of 0.27. 17 putative causal gene out of 343 for type 2 diabetes overlapped with the network in Figure 6. This corresponds to 2.9-fold overrepresentation with
P-value of 9E-5. Of note, the overlapping genes were enriched for genes within apoptosis and cellular proliferation pathways. As these core cellular processes impact both the genesis of
autoimmune pathology and insulin resistance, this degree of overlap is perhaps not surprising.
OA network: https://version-11-5.string-db.org/cgi/network?networkId=bWV0Pd2gEYYx.
DM2 network: https://version-11-5.string-db.org/cgi/network?networkId=boNoFGYSyFUn.
TABLE 2 Disease Network Overlap.

Disease Exp. Overlapsa Fold O-Rb Pc

Human Polygenic: Monogenic Overlap SLE 0.35 26 6.8E-11

T1D 0.03 35 2.8E-02

Combined Human: Murine Overlap SLE 0.82 16 1.6E-12

T1D 0.08 63 1.2E-08
Overlap of disease networks supporting Figures 1, 2 (Human Polygenic: Monogenic Overlap) and Figures 4, 5 (Combined Human: Murine Overlap). aExp. Overlaps indicate the number of
expected overlapping nodes. Assuming similar length lists were randomly selected from the genome (unassociated). bFold O-R indicates the fold over-representation compared to
expectation. cP indicates p-value for hypergeometric distribution assuming independence of the two networks.
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also find substantial overlap. This overlap occurs within several

pathways: IL2 (IL2), BCR signaling (BLK, Lyn etc.), tolerance

response to nucleic acid (CD72, TLR7), tolerance to self-nucleic

acid and control of viral infection. These overlaps serve as

unifying pathways in these models of autoimmune pathology

(Figure 3). Overlap of murine and human lupus occurs at B-cell

signaling hubs involving BAFF, APRIL and B cell antigen

receptor signaling. Of note, despite its central importance in

SLE etiopathogenesis (117), TLR7 is absent from the human

disease networks, though its signaling intermediates remain.

Likewise, LYN is absent from the human disease networks

despite its identification as a likely causal gene for SLE in

GWAS follow-up studies. (Figure 4) Thus, our analysis likely

underestimates the true extent of overlap between these various

gene networks. Similar to Lupus, type 1 diabetes in mouse and

humans is unified by T-cell tolerance regulators (CTLA4, IL2RA,

CD226, AIRE, etc.) (Figure 5). Finally, peripheral B cell tolerance

is the most over-represented compared to no association when

looking at the unified network of all these states of pathologic

autoimmunity (Figure 6). The substantial overlap between these

different networks is consistent with a prominent role of

particular environmental drivers in specifying the target organ

focus of autoimmunity.

One question that arises is whether these associations

represent an increase over what would be expected by

chance. Indeed, overlap between the gene networks in type 2

diabetes (453) and osteoarthritis (452) are much less with these

non-autoimmune traits than any of the autoimmune pathology

networks (Table 3). Another question is how to address cell

type specificity of these networks. One might assume that these

gene networks only operate in concert within specific cell types.

PTPN22 may serve as a counterexample to this – a recent

review highlighted evidence for six independent mechanisms

of the PTPN22R620W variant each operating in different

cellular lineages (466). It may be that some autoimmune

disease risk alleles do act in a cell type and cellular context-

specific way. However, for many complex human traits, the

genetic structure predicted by the omnigenic model appears to

be the case. That is, hundreds to thousands of genetic variants

of (mostly) very small effect size act in aggregate to set a genetic

liability threshold. The central nodes in these disease gene

networks have the largest effect size and therefore likely a lower

statistical power requirement to demonstrate association.

Thus, like many pharmacotherapies (467), it may well be that

these core disease genes have multiple mechanisms through

which they modulate disease risk. Hence, they are centrally

located and have outsized effect sizes. Certainly, BLK, Lyn and

the BAFF family genes in these networks could be argued to

have effects selective to the B cell lineage. However, both BAFF

(468) and Lyn (469) have well described actions outside of B

cells. Likewise, BLK exhibits high expression in human

plasmacytoid dendritic cells (470, 471) and the most strongly

associated eQTL variants are within human fibroblasts. Both of
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these cell lineages are independent from B cells and have direct

relevance to SLE etiopathogenesis. A role for these three genes

acting to increase SLE risk within B cells is certainly more

parsimonious. Alternately, it has been argued that several of

the polygenic risk variants for human type 1 diabetes exhibit

opposite action in effector and regulatory T cells (472). That is,

several risk variants increase the likelihood of activation in

effector T cells and simultaneously increase the likelihood of

inhibition in regulatory T cells. Thus, even with specific cellular

mechanisms, the risk alleles of the strongest effect size may be

the most likely to have multiple mechanisms whereby they alter

disease risk. Cogent arguments can be made for the cellular

specificity of gene networks acting within a disease state.

However, much work remains to be done to convincingly

demonstrate cell-type specificity of genetic effects, over

against disease risk networks that span and exert their effects

within multiple cellular lineages.
Potential explanations for gaps
in translation

What are the explanations for challenges in translatability of

autoimmune disease mouse models?

