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a b s t r a c t 

Emerging lines of evidence have shown that the production of the covalently closed single-stranded circular 

RNAs is not splicing errors, but rather a regulated process with distinct biogenesis and turnover. Circular RNAs 

are expressed in a cell type- and tissue-specific manner and often localize to specific subcellular regions or or- 

ganelles for functions. The dysregulation of circular RNAs from birth to death is linked to the pathogenesis and 

progression of diverse diseases. This review outlines how aberrant circular RNA biogenesis, subcellular location, 

and degradation are linked to disease progression, focusing on metaflammation and cancers. We also discuss 

potential therapeutic strategies and obstacles in targeting such disease-related circular RNAs. 
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. Introduction 

Recent studies have revealed that non-coding RNAs or uncanonical

oding RNAs play important roles in the pathogenesis and progression

f diseases [1–3] . Among them, circular RNA, which was a mystery

ecades ago, has become well-investigated in recent years [4–7] . The

ost remarkable feature of circular RNA is the covalently closed loop

tructures that lack 5 ′ and 3 ′ ends. One type of circular RNA (circRNAs)

s mainly produced by the back-splicing of exons in precursor messen-

er RNAs (pre-mRNAs) ( Fig. 1 ) [8] . Recent studies have shown that the

ack-splicing of exons is regulated by intronic complementary sequences

anking the exons and facilitated by RNA-binding proteins, such as Nu-

lear factor 90 (NF90) and NF110 binding to these elements [ 9 , 10 ]. Al-

ernatively, a subset of intron-lariats can escape from debranching and

etain the covalently closed structure to form circular intronic RNAs

ciRNAs) [ 11 , 12 ]; while others are produced from the mitochondrial

enome with yet-defined biogenesis pathways, such as SCAR, mc-COX2,

nd mecciRNAs [13–15] . Owning their covalently closed structures, cir-
∗ Corresponding author. 

E-mail address: sushch@mail.sysu.edu.cn (S. Su) . 

ttps://doi.org/10.1016/j.fmre.2023.04.019 

667-3258/© 2023 The Authors. Publishing Services by Elsevier B.V. on behalf of Ke

Y-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ular RNAs are resistant to linear RNA decay machinery, thereby they

re more stable in general than linear RNAs. Nevertheless, emerging

tudies have shown that circular RNAs can regulate different biological

rocesses and their abnormal expression is related to the physiologi-

al and pathological processes of natural immunity, metabolic inflam-

ation, neuronal disorders, and tumors [ 13 , 16-18 ]. Importantly, some

xon back-splicing-derived circRNAs have been found to play important

oles in multiple life activities and show potential applications for the

iagnosis and treatment of diseases [6] . Therefore, understanding the

ature of circRNA’s biogenesis, metabolism and function is of great im-

ortance in fully appreciating their functions and potential applications.

Previous studies have found that circRNAs have different expression

rofiles in different organs and tissues, suggesting that circRNAs are ex-

ressed in a cell type-specific or tissue-specific manner [19] . Moreover,

everal recent studies have identified circular RNAs in nuclei and mi-

ochondria, implying that they can also be expressed in an organelle-

pecific manner ( Fig. 1 ) [ 13 , 20 ]. circRNAs located in the cytoplasm

an play the role of “miRNA decoy ” and regulate the expression lev-
Ai Communications Co. Ltd. This is an open access article under the CC 
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Fig. 1. Circular RNAs from biogenesis to degradation. The biogenesis of circRNA is mediated by spliceosomes, intronic complementary sequences, and RNA- 

binding proteins (RBP). Chromosomal translocation can lead to the biogenesis of fused circRNA (F-circRNA). After generation, circular RNAs can have different 

subcellular locations. In the nucleus, EIcircRNA or ciRNA with introns retained participates in gene regulation, while cia-cGAS binds cGAS in an autoimmune response. 

In the cytosol, circRNA can sponge miRNAs, interact with proteins, or be translated into proteins. Circular RNAs can also locate mitochondria or exosomes, such 

circular RNAs are highly associated with metabolic homeostasis. At the end of their lifetime, circular RNAs undergo decay according to their sequence modification, 

secondary structure, miRNA binding, or stress conditions. Made by BioRender ( https://biorender.com ). 
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ls of miRNA-targeted genes [ 21 , 22 ]. In addition, circRNA also has the

unction of a “protein decoy ” [23] . Recent studies have also revealed

hat circRNAs can be translated into proteins [24] . In the nucleus, some

ntron-retained circRNAs are involved in gene expression [20] . As for

he mitochondria, we showed that mitochondrial circular RNA, SCAR ,

ould regulate mROS output and maintain metabolic homeostasis [13] .

hese studies showed that the organic and subcellular locations of circu-

ar RNAs are essential for their biological functions. The dysregulation of

he subcellular location of circular RNAs may contribute to unbalanced

ell metabolism. 

