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Abstract: Myopia is a global health issue, and the prevalence of high myopia has increased signifi-
cantly in the past five to six decades. The high incidence of myopia and its vision-threatening course
emphasize the need for automated methods to screen for high myopia and its serious form, named
pathologic myopia (PM). Artificial intelligence (AI)-based applications have been extensively applied
in medicine, and these applications have focused on analyzing ophthalmic images to diagnose the
disease and to determine prognosis from these images. However, unlike diseases that mainly show
pathologic changes in the fundus, high myopia and PM generate even more data because both the
ophthalmic information and morphological changes in the retina and choroid need to be analyzed. In
this review, we present how AI techniques have been used to diagnose and manage high myopia,
PM, and other ocular diseases and discuss the current capacity of AI in assisting in preventing
high myopia.

Keywords: diagnosis and management; high myopia; pathologic myopia; artificial intelligence;
machine learning; deep learning

1. Introduction

Myopia is a global health issue, and the prevalence of myopia has increased signif-
icantly in the past five to six decades [1]. In urban areas of China, Taiwan, Hong Kong,
Japan, Singapore, and South Korea [2–7], 80–90% of high school students are myopic and
10–20% of them have high myopia [1,8]. The same prevalence has been observed in North
America, Germany, Spain, and Russia [9–12]. The worldwide increase in the prevalence of
myopia and PM indicates that myopia-related blindness will increase worldwide in the
future [13–29]. A lack or shortage of myopia specialists is a great concern to governmental
leaders, and the control of myopia has been a national policy in China [30].

In PM eyes, there is an increase in the axial length and the presence of a posterior
staphyloma, a deformity of the posterior segment of the eye [31–35]. Following a defor-
mation of the sclera, the neural retina is mechanically damaged and blinding pathologic
changes develop in the macular region. The eyes are then said to have myopic maculopathy,
which is the main sight-threatening complication. In addition, it has been reported that
the cost for one myopic patient would be over seven hundred United States dollars/year
and 17 thousand United States dollars during the patient’s lifetime in Singapore [36]. In
China, it is estimated that myopia-associated productivity loss is about 244 billion United
States dollars/year [30,37]. These values indicate that myopia is an increasingly serious
public health problem with a high economic burden. Because myopic maculopathy is
generally progressive and irreversible, interventions to prevent the progression of my-
opic eyes to PM, continuous surveillance, and slowing the progression of PM are highly
recommended. However, the number of well-trained myopia specialists is insufficient
worldwide and the diagnosis of myopic maculopathy is difficult for general eye care
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providers, e.g., optometrists or general ophthalmologists, and a continuous monitoring
of every myopic patient is inefficient in both time and cost. For example, various lesions
of myopic maculopathy often co-exist in the same eye, which makes their appearance
difficult to interpret. Thus, there is a great need for automated methods that can be used in
a cost-efficient way to assist physicians in monitoring PM and to manage PM patients who
need the care of specialists.

Artificial intelligence (AI) has been identified as one of the key drivers of the Fourth
Industrial Revolution [38]. Because of the growth of digital databases, the number of
AI-based applications in the medical field based on Python or C has increased immensely
in recent years [39,40]. One of the main parts of AI is machine learning (ML), which
not only has a powerful capacity for statistical analyses but also has a great ability to
manipulate data and perform complex operations to find relationships among the many
biological characteristics. As an evolutionary form of ML, deep learning (DL) enhances
these advantages and has reached a new high by processing data through information in
hidden layers.

Many successful models and platforms have been established for screening and diag-
nosing age-related macular degeneration [41–43], diabetic retinopathy [44,45], and glau-
coma [46]. These applications focused on analyzing ophthalmic images to diagnose the
disease and to determine prognosis from these images. However, in addition to a general
workflow, which is shown in Figure 1, high myopia and PM generate even more data
because both the ophthalmic information and morphological changes of the retina and
choroid need to be analyzed.
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In this review, we examine how AI has been applied for the diagnosis and management
of high myopia and PM.
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2. Data-Driven AI in High Myopia and Pathologic Myopia

PM is associated with an elongation of the axial length of the eye, which is usually
associated with morphological changes in the sclera, choroid, Bruch’s membrane, retinal
pigment epithelium, and neural retina. In addition, due to increases in the progressive and
excessive axial lengths, highly myopic eyes also have high refractive errors and related
ophthalmic changes. These changes may be further amplified when the eye undergoes
refractive or cataract surgery due to the excessive length of the eye. Thus, it is expected that
high myopia will generate a considerable amount of data during a long-term follow-up
period, which would require an efficient method to analyze and interpret the findings.