We have discussed spontaneous, induced and humanized

murine autoimmune disease models above in general terms.

Here we focus on key potential differences that in our estimation

are likely to affect several spontaneous models of lupus, such as

those derived from the NZB/NZW F1 (BW) mice and the NOD

mouse model of type 1 diabetes.
Recombinant inbred mice/Polygenic
disease in Humans vs. Monogenic
disease in mice

The use of recombinant inbred mice more closely resembles

consanguinity that is seen more commonly the parents of

individuals with childhood onset autosomal recessive disease.

In this way, these murine models may offer more opportunities

to develop monogenic mutations and sub-strain differences can

profoundly alter physiology (473). One example sticks out in

particular. The most commonly used lab mouse strain, C57BL6/

J, developed a loss of function mutation in Nnt, the gene

encoding for the nicotinamide nucleotide transhydrogenase

(473). This mutant Nnt diverges from another commonly used

lab mouse strain C57BL6/NJ. Unfortunately, Nnt mutation

inadvertently serves as a model of familial glucocorticoid

deficiency, which has been described in mice and humans who

have mutant NNT (474). This could conceivably confound

interpretation of results obtained using models that have not

controlled for this mutation in lupus in particular, where

glucocorticoids are a mainstay of therapy. As another example,
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a body of literature describing functions previously attributed to

caspase-1 are in fact due caspase-11 deficiency due to

inadvertent gene-targeting leading to generation of caspase-1/

caspase-11 double knockout mice (475).
Genetic & evolutionary divergence of
both host and microbiota

Sixty-five million years of evolutionary history seems like a

long time. Certainly, it is long enough to develop changes in how

genes respond to the environment. As a stark example, Gout is a

disease of higher primates. It is one of the most common forms

of inflammatory arthritis and is estimated to affect 1 in 200

people worldwide. Gout occurs when uric acid levels are too high

and uric acid crystals precipitate out of the serum, driving acute

and chronic inflammation. Gout is thought to have arisen ~

twenty-two million years ago when one of a series of loss of

function mutations in uricase (which converts uric acid to the

much more water-soluble allantoin) and URAT1 and important

renal uric acid transporter. As this system non-redundantly

regulates blood pressure, it stands to reason that changes

across similarly complex immune networks could have also

developed differences in some critical regulatory genes. Indeed,

many immune phenotypes that diverge between mice and

humans have been described (476). Two select examples of

gene to phenotype non-correspondence include MyD88 and

STAT5B. MyD88 deficiency leads to early life susceptibility to

only pyogenic infections in humans whereas it leads to long

lasting susceptibility to a broad array of infections in mice (477).

STAT5B deficiency leads to different phenotypes in terms of

Treg generation, IL2R signaling and in vivo T cell effector

function in mice as compared with humans (478).
Environmental enrichment

While humans are housed in varied circumstances, housing

of mice is somewhat uniform. Environmental enrichment (EE)

makes mouse housing more “fun” and leads to reductions in a

variety of depressive/anxious behaviors and indicators of stress

response in mice (479). At the same time, there is evidence that

EE substantively impacts the antitumor response of NK cells and

immunotherapy treated anti-cancer T cells (480). Thus,

differences in the monotony and variety of environment may

be a factor that alters immune system responses and could

impact autoimmune disease pathways.
Thermoneutral housing

When given the option, mice, like humans tend to inhabit

places with comfortable ambient temperature or change their
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thermoneutral zone. Humans do this by wearing clothes,

whereas mice tend to fill their burrows with bedding and

insulation. Observation of mice in the wild indicates that

during their l ight cycle , mice tend to maintain a

thermoneutral zone of 30-32 degrees Celsius. For historical

reasons and for the comfort of clothed humans, most mouse

facilities house mice at room temperature 19-25 degrees

Celsius. Thus, mice are subjected to chronic “cold stress”

which carries with it attendant increased sympathetic

nervous system/beta-adrenergic tone and changes in whole

organism metabolism and physiology (481). Removal of this

cold stress through thermoneutral housing has been

demonstrated to impact several immune phenotypes,

including notably, induction of oral tolerance (482–485).

Further there is growing evidence that the parasympathetic

nervous system impacts autoimmune disease. For example,

vagal nerve (parasympathetic) (486) stimulation has led to

improvement of systemic inflammatory parameters in short-

term trials (487, 488).
Circadian rhythms

Mice are typically handled in the vivarium during daylight

hours, a period during which they commonly sleep in the wild.

Several autoimmune diseases are associated with sleep

disturbance (489) due to incompletely clear mechanisms.

Indeed, less than 7 hours of sleep is associated with the onset

of human SLE in longitudinal cohort studies (490). Further,

several reports indicate that systematically sleep deprived NZB/

NZWF (1) mice develop increased lupus activity (491, 492).