In this review, we discuss recent findings of diseases related to dys-

egulation of biogenesis, degradation, and subcellular location of circu-

ar RNAs. We also summarize the current understanding of therapeutic

trategies related to circular RNA biology. 

. Biogenesis of circRNAs and its dysregulation in diseases 

.1. Computational detection and quantification of circRNAs in various 

iseases 

Considering that most exonic circRNAs are highly similar to their

ognate linear transcripts, only reads that span the back-spliced junction

ite can be effectively identified as circRNAs. Recently, several com-

utational tools have been developed for detecting circRNAs, includ-
684 
ng find_circ [22] , CIRCExplorer [ 9 , 25 ], CIRI [ 26 , 27 ], and MapSplice

28] , etc. Most of these methods employ alignment-based strategies to

ecognize back-spliced junction sites, which may have limited sensi-

ivity and notable false-positive rates. This is because most alignment

ools are not designed for the alignment of these non-linear transcripts

 29 , 30 ]. Most recently, by leveraging long-read sequencing technologies

 e.g. Nanopore), several workflows and bioinformatic tools have been

eveloped to sequence and reconstruct full-length circRNA isoforms

31–35] . 

Differential expression analysis is an important way to mine candi-

ate circRNAs that are related to diseases. However, given the generally

ow expression of circRNAs and the variation of enrichment efficiency

nd library quality in different datasets, differential expression of cir-

RNAs is a challenging aspect in circRNA studies. Recently, a few al-

orithms have been developed to directly estimate circRNA expression,

ome of which can quantify the expression of both circular and cog-

ate linear transcripts [36–39] . Importantly, as single-cell sequencing

ould potentially help in studies of RNA cellular architecture in human

nflammation and cancer in the future, computational tools and single-

ell approaches that identify circRNAs at the single-cell RNA level have

lso been developed recently [40–42] . The comprehensive single-cell

NA profile analysis will help to understand circRNA diversity in dis-

ases, which may identify distinct circRNA-expressing cell subsets and

eveal how these subsets affect disease progression. Nevertheless, more

https://biorender.com
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ophisticated statistical models and computational algorithms are still

eeded to deepen circRNA studies to the isoform-level resolution. 

.2. Physiopathological expression of circRNAs 

The back-splicing of circRNAs is carried out by spliceosomes binding

o exons and their flanking introns of pre-mRNAs ( Fig. 1 ) [43] . Although

he efficiency of back-splicing is much lower than canonical splicing, the

roduced circRNAs are more stable than linear RNAs and sometimes

ave a higher circular-to-linear RNA ratio (CLR) [43] . Recent studies

ave shown that nucleated hematopoietic cells have an averagely high

LR, which may play an important role during hematopoietic differen-

iation [ 44 , 45 ]. Thus, proper CLR is essential to the cellular functions of

ircRNAs, and dysregulation of circRNA biogenesis may result in aber-

ant circRNA expression and thereby be related to disease pathogenesis.

or instance, polypyrimidine tract binding protein 1 (PTBP1), a widely

tudied splicing regulatory factor in the hnRNP family, is predicted to

ind 3 sites upstream of the circRNA_001160 formation region on pre-

RNA. Thus, upregulated PTBP1 in glioma endothelial cells causes the

xcessive generation of circRNA_001160 instead of its linear one, which

nhances the blood-tumor barrier and impedes the therapy of glioma

46] . Additionally, HNRNPL can up-regulate circRNA splicing, which is

linically relevant in human prostate cancer [47] . HNRNPM can regulate

he generation of mitochondrial circular RNA SCAR, which inhibits the

ctivation of liver fibroblasts in non-alcoholic steatohepatitis (NASH)

13] . 

The generation of circRNAs also often requires intronic complemen-

ary sequences, most of which are Alu repeat elements flanking the cir-

ularized exons in the human genome ( Fig. 1 ) [ 48 , 49 ]. Disruption of

uch intronic pairing causes a complete loss of circRNAs or aberrant cir-

RNA expression. In the study of Xia et al., the knockout of cia-cGAS

ia Alu deletion using CRISPR/Cas9 in mice led to a decrease in the

umber of LT-HSCs which was associated with severe anemia and death

45] . Intriguingly, recent studies have revealed that cancer-associated

hromosomal translocations gave rise to coincidental intronic comple-

entary sequences flanking the exons of distinct genes and generated

usion circRNAs (f-circRNAs) ( Fig. 1 ), which functioned in acute myeloid

eukemia (AML), Ewing sarcoma and lung cancer [ 50 , 51 ]. 