Earlier, redundant and inconsistent data were collected due to the non-integrated and
fragmented data management procedures. This has led to information quality problems,
which has hampered the acquisition of an accurate diagnosis, resulting in poor management
of myopic eyes.

With the recent creation and general distribution of digital hospital information sys-
tems, an opportunity has opened up for determining the onset and progression of PM
through a much larger set of data. This has advanced our understanding of PM with more
comprehensive perspectives and on more solid theoretical bases.

Data-driven AI studies are usually performed using ML techniques because they can
detect different categories, obtain information buried in a large amount of data, and opti-
mize the model that best fits the data. The models that are regressed by training data would
verify the capacity for data categorization. ML techniques involve supervised learning,
semi-supervised learning, and unsupervised learning. They include many methods such
as kernel ridge regression, support vector machines (SVM), nearest neighbors, gaussian
processes, naive Bayes, random forests, neural networks, and others. Further evolutional
methods such as extreme gradient boosting (XGBoost) and light gradient boosting machine
(LightGBM) supply more chances in regression models and can determine potential rela-
tionships to understand the occurrence and progression of high and pathologic myopia.
With these powerful methods, representative patterns can be statistically calculated and
extracted for ensemble predictive models.

Earlier studies reported that the incidence of myopia had reached 84.6% in elementary
school children and 95.5% in university students in China [47–49], and it is not difficult to
believe that such levels are not unique to China. Thus, it is urgent to monitor eyes with
high myopia at an earlier stage, which raises the need for AI-assisted screening techniques.
In areas with high levels of myopia, several data-driven studies on high myopia have
reported that DL learning models can be used to solve real problems with sensible solutions
(Table 1). The ML models have shown that the refractive errors and the risk of high
myopia (myopia ≤ −6.0 diopters) that develop within ten years are predictable in school-
aged children [50]. In this approach, the random forest model, generalized estimating
equation model, and mixed-effects model were fitted and evaluated by the coefficient
of determination (R2), the root mean square error (RMSE), mean absolute error (MAE),
and characteristics of the area under the receiver operating curves (AUC). The model
was tested by both internal and external datasets. Typically, the random forest model
had the best performance and the AUC reached as high as 0.802 to 0.976. This approach
provided evidence for transforming clinical practice, health policy-making, and precise
individualized interventions regarding the practical control of school-aged myopia by
employing big data and ML. However, in some circumstances where the clinical data are
not available, it may be difficult for physicians to manage high myopia patients. To address
this, ML models were also designed and trained to play roles in analyzing eyes with high
myopia. By training with the wavefront aberrometry values through the XGBoost algorithm,
DL models have been used to predict the subjective refractive errors, and the mean absolute
error between true values and predicted values ranged from 0.094 to 0.301 diopters, and
the combination of machine learning and aberrometry based on wavefront decomposition
basis will aid in the development of refined algorithms [51]. Furthermore, highly myopic
eyes often have hyperopic refractive errors after cataract surgery, despite the use of partial
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coherence interferometry, which could eliminate biometric errors. Through XGBoost
regression, AI models trained by medical records extracted from myopia patients could
improve the accuracy of implementing IOL power in high myopia with cataracts [52].

Table 1. Data-driven artificial intelligence (AI) models in high myopia and pathologic myopia.

Research Year Materials Participants AI
Methods Main Outcome Evolutions and

Performance

Lin, H. et al. [50] 2018 Refraction data School-aged
children ML

Predicting the
presence of high

myopia
AUC: 0.802–0.976

Kaya, C. et al. [53] 2018 electrooculographic
data

Adults
(25–65 years old) ML

Detecting
hypermetropia and
myopia refractive

disorders

Sensitivity: 95.5%;
specificity: 96%;

classification
accuracy: 90.91%

Ye, B. et al. [55] 2019

luminance,
ultraviolet light
levels, and step

number data

Myopia patients ML
Differentiating

indoor and outdoor
locations

Accuracy:
0.827–0.996;

AUC: 0.90–0.99

Rampat, R. et al. [51] 2020 Wavefront
aberrometry data

General
population ML Predicting subjective

refraction

mean absolute
error: 0.094–0.301

diopters

Tang, T. et al. [54] 2020 Medical data School-age
myopic children ML

Estimating
physiological

elongation of axial
length

R square
equals 0.87

Wei, L. et al. [52] 2020 Medical data Myopia patients ML
Improving the

accuracy of IOL
power predictions

mean absolute
error: 0.25–0.29;
median squared
errors: 0.06–0.09

Yang, X. et al. [56] 2020 Medical data Primary school
children ML

Studying influence of
related factors on

incidence of myopia
in adolescents

Accuracy equals
0.92–0.93;