Thus, differences in circadian cycles may be an additional factor

to consider when modeling human autoimmune pathologies

in mice.
Microbiota/pet store mice

Our immune system gene networks have subject to

selective pressure for the sixty-five million years since

divergence from mice. At the same time, the mutualistic

relationship with our microbiota has been under pressure

from our immune system and vice versa. This may be another

important meta-genomic divergence that leads to non-

correspondence of murine models of human disease (59).

Following our reductionist tendencies, the character and

make up of mouse microbiota is being intensively defined

and simplified as specific-pathogen-free facilities are

increasingly used (493, 494). Normalizing the microbiome

to one that more closely resembles wild mice leads to several

substantial changes in immune response (495–498). Thus,

colonizat ion with comparatively non-immunogenic
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microbiota may be yet another factor that needs to be

accounted for when modeling human autoimmune disease

in mice.
Humans (usually) already have disease:
Early disease therapy vs. established
disease therapy

Most therapies given to people with autoimmune disorders

are usually administered to counter a matured, often chronic

disease. While prevention trials are underway in several human

autoimmune diseases (221), many therapies employed in mouse

models are preventive in nature. That is, intervention occurs

prior to the onset of disease.
Mice are not free to eat what they want
(but they can usually eat as much
as they want)

Many lab rodent diets contain substantial proportions of

alfalfa meal (499, 500). Alfalfa sprout consumption was long

ago associated with incident lupus-like disease in higher

primates and attributed to the presence of canavanine, a

non-canonica l arg in ine-re la ted amino ac id (501) .

Subsequent studies have also found epidemiological

evidence of association with lupus (502), to the point that a

commonly used Lupus pat i en t educat ion webs i te

recommends avoidance of alfalfa sprouts (503). Curiously,

anti-cyclic citrullinated peptide antibodies (against peptides

with the non-canonical arginine related amino acid citrulline)

are commonly seen in individuals with rheumatoid arthritis

as well as those with clinical features of both SLE and RA

(504). Recent work has also implicated peptide processing

that leads to hybrid-insulin peptide formation, generating a

neoepitope as etiologic in type 1 Diabetes (505). Protein

dietary and metabolic changes could theoretically alter the

generation of neoepitopes in alfalfa fed mice and more

broadly appear to have an important role in the genesis of

several autoimmune pathologies.
Humans are free

Established disease in humans almost always means

confounders – behav ior , medicat ions , adherence ,

understanding, communication, health literacy, numerical

literacy, risk perception and risk calculus [COVID-19

pandemic as a global example (506)], to name a few. There is

a situation when established disease in humans tends to go along

with fewer confounders – early life. However, ethical and

practical issues usually prevent trials in children for diseases
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that also develop in adults. Maybe it isn’t that mice are simple,

but that humans are just too complicated?
Mice are not free and cannot
access sunlight

Most research animal facilities, have strict policies against

taking mice out of the viviarium for a walk in the sun. This likely

lowers the risk for the skin manifestations of lupus, which are

importantly mediated by UV. While the artificial environment

of the vivarium can be addressed artificially with transient UV

exposure (507), vitamin D is also an independent protective

factor for lupus flares and the development of several

autoimmune disease (508–511).
Mice have fur

The absence of extensive hair follicles, dermal and epidermal

layers that are twice as thick and the absence of a specialized

muscle layer (Panniculus carnosus) all distinguish human from

murine skin (512–514). If histological differences do not pose a

sufficient challenge in modeling human skin pathologies in mice,

it has been observed that only ~30% of the top skin-expressed

genes overlap between mouse and human skin (515). Taken

together, these differences pose several problems in modeling

SLE, as autoimmune response in the skin is the first disease

manifestation in many affected humans.
Mice are not naturally susceptible to
infection by EBV

In addition to implication in MS (discussed above), EBV

infection in humans is associated with SLE. There are

mechanistic links implicating molecular mimicry by EBNA-1

(516) and substantial enrichment of EBNA-2, the latency

transcription factor, at GWAS loci for SLE and other

autoimmune diseases (516). There are also examples of allele

specific binding of EB viral transcription factors to causal risk

alleles. Howmight this confound translatability of murine model

data? The closest gammaherpes virus to EBV that infects mice is

murine gamma-herpesvirus 68. While murine gamma-

herpesvirus 68 does infect mice, it lacks several features of

EBV (517). If one of those divergent features omits a critical

step in the EBV-dependent development of autoimmune

disease, then this divergence would impact our ability to

model autoimmune disease development in a way that

parallels what is suspected to occur in humans.