In addition to the roles of spliceosomes and intronic complementary

equences, RNA binding proteins (RBP) also regulate circRNA biogenesis

 Fig. 1 ) [52] . NF90 and NF110 are found to bind to intronic inverted-

epeat Alu elements with their double-stranded RNA binding domains

dsRBDs) and promote back-splicing [10] . Under viral infection, these

mmune factors are exported to the cytoplasm and induce an antiviral

mmune response, meanwhile, significantly downregulating circRNAs,

uggesting that NF90/NF110 can coordinate with circRNA biogenesis

nd function in viral infection. In another study, RBP FUS which is as-

ociated with the pathogenesis of amyotrophic lateral sclerosis (ALS)

nd frontotemporal dementia, was found to modulate circRNA biogene-

is through binding introns flanking the circRNA-forming exons. More-

ver, most circRNAs regulated by FUS were conserved in mouse and

uman motor neurons, implying links between circRNA production and

LS pathology [17] . 

Since various factors regulating the generation of circRNA are

isease-associated, it is quite important to understand the pathway and

echanism of circRNA biogenesis, especially the similarities and differ-

nces between back-splicing and classical splicing reactions and their

pecific regulators. In addition, how circRNAs maintain a stable CLR

n health conditions is also a cutting-edge scientific question that en-

ightens novel treatments for diseases. Last but not least, it is interesting

hat some circular RNAs are found to be generated by mitochondrial

enes [ 13 , 15 , 53 ], which lack introns, let alone intronic complementary

equences, so the nature of biogenesis of mitochondrial circular RNAs

eeds further exploration. 
685 
. circRNA action modes and diseases 

After generation, circRNAs seem to act through diverse mechanisms

ccording to their biological functions. In the cytosol, circRNAs can act

s microRNA decoys, which can bind microRNAs (miRNAs) possessing

omplementary sequences to multi-sites in circRNA sequences and then

ithstand the silencing effect of miRNAs on targeted mRNAs ( Fig. 1 )

 21 , 22 , 54 ]. Some circRNAs are also reported to interact with proteins

 Fig. 1 ). For example, cytosolic circFoxo3 interacts with the cell cycle

roteins cyclin-dependent kinase 2 (CDK2) and cyclin-dependent kinase

nhibitor 1 (p21) to form a ternary complex that inhibits CDK2’s func-

ion in cell cycle progression [55] . This circRNA is also found to bind

ulti-anti-stress proteins and plays important roles in myocardial cell

enescence [56] . In addition, many cytosolic circRNAs are found to have

nique ORFs and can be translated into proteins [57–61] . In the nu-

leus, circRNAs are mostly involved in regulating gene transcription,

lternative splicing, and chromatin loops ( Fig. 1 ) [ 11 , 20 , 62 , 63 ]. De-

pite the uncovering of these emerging roles, the potential functions

f a large number of circRNAs remain unknown. Due to the tissue-

pecific expression manner, circRNA functions diversely in different tis-

ues, so the dysfunction of circRNAs is linked to various systematic dis-

ases. Here, we grouped circRNAs with different biological functions

nto three types: miRNA-sponging circRNAs, protein-interacting circu-

ar RNAs, and protein-translating circRNAs, and discussed the immune

etabolic diseases and cancers related to the dysregulation of these

unctions. 

.1. miRNA-sponging circRNAs 

We and others have previously shown that post-transcriptional reg-

lation by miRNAs determines cell fate by coordinating transcriptional

actors and controlling their targeted mRNAs [ 64 , 65 ]. Highly abundant

ircRNAs containing miRNA binding sites can sponge miRNAs and have

ompeting endogenous RNA (ceRNA) function, suggesting that circRNAs

an regulate disease progression through sponging miRNAs. The most

ell-known circRNA CDR1as, which contains more than 70 conserved

iR-7 binding sites, was initially found to regulate neuronal develop-

ent and may serve as a potential biomarker for neurological disorders

nd tumors [ 21 , 22 ]. MiR-7 is a putative tumor suppressor of colorectal

ancer [66] . Researchers found that circCDR1as was significantly up-

egulated in colorectal cancer patients and blocked miR-7, leading to

he activation of miR-7 ′ s targeted genes EGFR and RAF1, which were

ssociated with tumor progression [67] . Moreover, emerging evidence

as also shown that a number of circRNAs, working as ceRNAs, could

ind multi tumor suppressor miRNAs and regulate a subset of genes

inked to the proliferation of cancer cells [ 68 , 69 ]. Increasing onco-

enic or tumor-suppressing miRNA-sponging circRNAs have been re-

orted recently, implying the important role of ceRNA function in vari-

us cancers [ 70 , 71 ]. In addition, several studies have revealed that some

iRNA-sponging circRNAs are associated with metabolic disorders such

s diabetes, obesity, and insulin resistance [72–74] . These studies

uggest that the dysregulation of the circRNA-microRNA-downstream

olecule axis may be prevalent in metaflammation and tumor

rogression. 