Precision equals
0.95; Sensitivity
equals 0.94; f1

equals 0.94; AUC
equals 0.98;
Specificity
equals 0.94

Li, S.M. et al. [57] 2022 Medical data Primary school
children ML

Detecting risk factors
for myopia
progression

Combined
weight: 77%;

Accuracy:
over 80%

AUC, area under the receiver operating characteristic curves; ML, machine learning.

In addition, in situations where only limited information can be accessed, electrooculo-
graphic (EOG) data could also be used to train ML models in classifying myopic refractive
disorders. It has been reported that when the logistic regression model, Naïve Bayes model,
and random forest model were trained by EOG data, the random forest model had the best
performance with a sensitivity of 95.5% and a specificity of 96%. The total classification
accuracy reached 90.91%, and the achieved models could inspire novel approaches to
clinical screening of myopia when general data are not available [53]. Furthermore, because
the axial length value is a key indicator for high myopia, simply assessing the change
in axial length can be used to evaluate the myopia progression. More specifically, these
methods can be used by practitioners to judge the true extent of myopia progression before
performing a cycloplegic refraction examination. Linear regression, SVM, and bagged trees
have been used to predict increases in axial length in adolescents. From an evaluation of
the performance of models by five-folded cross-validation, the linear model achieved a
high level of precision with an R square value of 0.87 [54].
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In addition to these methods of predicting the actual outputs, there are other ways
to use AI algorithms. It is generally accepted that clinical data tend to be imperfect and
may lack different parts during clinical research because each performed examination is
required to test the evidence-based hypothesis. However, these imperfect data would
be a high barrier for research and the understanding of these disease processes. One
of the benefits of ML algorithms is that they can fill in the missing values based on a
scientific method, and the results can be closer to the true value. This will lead to a better
understanding of the occurrences and progression of the disease processes. Furthermore,
even with abundant data or features that can be assessed, physicians still need to determine
how to filter out important values to test a hypothesis. In addition to traditional methods
such as the principal component analysis (PCA), ML algorithms supply multiple choices for
data dimension reduction, such as randomized singular value decomposition-based PCA,
spectral embedding, isomap embedding, and others. These algorithms offer opportunities
for clinicians to analyze the abundant data and to determine ways to test their hypotheses.

For myopia control, it is widely known that the environment, especially luminance and
ultraviolet, plays important roles in affecting the progression of myopia. As the nature of
collecting monitoring environmental data is complex, it is difficult to implement monitoring
widely in the public. Through luminance, ultraviolet light levels, and step number data,
AI models could be trained in different indoor and outdoor locations. These methods can
be useful monitoring tools for community- or school-based public health interventions or
individual health management [55].

ML models have been typically used to fill in missing clinical data and to select features
that were highly correlated with the myopia in adolescents [56]. Features selected by ML
learning algorithms have been used to explore the potential risk factors that affect the
severe axial length elongation in highly myopic eyes. These approaches are particularly
important because they provide reference data for physicians when faced with complex
situations. To screen for high myopia in rural areas where myopia specialists or essential
instruments are not available, these predictive values would be important indicators for
high myopia screening and for monitoring the progression of myopia.

3. Image Driven AI in High Myopia and Pathologic Myopia

Eyes with PM have a high degree of myopia with degenerative changes in the retina
and choroid, especially in the posterior pole. Because of the different image contents,
the method and purpose of the assessments are different. The most commonly used AI
technique in highly myopic eyes is the assessment of fundus photographs and optical
coherence tomography (OCT) images. Both are noninvasive and can be recorded frequently
without any side effects.