In this section we point out some differences to consider

when interpreting murine model data in light of human

autoimmune pathology. There are several features of humans
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that make modeling an inherently error-prone process. These

complicating features are in addition to the potential

intractability of understanding gene X environment

interactions, if the omnigenic model proves true. Despite these

drawbacks, murine models of autoimmune diseases have

advanced our understanding of the gene networks that

regulate autoimmune pathologies. At the same time, efforts at

translation require both careful attention to potential

confounders and continual reexamination of our models in

light of the clinical, phenotypic, cellular and molecular features

of the human diseases we seek to model.
Implications and a potential path
towards translation

Simply put, the need for improved understanding and

more diverse and less toxic therapeutic options for SLE and

Type 1 diabetes is dire. The discrepant severity of SLE

outcomes between populations simply cannot be accepted in

a just society. To the extent that our lack of understanding

contributes to this discrepancy, it needs to be corrected. In a

similar manner, Type 1 diabetes disproportionately afflicts

some of the most vulnerable members of our society with a

burden of chronic disease and a concomitant burden of co-

morbidity and mortality. Despite life-saving advances in

therapy in the prior decades, the incidence of this disease is

rising. So, we must better understand its genesis in order to

more effectively intervene.

We need to understand disease mechanisms and define

causal genetic immunophenotypes in humans. For this

understanding to be certain regarding causal relationships,

parallel understanding of mechanism in model systems is

required for effective trial design. Mice have proven to be

excellent sacrificial companions on our collective journey of

disease deconstruction for both SLE and T1D. They have

facilitated perturbations of genes and environmental triggers,

allowing assessment of the impacts on murine intermediate

immune cellular and molecular phenotypes and correlates of

pathology. It continues to be prudent to advance therapies

that can prove efficacy in these model systems along the path

toward clinical application. However, careful attention to the

details of both the model system and the disease processes

being modeled is necessary to fully evaluate both therapeutic

candidate successes and failures. Nearly 90% of trialed

pharmaco-therapeutic candidates do not advance to the

FDA approval (518). These rates are better for biologics

than for small molecules at each stage of drug development,

possibly due to the more specifically targeted nature of

biologic therapies versus small molecules (519, 520). This

failure is despite the best efforts of many who are employed by

pharmaceutical companies. Our ability to fully understand
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these incredibly complex biological systems remains

incomplete. Thus, it is perhaps not surprising that there

have been several high-profi le fa i lures to develop

autoimmune disease therapy.

How best to evaluate therapeutic leads for autoimmune

diseases? Our proposed approach follows. Cellular/molecular

phenotypes and pathological correlates of disease would need

to be ameliorated by candidate therapeutic leads in murine

systems to a reasonable degree of certainty in terms of

causality. At the same time parallel approaches could be

validated in human in vitro (cell lines), ex vivo (primary

cells) or in vivo (hu-mice) reductionist model systems and

shown to return the cellular/molecular phenotypes and

pathologic correlates move to a healthier status with any

therapeutic lead. Therapies that pass this bar could be trialed

in first in human trials after primate evaluation or if

repurposing (if already FDA approved), moved directly to

phase 3 trials. Human trials based on the cellular, molecular

and pathologic frameworks derived from model systems would

need to include assessment of correlates of the postulated

mechanism. Additionally, evaluation of any competing

mechanisms would assist post-hoc evaluation of whether a

given trial represented a true trial of therapy. Indeed, two

recent (the first two since the 1950s) FDA-approved therapies

for SLE, belimumab (anti-BAFF) and anifrolumab (anti-

IFNAR1), both took approaches similar to the approach that

we lay out. Following identification of antigen-presentation by

B cells (521–528) as key in the genesis of murine autoimmune

type 1 diabetes there is now a focus on B cell tolerance

pa thways in human T1D (41 , 529–533) . Fur ther

characterization of the role of B cell tolerance (534) and

efforts to manipulate pathogenic autoantigen-reactive B cells

in type 1 diabetes promise (530) to bring therapeutic successes

in this disease, where T cells have long been the subject of focus.

Our analysis highlights a potential role for autoreactive B cell

tolerance in the development of multiple autoimmune

pathologies. In doing so, it adds to a growing body of work

that supports viewing seropositive autoimmunity as an

endophenotype of multiple autoimmune diseases (535–541).

As our efforts to more broadly understand autoimmune disease

polygenic genetic risk network impacts on B cell function

advance, we anticipate that murine disease models will

cont inue to be cr i t i ca l ly important to fur ther ing

understanding of autoimmune diseases and advancing the

goal of improved outcomes for patients.
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SUPPLEMENTARY TABLE 1A

Monogenic Routes to Human Lupus –Gene(s) refers to the gene or genes

that when mutated has been reported to lead to lupus or a lupus-like

phenotype. Gene name refers to the HGNC (HUGO Gene Nomenclature
Committee [https://www.genenames.org/]) official full name for that

gene. Locus refers to chromosome and cytoband for that gene. Protein
refers to the common protein name for a particular gene. Inheritance

indicates the mode of inheritance (if reported) according to the
abbreviations at the end of the table. Pathway refers to the reported

pathway disrupted by the mutation. Phenotype refers to the phenotype

observed, whether part of another defined genetic syndrome, such as
Noonan syndrome or whether part of bona fide SLE or another lupus-like

phenotype. Reference refers to numbered reference in the bibliography
of this publication. PMID or link refers to the pubmed.gov identifier (PMID)

for the publication or publications establishing the gene as a monogenic
route to lupus or a review of several publications.
SUPPLEMENTARY TABLE 1B

Monogenic Routes to Human autoimmune Type 1 Diabetes – Gene(s)
refers to the gene or genes that when mutated has been reported to lead

to lupus or a lupus-like phenotype. Gene name refers to the HGNC
(HUGO Gene Nomenclature Committee [https://www.genenames.org/])

official full name for that gene. Locus refers to chromosome and
cytoband for that gene. Protein refers to the common protein name for

a particular gene. Inheritance indicates the mode of inheritance (if

reported) according to the abbreviations at the end of the table.
Pathway refers to the reported pathway disrupted by the mutation.