However, there are some debates on how common this mechanism

s for endogenous circRNAs. According to a paper from Bartel’s lab, the

heory of miRNA sponge is doubted since most circRNAs contain much

ewer miRNA binding sites than CDR1as (more than 70 target sites),

ircZNF91 (24 target sites), or circSYR (16 target sites) [75] . The low

opy number and limited miRNA binding sites of most circRNAs are

ctually confusing in terms of how they affect cancer progression via

eRNA function [ 76 , 77 ]. Maybe it should be considered that the impacts

f reported circRNAs with such modes of action are measurable possibly

ue to their stability or over-expression in diseases. 
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.2. Protein-interacting circular RNAs 

RNA-binding proteins also play a critical role in circRNA functions.

s many RNA-binding proteins also act as transcription regulators, some

ucleus-localized circRNAs can recruit transcriptional factors to the

romoter region of the targeted genes and regulate their expression

 Fig. 1 ). Some intron-retained circRNAs (EIcircRNAs) such as circEIF3J

nd circPAIP2 have been identified to recruit U1 snRNP and pol-II to the

romoter of parental genes and enhance gene expression [20] . Another

rticle recently reported that circRNA FECR1 can recruit a demethylase

ET1 to the promoter of an oncogenic driver, friend leukemia virus in-

egration 1 (FLI1), leading to the overexpression of FLI1 and promoting

he metastasis of breast cancer [78] . Through sponging RNA-binding

roteins, circular RNA may play a role in inflammatory signaling path-

ays. We have recently reported a mitochondrial circular RNA SCAR,

hich binds the regulator of mitochondrial permeability transition pore

mPTP) to inhibit mROS-mediated fibroblast inflammation in nonalco-

olic steatohepatitis (NASH) [13] . A latest study also showed that cir-

MTCL1 binds to C1QBP and subsequently activates the wnt/ 𝛽-catenin

athway in the advanced laryngeal squamous cell carcinoma (LSCC)

79] . Importantly, some circRNAs are involved in the regulation of im-

une sensors such as double-stranded RNA (dsRNA)-activated protein

inase (PKR) in systemic autoimmune diseases [16] and RIG-I in viral

nfection [ 80 , 81 ] as well as cGAS in autoimmune response [45] . In ad-

ition to influencing the exterior function of proteins, circRNAs have

ecently been found to affect proteins’ structure as well. Another arti-

le reported that circVAMP3 acts as a molecular skeleton to promote the

hase separation of CAPRIN1 and inhibits the proliferation of hepatocel-

ular carcinoma (HCC) cells by suppressing c-Myc translation [82] . RNA

inding proteins’ functions are widely spread through diverse mecha-

isms and an increasing list of circRNAs has been identified to be in-

olved in the circRNA-protein interaction, which is very often linked to

ifferent disease processes as discussed above. 

.3. Translating circRNAs 

In recent years, the translation of circRNAs and their therapeutic

otential have increasingly gained the attention of researchers [24] .

lthough circRNA is 5 ′ -m 

7 G cap-independent, researchers found that

NA circles with internal ribosome entry site elements (IRES) can be

ranslated in vitro or in cells [ 83 , 84 ]. Abe’s lab also found that RNA cir-

les can be translated through rolling circle amplification [85] . After-

ard, a group of endogenous circRNAs was found to possess ribosome-

rotected sites, specific ORFs, IRESs, or m 

6 A RNA modification sites,

hich strongly suggests that circRNAs are translatable [ 60 , 61 , 86 ]. Im-

ortantly, recent studies have shown that novel proteins produced by

ircRNAs are involved in human diseases. Zhang, N’s research team

howed that SHPRH-146aa, FBXW7–185aa, and PINT87aa translated by

ircRNAs act as tumor suppressors in human glioblastoma [ 18 , 58 , 59 ].

hey also found that HER2–103 encoded by circHER2 is highly ex-

ressed in triple-negative breast cancer (TNBC), which is associated with

 worse overall prognosis of breast cancer [87] . Another study identified

ircMAP3K4 with coding potential in HCC patients using bioinformatic

nalysis and that circMAP3K4–455aa could protect apoptosis-inducing

actor (AIF) from cleavage so HCC cells are resistant to cisplatin-induced

poptosis [88] . A latest study also found that the downregulation of

ircBNC2 in epithelial cells which is translated into ctBNC2 protein to

egulate the G2/M cell cycle is associated with human fibrotic kidney

nd liver [89] . Therefore, the finding of translation of circular RNAs

as broadened the traditional understanding of non-coding RNAs or un-

anonical coding RNAs. It’s also worth exploring whether tumor-specific

ircRNAs could encode antigen peptides which may elicit anti-tumor im-

une response. 