The lesions of myopic maculopathy have been classified according to the META-PM
study group classification [58–60]. From a review of earlier studies and classifications, an
international panel of myopia researchers proposed a simplified system for PM called the
META-PM system, and lesions of myopic maculopathy were classified into five categories
based on color fundus photographs: category 0 represents “no myopic retinal lesions”;
category 1 represents “tessellated fundus only”, which can be observed with choroidal
vessels clearly around fovea as well as arcade vessels; category 2 represents “diffuse
chorioretinal atrophy”, which is a yellowish atrophy lesion that usually starts around
the optic disc and gradually enlarges to the macula area; category 3 represents “patchy
chorioretinal atrophy”, which a grayish-white atrophy with a clear margin; and category
4 represents “macular atrophy”, which is a well-defined round atrophic lesion with a
grayish-white color that covers the macular area [58]. In addition, the plus lesions, e.g.,
lacquer cracks, choroidal neovascularization, and Fuch’s spot, could also be confirmed in
the fundus images in typical cases. These PM-related fundus changes were mainly used as
anchors in training fundus image-based AI models (Figure 2).
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Figure 2. Representative fundus photographs showing the different types of lesions of maculopathy
in eyes with pathologic myopia. (A) Normal fundus image. (B) Tessellated fundus. (C) Diffuse
atrophy around optic disc and posterior fundus (blue arrows). (D) Patchy atrophy fundus (white
arrows). (E) A fundus image from a left eye with macular atrophy at the center of posterior fundus
(black arrow). Patchy atrophy (white arrow) as well as diffuse atrophy background can also be
seen. (F) Fundus image with myopic choroidal neovascularization at the center of fundus (yellow
arrow). Reprinted from Deep Learning Approach for Automated Detection of Myopic Maculopathy and
Pathologic Myopia in Fundus Images, Vol 5, Pages No. 1235–1244, Copyright (2021), with permission
from Elsevier.

OCT is widely used for detecting and analyzing retinochoroidal disorders, and it has
become the general method of examination used to assess the retina of myopic patients.
Typically, in pathologic myopia, OCT images were always used to observe the pathological
retinochoroidal changes or progression of retina degeneration (Figure 3). The OCT images
were mainly used to examine myopic traction maculopathy (MTM), which is a spectrum of
foveal tractional changes in highly myopic eyes [61]. All MTM-related alterations, such as
retinoschisis, retinal detachment, and macular holes, can be identified in OCT images. Thus,
it is expected that AI could assist physicians in grading pathologic myopia retinochoroidal
changes in OCT images.

According to the typical changes shown Figures 2 and 3, it would be efficient and
useful once trained models play roles in recognizing these lesions from different modalities.
However, photographs of the fundus of the eye contain redundant color information
and the various appearances of the myopic lesions make it difficult for ML methods
to extract pathogenic patterns that could be used for categorizing the causative disease
more accurately. Furthermore, because multi-lesions or co-existing lesions were generally
found in highly myopic eyes, redundant information provides a higher barrier for fitting
ML models.
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Figure 3. Grading samples of myopic maculopathy in ocular coherence tomographic (OCT) im-
ages. (A). Myopic eye without myopic maculopathy. Each of retinochoroidal layer is clearly seen.
(B). Myopic neovascularization (MNV). Hyperreflective materials can be seen above the retina pig-
ment epithelium (RPE), and this component is attenuated in the tissue coherence signals below.
(C). Retinoschisis. The splitting of the inner retina from the outer retinal layers with multiple per-
pendicularly aligned columnar structures connecting the split retinal layers. (D). Dome-shaped
macular (DSM). An inward bulging of the retina pigment epithelium above the baseline connecting
the RPE lines on both sides away from the DSM. (E,F). Retinal detachment. The neurosensory retina
is detached from the RPE. (G,H) Macular hole. A tear above the RPE layer and an anvil-shaped
deformity of the cracked edges of the retina. Reprinted from Validation of Soft Labels in Developing
Deep Learning Algorithms for Detecting Lesions of Myopic Maculopathy from Optical Coherence Tomographic
Images, Copyright (2021), with permission from Wolters Kluwer Health.

Deep learning (DL) is a sub-type of ML that uses additional hidden layers to manage
more complicated nonlinear patterns in the data. The rapid development of the software
library for ML and the many deep convolutional neural networks (CNN), such as AlexNet,
VGGNet, ResNet, Inception, DenseNet, and EfficientNet, has greatly increased the accuracy
in complicated medical images. Recently, CNN was used to train models with a carefully
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balanced network between width and depth, which supported a high resolution with
greater accuracy and efficiency. These advantages made it possible to analyze complex
images in PM eyes in an automated way. Furthermore, with this redundant information,
DL models could also extract information for predicting values, even though these data
always have less readability (Figure 4).
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Many image-based DL models are ready to be used in the clinical management of
PM (Table 2), and these models were mainly implemented by Python or C. In addition to
the basic information that can be obtained from fundus images, such as the status of the
posterior retina, additional information can be detected by AI models. To diagnose high
myopia correctly and automatically, after being trained by fundus images and validated
by an external dataset, deep learning models can predict a high myopia fundus with an
AUC of 0.9968 for the recognition of low-risk high myopia and 0.9964 for the recognition
of high-risk high myopia [62]. Furthermore, the refractive errors can also be extracted
through fundus images. Trained by fundus images through ResNet, new information such
as the refractive error, the spherical and cylindrical components, and the mean absolute
error (MAE) between true values and predicted values were minimized to 0.56 diopters for
estimating the spherical equivalent refractive error [63].