Phenotype refers to the phenotype observed according to online
mendelian mutation in man (OMIM) [https://omim.org/]. Reference

refers to numbered reference in the bibliography of this publication.
PMID or link refers to the pubmed.gov identifier (PMID) for the

publication or publications establishing the gene as a monogenic route

to type 1 diabetes or a review of several publications.
SUPPLEMENTARY TABLE 2A

Human SLE Polygenic risk loci from GWAS catalog and putative causal
gene(s) as identified by OpenTargetsGenetics L2G pipeline – Variant &

Risk allele: the genetic variant with smallest reported P-value for

association with SLE by GWAS and the corresponding risk allele as
reported by the EBI/NHGRI GWAS catalog [https://www.ebi.ac.uk/

gwas/]. P-value: the p-value reported for that variant. P-value
annotation: commentary on the P-value reported for that variant as

reported in the EBI GWAS catalog (i.e. association in a specific
population, conditional logistic regression based on covariates, etc.)

RAF – risk allele frequency, if reported in the EBI GWAS catalog. OR
– reported odds ratio for the risk allele as reported in the EBI GWAS

catalog. Beta – effect size or natural logarithm of the odds ratio. CI – 95%

confidence interval of the estimated odds ratio (or beta where reported).
Mapped gene – contiguous or adjacent gene mapped to the location of

the lead genetic variant. Reported Trait – trait for the GWAS that reported
the lead marker from the EBI GWAS catalog. Only “Systemic lupus

erythematosus” is included in this table over against, i.e. “lupus
nephritis”. Trait(s) – trait or subphenotype. Only “systemic lupus

erythematosus” is included in this table over against, i.e. “neonatal

lupus”. Background trait – indicator of background trait (i.e. in the case
of lupus nephritis in a cohort of SLE patients, SLE would represent the
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background trait), if present. Study accession – GWAS catalog study
identifier. PubMed ID – pubmed ID of the study reporting association.

First Author (First author of the study in question). Location
– chromosome:position of the lead variant on human genome build 38

(hg38). P – P value converted from format in EBI GWAS catalog to
scientific notation. Chromosome – chromosome of lead variant.

Position (hg38) position in base pairs of the variant of the lead variant
on human genome build 38 (hg38). Region – numerical value of this

GWAS region as associated with SLE. Putative Causal gene as predicted by

open targets genetics L2G algorithm. Opentargets – link to opentargets
genetics prediction and evidence supporting this prediction for that

region. “NR” or “‘-” indicates value not reported in the EBI GWAS catalog.

SUPPLEMENTARY TABLE 2B

Human T1D Polygenic risk variants from GWAS catalog and putative

causal gene(s) as identified by OpenTargetsGenetics L2G pipeline

– columns are identical to Supplementary Table 2A, except that they
apply to type 1 diabetes and not Systemic lupus erythematosus.

SUPPLEMENTARY TABLE 3

Genes involved in lupus, type 1 diabetes, peripheral and central B cell
tolerance from mouse models – Murine locus – genetic locus, gene

name or common protein name of the gene. Gene location – murine

chromosome and cytoband of the gene in question. GL Murine – gene
location on chromosome in centimorgans. Human orthologue – where
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identifiable, the human orthlogue to the murine gene in question. Gene
location (human) chromosome and cytoband of that human gene. Gene

name –HGNC gene name of the gene where applicable. (HGNC =HUGO
Gene Nomenclature Committee [https://www.genenames.org/]). Protein

– abbreviation or common name for the protein encoded by the gene.
Pathway – pathway implicated in the function of this gene in the

corresponding class. Model – murine model where gene was
implicated. Phenotype – phenotype resulting from gene alteration.

Class – murine disease/model state implicated: either lupus, T1D,

peripheral tolerance, central tolerance or some combination.
PMID – PubMed ID of the publications supporting the link of the gene

with a particular class.