Undoubtedly, there are also some debates on how prevalent circRNA

ranslation could be. Although recent studies suggested that circRNA

ranslation is very prevalent [ 86 , 90 ], several recent papers have argued
686 
hat most of these translatable circRNAs are due to artifacts [ 91 , 92 ].

dditionally, due to the noise of mass-spectrometry data, many of the

ircRNA-encoded proteins reported in the cancer papers may actually be

ranslated from novel linear splicing isoforms [ 93 , 94 ]. Therefore, addi-

ional experiments are needed to exclude potential artifacts, especially

or unknown proteins produced by circRNAs. It should be noted that

ircular RNAs are often expressed at a low level and cap-independent

ranslation is inefficient, thus, to what degree endogenous circular RNA

ranslation can give rise to measurable effects should be carefully eval-

ated [95] . 

Nevertheless, although the copy number of most circRNAs in vivo

s low [16] , the stability of circRNAs may endow some irreplaceable

unctions in tissues and cells. Individual circRNAs may even have mul-

iple roles to strengthen their ability to control the progression of dis-

ases [96] . Proper classification of circRNAs according to their biolog-

cal functions and what characteristics determine circRNA’s functions

arrant future studies. More importantly, it is necessary to face con-

roversies over circRNA biogenesis and functions and then solve those

roblems, which require a more accurate and high-tech approach to

dapting to circRNA research. Uncovering the nature of circRNA’s bio-

enesis and biological function is of great importance to efficient treat-

ents of diseases. 

. circRNA degradation and diseases 

Although circRNAs are resistant to RNA enzymes participating in

he degradation of linear RNAs, recent studies have revealed that cir-

RNAs undergo decay by various mechanisms ( Fig. 1 ). For example,

ircRNA CDR1as has been found to be directly cleaved by miR-671-

GO2 [97] . And long noncoding RNA Cyrano could suppress miR-671

hrough target-directed miR-7 degradation, leading to the accumula-

ion of circRNA CDR1as in brain cells [98] . Another study showed that

rosophila GW182 and its human homologs (TNRC6A, TNRC6B, and

NRC6C) mediated circRNA decay in an AGO-slicer or P-body indepen-

ent manner [99] . In stress conditions, circRNAs can also be degraded

y RNase L, which functions more globally than in an AGO-dependent

anner [ 13 , 16 ]. Additionally, some m 

6 A-containing circRNAs can also

e cleaved by YTHDF2 (m 

6 A reader protein)-HRSP12 (adaptor protein)-

Nase P/MRP (endoribonucleases) [100] . Moreover, circRNAs with sec-

ndary structure may undergo decay by UPF1 (RNA-binding protein)

nd its associated protein G3BP1 [101] . Interestingly, cleaving circR-

As is like a part-time job for the factors mentioned above, leading to

ow efficiency of compensation for dysregulating circRNA expression

nder disease conditions. Therefore, uncovering the major pathway of

ircRNA decay is of great importance to disease treatment. 

Steady-state amounts of circRNAs play important roles in the im-

une system [ 10 , 16 ]. In autoimmune diseases such as systemic lupus

rythematosus (SLE), virus infection leads to the activation of RNase

, which degrades great amounts of circRNAs, including circRNAs that

erve as endogenous inhibitors for PKR. Then PKR is further activated

nd moves forward to induce disease progression [16] . Meanwhile, dur-

ng virus infection, NF90/NF110 is exported from the nucleus to mediate

he immune response [10] , resulting in decreased biogenesis of circR-

As which subsequently enhances the unbalance of the immune sys-

em. Intriguingly, mitochondria-localized circular RNA SCAR can also

e degraded by RNase L in liver fibroblasts. Under lipid stress, PGC-1 𝛼,

hich regulates the transcription of SCAR, is suppressed by ER stress

ediators, leading to a remarkable decrease in SCAR in NASH. It is im-

ortant to note that the copy number of SCAR in liver fibroblasts is

early over 1000 due to high copies of the mitochondrion, suggesting

hat this circular RNA is stable in normal conditions [13] . In liver fi-

rosis, RNase L-mediated circular RNA decay may contribute to such

 remarkable decrease in SCAR, which in principle would then release

mmune factors to maintain metaflammation. What’s more, accumulat-

ng lines of evidence have indicated that m 

6 A deregulation drives tumor

rogression [102] . As m 

6 A modification of circRNA has been suggested
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a  
s a marker for “self ” [81] , tumor-derived circRNAs modified by m 

6 A

ay mark themselves as “self ” circRNAs and escape tumor immune re-

ponses. Therefore, the inefficient degradation of these m 

6 A circRNAs

ay contribute to tumor immune escape. In addition, it is also possible

hat m 

6 A modification of circRNAs in tumor cells leads to their decay

y the YTHDF2-HRSP12-RNase P/MRP complex and subsequently cov-

rs up their immunogenicity. Nevertheless, further investigations are

equired to elucidate the nature of circRNA degradation. 