Because the degree of myopic maculopathy can be used to follow the progression of
PM [64], early detections of the lesions of myopic maculopathy accompanied by active
follow-up and prompt treatment of complications are important in protecting patients with
high myopia from permanent vision loss. In grading the severity of the PM, trained DL
models and assembled systems of these models can achieve high sensitivity and specificity
in identifying the different types of lesions of myopic maculopathy. Through training by a
large number of fundus images from pathologic myopia eyes, models could achieve accura-
cies of around 85.7–99.4% in recognizing diffuse atrophy, patchy atrophy, macular atrophy,
and myopic choroid neovascularization. These findings have promise for facilitating clini-
cal diagnosis and healthcare screening for PM on a large scale [65–68]. Because tessellation
might be the first sign that a highly myopic eye will become pathologic [69], the screening
for tessellated changes in myopic fundus is critical for monitoring the progression of high
myopia. It is feasible and efficacious to extract quantitative information about the density
of the tessellation from fundus images by DL-based image processing [70]. In addition to
the successfully extracted information from fundus images, it is feasible and efficient to
be used in population screening as a new quantitative biomarker for the thickness of the
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subfoveal choroid, which would lead to further investigations for pathological myopia and
lower visual acuity.

Table 2. Image-driven artificial intelligence (AI) models in high myopia and pathologic myopia.

Title Materials Year Participants Net Structure Main Outcome Evolutions and
Performance

Varadarajan, A.V.
et al. [63]

Fundus
images 2018 Adults

(40–69 years old) ResNet Extract refractive error Mean absolute error of
0.56–1.81 diopters

Hemelings, R.
et al. [71]

Fundus
images 2020 Not Mentioned UNet++

Detect PM and semantic
segmentation of

myopia-induced lesions

AUC: 0.9867;
Dice score: 0.8001–0.9303
F1 metrics: 0.7059–0.9869

Wan, C. et al. [62] Fundus
images 2021 General

population VGG-Face Grade the risk of high
myopia AUC: 0.9964–0.9968

Du R. et al. [65] Fundus
images 2021 Adults Efficient Net

Identify the different types
of lesions of myopic

maculopathy

Accuracies: 87.53–97.50%;
AUC: 0.881–0.982;

sensitivity: 0.370–0.872;
specificity: 0.945–0.983

Lu, L. et al. [66] Fundus
images 2021 General

population ResNet

Automatically identify
pathologic myopia, classify
myopic maculopathy, and

detect “Plus” lesions

AUC: 0.979–0.995;
Accuracies: 0.967–0.994;
Sensitivity: 0.684–0.978;
Specificity: 0.970–0.995

Shao, L. et al. [70] Fundus
images 2021 Adults

(50–93 years old) ResNetFCN
Quantitatively assess the

fundus tessellated density
and associated factors

Accuracy: 0.9652;
Sensitivity: 0.7247;
Specificity: 0.9605

Li, J. et al. [67] Fundus
image 2022 Adults Dual-stream

DCNN
Detect pathologic myopia

and tessellated fundus

AUC: 0.970–0.998;
Sensitivity: 81.1–98.8%;
Specificity: 95.9–99.6%.

Sogawa, T. et al.
[72]

OCT
images 2020 Adults Multi-neural

network

Identify images with
myopic macular lesions
and images with myopic

macular lesions

AUC: 0.970–1.000;
Accuracy: 67.6–96.5%;

Sensitivity: 90.6–1.000%;
Specificity: 94.2–100%.

Li, Y. et al. [73] OCT
images 2020 Adults VGGNet Identify vision-threatening

conditions AUC: 0.961–0.999

Cahyo, D.A.Y.
et al. [74]

OCT
images 2020 Not Mentioned Bidirectional

C-LSTM U-Net
Volumetric Choroidal

Segmentation AUC: 0.92

Du, R. et al. [75] OCT
images 2021 Adults DarkNet

Detect myopic
neovascularization, myopic
traction maculopathy, and

dome-shaped macula

AUC: 0.946–0.985;
AUPR: 0.653–0.908

Chen, H.J. et al.
[76]

OCT
images 2022 Adults Region-based

CNN
Segment and quantify of

choroid

mean dice coefficient
between automatic and

manual methods: 93.87%
± 2.89%.