SUPPLEMENTARY TABLE 4

hyperlinks to Networks. This table consists of references to networks in

this paper along with links to permanent versions of the networks and

analyses that were used to develop the conclusions of this paper. Disease
network – disease network as referred to in this paper. Color – color

encoding of the disease network in question in –. Shape – shape
encoding of the disease network in question in –. URL (NDEX)

– universal resource locator for network @ http://www.ndexbio.org
URL(string-db.org) – universal resource locator for network @ https://

www.string-db.org/URL (Enrichr) – universal resource locator for

network @ Enrichr pathway and geneset enrichment analysis: https://
maayanlab.cloud/Enrichr/.
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M, et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked
lupus development. Nat Med (2000) 6:171–6. doi: 10.1038/72272

291. Xu Z, Vallurupalli A, Perry D, Baker H, Croker BP, et al. Cyclin-dependent
kinase inhibitor Cdkn2c regulates b cell homeostasis and function in the
NZM2410-derived murine lupus susceptibility locus Sle2c1. J Immunol (2011)
186:6673–82. doi: 10.4049/jimmunol.1002544

292. Potula HH, Xu Z, Zeumer L, Sang A, Croker BP, Morel L. Cyclin-
dependent kinase inhibitor Cdkn2c deficiency promotes B1a cell expansion and
autoimmunity in a mouse model of lupus. J Immunol (2012) 189:2931–40.
doi: 10.4049/jimmunol.1200556

293. Qiao G, Li Z, Minto AW, Shia J, Yang L, Bao L, et al. Altered thymic
selection by overexpressing cellular FLICE inhibitory protein in T cells causes
lupus-like syndrome in a BALB/c but not C57BL/6 strain. Cell Death Differ (2010)
17:522–33. doi: 10.1038/cdd.2009.143

294. Shenoy S,Mohanakumar T, Chatila T, Tersak J, Duffy B,Wang R, et al. Defective
apoptosis in lymphocytes and the role of IL-2 in autoimmune hematologic cytopenias.
Clin Immunol (2001) 99:266–75. doi: 10.1006/clim.2001.5017

295. Haraldsson MK, Louis-Dit-Sully CA, Lawson BR, Sternik G, Santiago-
Raber ML, Gascoigne NR, et al. The lupus-related Lmb3 locus contains a disease-
suppressing coronin-1A gene mutation. Immunity (2008) 28:40–51. doi: 10.1016/
j.immuni.2007.11.023

296. Robey FA, Jones KD, Steinberg AD. C-reactive protein mediates the
solubilization of nuclear DNA by complement. vitro J Exp Med (1985)
161:1344–56. doi: 10.1084/jem.161.6.1344

297. Szalai AJ, Weaver CT, McCrory MA, van Ginkel FW, Reiman RM,
Kearney JF, et al. Delayed lupus onset in (NZB x NZW)F1 mice expressing a
human c-reactive protein transgene. Arthritis Rheum (2003) 48:1602–11.
doi: 10.1002/art.11026

298. Enzler T, Gillessen S, Manis JP, Ferguson D, Fleming J, Alt FW, et al.
Deficiencies of GM-CSF and interferon gamma link inflammation and cancer. J
Exp Med (2003) 197:1213–9. doi: 10.1084/jem.20021258

299. Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT,
et al. Involvement of granulocyte-macrophage colony-stimulating factor in
pulmonary homeostasis. Science (1994) 264:713–6. doi: 10.1126/science.8171324

300. Gubbels Bupp MR, Woodfin AE. Evaluating the role of candidate gene,
csf3r, for sex-linked susceptibility to lupus-like disease in mice. J Immunol (2019)
202:50.11–1.

301. Lu W, Skrzypczynska KM, Weiss A. Acute csk inhibition hinders b cell
activation by constraining the PI3 kinase pathway. Proc Natl Acad Sci USA (2021)
118(43):e2108957118. doi: 10.1073/pnas.2108957118

302. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe
AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan
tissue destruction, revealing a critical negative regulatory role of CTLA-4.
Immunity (1995) 3:541–7. doi: 10.1016/1074-7613(95)90125-6

303. Alves da Costa T, Peterson JN, Lang J, Shulman J, Liang X, Freed BM, et al.
Central human b cell tolerance manifests with a distinctive cell phenotype and is
enforced via CXCR4 signaling in hu-mice. Proc Natl Acad Sci USA (2021) 118(16):
e2021570118. doi: 10.1073/pnas.2021570118

304. Campbell AM, Kashgarian M, Shlomchik MJ. NADPH oxidase inhibits the
pathogenesis of systemic lupus erythematosus. Sci Transl Med (2012) 4:157ra141.
doi: 10.1126/scitranslmed.3004801

305. Fanzo JC, Yang W, Jang SY, Gupta S, Chen Q, Siddiq A, et al. Loss of IRF-
4-binding protein leads to the spontaneous development of systemic
autoimmunity. J Clin Invest (2006) 116:703–14. doi: 10.1172/jci24096

306. Napirei M, Ricken A, Eulitz D, Knoop H, Mannherz HG. Expression
pattern of the deoxyribonuclease 1 gene: lessons from the Dnase1 knockout mouse.
Biochem J (2004) 380:929–37. doi: 10.1042/bj20040046

307. Foray AP, Candon S, Hildebrand S, Marquet C, Valette F, Pecquet C, et al.
De novo germline mutation in the dual specificity phosphatase 10 gene accelerates
autoimmune diabetes. Proc Natl Acad Sci USA (2021), 118(47):e2112032118.
doi: 10.1073/pnas.2112032118