. circRNA subcellular location and diseases 

The multiple expression profiles of circular RNAs in different organ

issues revealed their cell type- and tissue-specific expression manners

 19 , 103 , 104 ]. For example, CDR1as acts as a molecular decoy for miR-

 and miR-671 in brain tissues and maintains the function of the ner-

ous system [19] . Testis-located circSRY plays a role in the reproductive

ystem [105] . circRNA HIPK3 acts as an oncogene in colorectal cancer

106] , but it is also considered a tumor suppressor in bladder cancer

107] . In addition to cell type-specific or tissue-specific expression, the

atest studies have revealed that circRNAs also display organelle-specific

xpression, showing specific enrichments in nuclei, mitochondrion, and

xosomes ( Fig. 1 ) [ 13 , 14 , 20 , 45 , 108-110 ]. It is of great importance to

ink the mechanism of circRNAs’ subcellular location patterns, modes of

ction, and disease processions. 

.1. Nucleus-localized circRNAs 

Although the back-splicing of exons occurs in the nucleus, most

xons-deriving circRNAs are exported to the cytoplasm. However,

ntron-containing circRNAs such as EIcircRNAs and ciRNAs can stay in

he nucleus and interact with transcriptional factors or form R-loops to

egulate the transcription of parental genes ( Fig. 1 ) [12] . For instance,

is-acting circ-CTNNB1 can bind DEAD-box polypeptide 3 (DDX3) in the

ucleus and enhance the transactivation of Yin Yang 1 (YY1), result-

ng in transcriptional activation of downstream genes associated with

nt/beta-catenin signaling, which regulates tumorigenesis and aggres-

iveness [111] . Nuclear localized circDONSON can recruit the NURF

omplex to the SOX4 promoter and initiate its transcription, causing

he tumorigenesis of gastric cancer [112] . On the other hand, circHuR

etected in the nucleus can prevent CNBP from binding to the HuR pro-

oter and suppress gastric cancer progression [113] . In another exam-

le, circAnks1a was found to directly bind to the Vegfb promoter and

ct as a regulator for neuropathic pain [114] . In addition to interacting

ith transcriptional factors and gene promoters, high levels of cia-cGAS

n the nucleus could bind the DNA sensor cGAS to protect long-term

ematopoietic stem cells (LT-HSCs) from cGAS-mediated autoimmune

esponses and maintain their quiescent state [45] . Another set of circR-

As in the nucleus is involved in the regulation of tumorigenesis sig-

aling pathways such as the Wnt/beta-catenin signaling [115] , making

hem potential candidates as biomarkers for cancer diagnosis and novel

argets for cancer treatment. 

.2. Mitochondrial circular RNAs 

Mitochondrion has its own genome, so alternative splicing and back-

plicing can also occur in the mitochondria to generate mitochondrial

ircular RNAs (mito-circRNAs). The evidence of spliceosomes in mito-

hondria regulating mitochondrial RNA biogenesis also strongly sup-

orts this concept [116] . Liu et al. have found hundreds of circular RNAs

ncoded by the mitochondrial genome (mecciRNAs), some of which may

lay a key role in the process of mitochondrial protein import [ 15 , 53 ].

owever, the biogenesis of mecciRNAs has remained unclear. MtDNA-

ranscribed circRNAs are also found to be widespread and translatable

n plants [117] . It has also been reported that mitochondria-derived

ircRNAs are associated with the progression and prognosis of chronic
687 
ymphocytic leukemia [14] . Moreover, our latest study clarified the im-

ortant role of mitochondria-localized circRNAs in immune metabolic

nflammation, suggesting that mito-circRNAs play important roles in

itochondrial metabolism [13] . In addition to circular RNAs produced

rom transcribed mtDNA, nuclear-derived circRNA PUM1 is found to lo-

alize in mitochondria and mediate oxidative phosphorylation function

n esophageal squamous cell carcinoma cell lines [108] . However, the

echanism of this mitochondria-specific expression in diseases remains

nknown. It is of great concern to uncover the mitochondria import-

ng pathways of these circular RNAs, which may play essential roles

n cell metabolic regulation in immune diseases or cancers. Overall, the

ndings of mitochondria-localized circular RNAs derived from the mito-

hondrial genome or nuclear genome call for new therapeutic strategies

hat target them inside the mitochondria. It is also important to distin-

uish the circular RNAs transcribed from the mitochondrial genome and

hose transcribed from the nuclear-mitochondrial segments (NUMTs) to

void and exclude potential artifacts [118–120] . 

.3. Exosome located circRNAs 

We have previously identified extracellular vesicle (EV)-packaged

ncRNA HISLA as a signal transducer between immune cells and tu-

or cells to promote aerobic glycolysis in breast cancer, suggesting that

xosome-located noncoding RNAs can be novel regulatory substances to

ommunicate metabolic information between organs in disease [121] .

i et al. found that circRNAs are enriched in exosomes in the serum of

olon cancer patients, which may serve as potential exosome-based can-

er biomarkers [109] . Another study showed that circ-IARS expression

as upregulated in plasma exosomes which could enter vascular en-

othelial cells and promote tumor invasion and metastasis [122] . More-

ver, a recent study found that transferring exosomal circRNA-100338

erived from hepatocellular carcinoma (HCC) cells to vascular endothe-

ial cells enhanced angiogenesis and promoted tumor metastasis [123] .

n addition, exosomal circRNAs secreted from adipocytes can be taken

n by HCC cells and sponge miR-34a to activate the deubiquitination-

elated singling pathway linked to the poor prognosis of HCC [110] .

hese studies reveal that exosome-located circRNAs are stable in pe-

ipheral circulation and function powerfully in tumor progression, re-

inding us that they are potential biomarkers of cancers. 

Although more and more circRNAs in different subcellular fractions

ave been identified [124] , targeting strategies for them are still limited.

or example, due to the existence of the mitochondrial bilayer mem-

rane, the efficient delivery system for mitochondrial circular RNA was

acking until the recent application of mitochondria-targeting nanopar-

icle (mito-NP) [13] . Moreover, the relationship between circRNA’s sub-

ellular localization and disease metabolism is still a mystery, which re-

uires further investigation and the development of new technologies. 

. Emerging therapeutic strategies to target circRNAs 

Previously, the most commonly used strategies to target circRNAs

ere knockdown via RNAi and overexpression via plasmids. To specifi-

ally knock down or overexpress circRNAs instead of their linear coun-

erparts, the design of objective nucleotide sequences targeting circRNAs

s quite different from conventional RNAs. For short interfering RNA

siRNA) or short hairpin RNA (shRNA), the nucleotides should be com-

lementary to the unique back-splicing junctions of circRNAs [ 20 , 55 ].

he CRISPR/Cas9 system containing guide RNAs (gRNAs) targeting re-

eat elements or exons in the parental gene locus has recently been used

o achieve circRNA knockout ( Fig. 2 ) [ 19 , 45 , 57 , 125 ]. A latest study used

he CRISPR/Cas13 system with gRNAs targeting back-splicing junction

ites of circRNAs to achieve circRNA knockdown with greater specificity

nd lower mismatch tolerance ( Fig. 2 ) [126] . To overexpress circRNAs,

he pairing of intronic complementary sequences flanking the circu-

arized exons should be included in expression vectors [9] . There are

lso commercial plasmids containing circRNA expressing frames which
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Fig. 2. Novel therapeutic strategies to target circular RNAs. Nanoparticle-delivering systems have recently been used to improve the cellular and subcellular 

targeting specificity of circRNAs or siRNAs. Recently, lipid-nano particles encapsulating synthesized circular RNAs have been used for in vivo administration to 

produce circular RNA-based vaccines. Another targeting strategy is CRISPR/Cas9-mediated endogenous circRNA knockout via cleaves of intronic complementary 

sequences flanking exons forming circRNA. In addition, circRNA could also be knockdown directly by CRISPR/Cas13 targeting the back-splice junction. Made by 

BioRender ( https://biorender.com ). 
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an circularize inserted sequences to form circRNAs when transfected

n cells [ 13 , 58 , 127 ]. Lentivirus or adenoviral vectors are used to con-

truct circRNA overexpressing cell lines or mouse models [ 128 , 129 ]. In

ddition, the in vitro synthesis of circular RNAs is a powerful strategy

o directly overexpress circRNAs and it is convenient for in vitro studies

 16 , 61 , 80 , 130 , 131 ]. Although some of the strategies mentioned above

ave been successfully tested in mouse disease models [ 132 , 133 ], there

re still challenges in their clinical applications. The most concerning

bstacles are the specificity of tissue or cell targeting and the immuno-

enicity of synthetic circular RNAs [6] . 