308. Murga M, Fernández-Capetillo O, Field SJ, Moreno B, Borlado LR,
Fujiwara Y, et al. Mutation of E2F2 in mice causes enhanced T lymphocyte
proliferation, leading to the development of autoimmunity. Immunity (2001)
15:959–70. doi: 10.1016/s1074-7613(01)00254-0

309. Forster N, Gallinat S, Jablonska J, Weiss S, Elsässer HP, Lutz W, et al. p300
protein acetyltransferase activity suppresses systemic lupus erythematosus-like
autoimmune disease in mice. J Immunol (2007) 178:6941–8. doi: 10.4049/
jimmunol.178.11.6941

310. Perry DJ, Yin Y, Telarico T, Baker HV, Dozmorov I, Perl A, et al. Murine
lupus susceptibility locus Sle1c2 mediates CD4+ T cell activation and maps to
estrogen-related receptor g. J Immunol (2012) 189:793–803. doi: 10.4049/
jimmunol.1200411
Frontiers in Immunology 25
311. Mayeux J, Skaug B, Luo W, Russell LM, John S, Saelee P, et al. Genetic
interaction between Lyn, Ets1, and btk in the control of antibody levels. J Immunol
(2015) 195:1955–63. doi: 10.4049/jimmunol.1500165

312. Luo W, Mayeux J, Gutierrez T, Russell L, Getahun A, Müller J, et al. A
balance between b cell receptor and inhibitory receptor signaling controls plasma
cell differentiation by maintaining optimal Ets1 levels. J Immunol (2014) 193:909–
20. doi: 10.4049/jimmunol.1400666

313. Willcocks LC, Carr EJ, Niederer HA, Rayner TF, Williams TN, Yang W,
et al. A defunctioning polymorphism in FCGR2B is associated with protection
against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad
Sci USA (2010) 107:7881–5. doi: 10.1073/pnas.0915133107

314. Fukuyama H, Nimmerjahn F, Ravetch JV. The inhibitory fcgamma
receptor modulates autoimmunity by limiting the accumulation of
immunoglobulin g+ anti-DNA plasma cells. Nat Immunol (2005) 6:99–106.
doi: 10.1038/ni1151

315. Zhang L, Eddy A, Teng YT, Fritzler M, Kluppel M, Melet F, et al. An
immunological renal disease in transgenic mice that overexpress fli-1, a member of
the ets family of transcription factor genes. Mol Cell Biol (1995) 15:6961–70.
doi: 10.1128/mcb.15.12.6961

316. Amin RH, Schlissel MS. Foxo1 directly regulates the transcription of
recombination-activating genes during b cell development. Nat Immunol (2008)
9:613–22. doi: 10.1038/ni.1612

317. Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore
JK, et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like
syndrome. Immunity (2002) 16:499–508. doi: 10.1016/s1074-7613(02)00302-
3

318. Li Y, Zhao M, Yin H, Gao F, Wu X, Luo Y, et al. Overexpression of the
growth arrest and DNA damage-induced 45alpha gene contributes to
autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis
Rheum (2010) 62:1438–47. doi: 10.1002/art.27363

319. Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller
L, Shehee R, et al. Genomic instability in Gadd45a-deficient mice. Nat Genet (1999)
23:176–84. doi: 10.1038/13802

320. Smith LK, Fawaz K, Treanor B. Galectin-9 regulates the threshold of b
cell activation and autoimmunity. Elife (2021) 10:e64557. doi: 10.7554/
eLife.64557

321. Le LQ, Kabarowski JH, Weng Z, Satterthwaite AB, Harvill ET, Jensen ER,
et al. Mice lacking the orphan G protein-coupled receptor G2A develop a late-onset
autoimmune syndrome. Immunity (2001) 14:561–71. doi: 10.1016/s1074-7613(01)
00145-5

322. Tsui HW, Siminovitch KA, de Souza L, Tsui FW. Motheaten and viable
motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat
Genet (1993) 4:124–9. doi: 10.1038/ng0693-124

323. Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, et al.
Mutations at the murine motheaten locus are within the hematopoietic cell
protein-tyrosine phosphatase (Hcph) gene. Cell (1993) 73:1445–54. doi: 10.1016/
0092-8674(93)90369-2

324. Doyle HA, Gee RJ, Mamula MJ. A failure to repair self-proteins leads to T
cell hyperproliferation and autoantibody production. J Immunol (2003) 171:2840–
7. doi: 10.4049/jimmunol.171.6.2840

325. Xin H, D'Souza S, Jørgensen TN, Vaughan AT, Lengyel P, Kotzin BL, et al.
Increased expression of Ifi202, an IFN-activatable gene, in B6.Nba2 lupus
susceptible mice inhibits p53-mediated apoptosis. J Immunol (2006) 176:5863–
70. doi: 10.4049/jimmunol.176.10.5863

326. Panchanathan R, Xin H, Choubey D. Disruption of mutually negative
regulatory feedback loop between interferon-inducible p202 protein and the E2F
family of transcription factors in lupus-prone mice. J Immunol (2008) 180:5927–34.
doi: 10.4049/jimmunol.180.9.5927