.1. circRNA targeting specificity 

Common strategies to intervene circRNAs can cause off-target ef-

ects on unexpected tissues or cells. To improve the targeting speci-

city in vivo , researchers engineered nanoparticle systems that deliv-

red encapsulated siRNAs or circRNA expression vectors to tumor tis-

ues and subsequently induced tumor cell apoptosis and inhibited tumor

rogression ( Fig. 2 ) [134–136] . Recently, taking advantage of encapsu-

ated cationic peptides, nanoparticles have also been used to deliver nu-
688 
leotides to subcellular fractions, including the nucleus and mitochon-

ria [137–139] . In our latest study, we encapsulated circRNA expression

ectors in mitochondria-targeting nanoparticles (mito-NP) and success-

ully expressed mitochondrial circular RNAs, which inhibited fibroblast

ctivation in liver disease. Moreover, delivering circular RNA SCAR in

ivo using mito-NP could alleviate high-fat diet (HFD)-induced cirrho-

is and insulin resistance [13] . Nanoparticle delivery systems may have

reat potency in tumor therapy. A growing body of evidence demon-

trates that immunosuppressive factors and metabolic stress in the tu-

or microenvironment result in the disruption of the mitochondrial and

etabolic state of T cells, leading to the bad efficacy of CAR-T or TCR-T

ell therapy [ 140 , 141 ]. Therefore, targeting mitochondrial nucleic acids

f T cells using mio-NP will mediate metabolic reprogramming of CAR-T

r TCR-T cells and enhance the effect of immune cell therapy. 

.2. Immunogenicity of synthetic circular RNAs 

In vitro synthesized circular RNAs have immunogenicity, for foreign

ircular RNAs always lack m 

6 A modification [80] . However, a recent

tudy showed that synthesized circular RNA by T4 RNA ligase exhibits

https://biorender.com
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ittle immunogenicity compared to circles produced by the group I in-

rons with extra fragments to induce immune responses [130] , suggest-

ng that this kind of synthesized circular RNA has the potency to be

pplied to in vivo treatment without unwanted immune system activa-

ion. On the other hand, another recent study took advantage of the

mmunogenicity of synthesized circular RNAs to develop circular RNA-

ased vaccines, which could stably elicit potent neutralizing antibodies

nd T-cell responses to protect the host ( Fig. 2 ) [142] . This exciting

tudy makes circular RNA-based vaccines a potential candidate to fight

gainst virus infection, such as the current Coronavirus disease 2019

COVID-19). Nevertheless, the main challenge of this strategy is the ar-

ifact of circRNA impurity contributed mainly by contaminating linear

sRNA [143] , although early papers by Y Grace Chen and Howard Y

hang suggest that circRNA is more immunogenic than linear mRNA

 80 , 81 ]. Since the immunogenicity of circRNAs is currently under in-

ensive study, purifying the circular form and minimizing linear RNA

ontamination is the major task for its clinical applications. 

. Conclusion and perspective 

The regulation of circRNA expression from biogenesis to degra-

ation is closely related to cellular homeostasis. Recent studies have

ncovered circRNAs as a hallmark of various immune metabolic dis-

ases and cancers [ 3 , 144 ]. Currently, there are still some unsolved

pen questions during the long-lasting investigation of circRNAs. Firstly,

e have identified several overlong circular RNAs encoded by the

itochondria genome, including hsa_circ_0089761 with 8302 nt and

sa_circ_0089763 with 5783 nt [13] . These overlong circular RNAs pose

reat challenges to the study of their biogenesis and functions in dis-

ases as well as targeting strategies. Advanced technologies are needed,

uch as nanopore sequencing, which can identify the full sequences of

hese unusual circular RNAs [ 32 , 34 ]; and the CRISPR/Cas13 system,

hich can better distinguish circRNAs from cognate mRNAs with over-

apping exons [126] . Secondly, circular RNAs associated with cellular

etabolism and diseases are identified in subcellular organelles, includ-

ng those within the mitochondria that are produced from the mito-

hondrial genome and those made in the nuclear genome and translo-

ated to mitochondria for functions [ 13 , 15 , 108 , 145 ]. It remains to de-

ne, however, to what extent circular RNAs are expressed in a subcel-

ular organelle-specific manner. For example, can circular RNAs be lo-

ated in the Golgi apparatus or endoplasmic reticulum? Are these spe-

ial locations regulated by factors involved in immune metabolic dis-

ases or tumor progression? Moreover, although we found that nuclei-

ncoded spliceosomes can regulate the generation of mitochondrial cir-

ular RNAs, how mtDNA is processed into circular RNAs after being

ranscribed as a large polycistronic precursor remains a mystery. Fi-

ally, since the mitochondrion has its own genome and protein transla-

ion system [146] , it is of interest to investigate whether mitochondrial

ircular RNAs could use mitochondrial ribosomes to produce peptides.

nswering these questions will further expand the regulatory mecha-

isms and cellular functions of circRNAs, providing new principles for

isease treatment. 
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