327. Asefa B, Klarmann KD, Copeland NG, Gilbert DJ, Jenkins NA, Keller JR.
The interferon-inducible p200 family of proteins: a perspective on their roles in cell
cycle regulation and differentiation. Blood Cells Mol Dis (2004) 32:155–67.
doi: 10.1016/j.bcmd.2003.10.002

328. Mondini M, Vidali M, Airò P, De Andrea M, Riboldi P, Meroni PL, et al.
Role of the interferon-inducible gene IFI16 in the etiopathogenesis of systemic
autoimmune disorders. Ann N Y Acad Sci (2007) 1110:47–56. doi: 10.1196/
annals.1423.006

329. Li J, Liu Y, Xie C, Zhu J, Kreska D, Morel L, et al. Deficiency of type I
interferon contributes to Sle2-associated component lupus phenotypes. Arthritis
Rheum (2005) 52:3063–72. doi: 10.1002/art.21307

330. Seery JP, Carroll JM, Cattell V, Watt FM. Antinuclear autoantibodies and
lupus nephritis in transgenic mice expressing interferon gamma in the epidermis. J
Exp Med (1997) 186:1451–9. doi: 10.1084/jem.186.9.1451

331. Ehrenstein MR, O'Keefe TL, Davies SL, Neuberger MS. Targeted gene
disruption reveals a role for natural secretory IgM in the maturation of the primary
frontiersin.org

https://doi.org/10.1038/72272
https://doi.org/10.4049/jimmunol.1002544
https://doi.org/10.4049/jimmunol.1200556
https://doi.org/10.1038/cdd.2009.143
https://doi.org/10.1006/clim.2001.5017
https://doi.org/10.1016/j.immuni.2007.11.023
https://doi.org/10.1016/j.immuni.2007.11.023
https://doi.org/10.1084/jem.161.6.1344
https://doi.org/10.1002/art.11026
https://doi.org/10.1084/jem.20021258
https://doi.org/10.1126/science.8171324
https://doi.org/10.1073/pnas.2108957118
https://doi.org/10.1016/1074-7613(95)90125-6
https://doi.org/10.1073/pnas.2021570118
https://doi.org/10.1126/scitranslmed.3004801
https://doi.org/10.1172/jci24096
https://doi.org/10.1042/bj20040046
https://doi.org/10.1073/pnas.2112032118
https://doi.org/10.1016/s1074-7613(01)00254-0
https://doi.org/10.4049/jimmunol.178.11.6941
https://doi.org/10.4049/jimmunol.178.11.6941
https://doi.org/10.4049/jimmunol.1200411
https://doi.org/10.4049/jimmunol.1200411
https://doi.org/10.4049/jimmunol.1500165
https://doi.org/10.4049/jimmunol.1400666
https://doi.org/10.1073/pnas.0915133107
https://doi.org/10.1038/ni1151
https://doi.org/10.1128/mcb.15.12.6961
https://doi.org/10.1038/ni.1612
https://doi.org/10.1016/s1074-7613(02)00302-3
https://doi.org/10.1016/s1074-7613(02)00302-3
https://doi.org/10.1002/art.27363
https://doi.org/10.1038/13802
https://doi.org/10.7554/eLife.64557
https://doi.org/10.7554/eLife.64557
https://doi.org/10.1016/s1074-7613(01)00145-5
https://doi.org/10.1016/s1074-7613(01)00145-5
https://doi.org/10.1038/ng0693-124
https://doi.org/10.1016/0092-8674(93)90369-2
https://doi.org/10.1016/0092-8674(93)90369-2
https://doi.org/10.4049/jimmunol.171.6.2840
https://doi.org/10.4049/jimmunol.176.10.5863
https://doi.org/10.4049/jimmunol.180.9.5927
https://doi.org/10.1016/j.bcmd.2003.10.002
https://doi.org/10.1196/annals.1423.006
https://doi.org/10.1196/annals.1423.006
https://doi.org/10.1002/art.21307
https://doi.org/10.1084/jem.186.9.1451
https://doi.org/10.3389/fimmu.2022.953439
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Harley et al. 10.3389/fimmu.2022.953439
immune response. Proc Natl Acad Sci USA (1998) 95:10089–93. doi: 10.1073/
pnas.95.17.10089

332. Ehrenstein MR, Cook HT, Neuberger MS. Deficiency in serum
immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J Exp
Med (2000) 191:1253–8. doi: 10.1084/jem.191.7.1253

333. Schwickert TA, Tagoh H, Schindler K, Fischer M, Jaritz M, Busslinger M.
Ikaros prevents autoimmunity by controlling anergy and toll-like receptor
signaling in b cells. Nat Immunol (2019) 20:1517–29. doi: 10.1038/s41590-019-
0490-2

334. Schorle H, Holtschke T, Hünig T, Schimpl A, Horak I. Development and
function of T cells in mice rendered interleukin-2 deficient by gene targeting.
Nature (1991) 352:621–4. doi: 10.1038/352621a0
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