Park, S.J. et al.
[68]

OCT
images 2022 Adults Multi-neural

network Detect pathologic myopia

Accuracy: 95%;
Sensitivity: 93%;
Specificity: 96%,
AUROC: 98%

Wu, Z. et al. [77]
Fundus im-
ages/OCT

images
2022 Adults Multi-neural

network

Predict optical coherence
tomography

(OCT)-derived high
myopia grades based on

fundus photographs

AUC: 0.895–0.969;
Accuracy: 0.85.43–94.21%

AUC, area under the receiver operating characteristic curves; PM, pathologic myopia; OCT, ocular coherence
tomography; DL, deep learning; AUPR, areas under the precision–recall curves.

DL algorithms can achieve more possibilities in analyzing retinochoroidal changes
present in OCT images. For example, DL models were able to classify OCT images with
myopic macular lesions and the type of myopic macular lesions with high accuracy [71–73].
Furthermore, for severe high myopic eyes, the image quality in myopic eyes is not nec-
essarily good due to the long axial length, which can lead to an ambiguous or uncertain
diagnosis. DL models can also be trained based on answers given by different specialists
and can then predict the possibilities of a risk for a specific MTM lesion. This approach
would be especially helpful in complicated cases and further inspires novel use for DL mod-
els [75]. Furthermore, because choroidal thinning is recognized as being highly correlated
with the progression of high myopia, it would be critical if AI could assist in segmenting the
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choroidal layers automatically. An earlier study reported that, in swept-source OCT images,
trained AI models could resemble the macular focused scans and that the segmenting
choroidal volume has an accuracy of intersection over union of 0.92 [74]. Another study
also reported that trained DL models could segment and quantify choroid in OCT images
with excellent performance. The mean dice coefficient between the region segmented by
automatic and manual methods was 93.87 ± 2.89% [76].

These trained DL models and DL-related approaches suggest the possibility of con-
ducting highly accurate screening of ocular diseases using AI. It is possible that automatic
manners would assist physicians and further reduce the workload for ophthalmologists. In
addition, high myopia patients living where a lack of myopia specialists is present would
also benefit from these automatic manners and may help prevent blindness by timely
screening and referral.

4. Challenges

With the immense increase in the amount of digital data, researchers or institutes
could fulfill the basic conditions for data extraction and model construction. Ophthalmic
images as well as follow-up data have all been used for extracting specific features and
for furthering train AI models. Currently, most AI-assisted diagnoses mainly focused on
high myopia status predictions and PM-related lesion recognition, especially for different
PM lesions. According to the literatures above, it is obvious that not only fundus images
or OCT images but also abundant medical data could be used for training AI-assisted
models in solving specific questions. It is expected that AI would play roles in assisting in
diagnosing lesions or in accelerating the progression of clinical research in the foreseeable
future. However, some challenges still remain and need to be further handled for the
current situation.

The marked escalation of myopia and PM makes it essential to develop and apply
AI models for the diagnosis and management of PM even though it is not an easy task.
For monitoring the progression of high myopia in adolescents, data bias may continue
to be present among school-aged children due to the unequal distribution of educational
resources and geographical conditions. These issues may lead to feature bias among the
children enrolled such as the proportion of near work and outdoor pursuits, lifestyle habits,
genetic differences, and other factors. These biases in the data may have a profound
impact on the generalization of trained AI models, and the performance of cross-region
models may be restricted. Even though many models are available in predicting the
presence of high myopia-related features in myopic adults, the predictive prognostication
for PM-induced optic morphological changes has not been fully carried out because of the
diagnostic challenges in adulthood. In highly myopic eyes, the morphological changes
in the intrapapillary and parapapillary region have not been fully determined, especially
regarding the status of the laminar cribrosa and tissues around the optic disc region
in highly myopic eyes. A better understanding of the peripapillary changes would be
helpful for further AI-assisted diagnoses in screening and monitoring PM-related sight-
threatening complications.

On the other hand, the data within the images may cause some difficulties in per-
forming automated analyses. First, accurate training and validation of AI systems across
multiethnic data sets are required. Because most image-based AI models are based on
images from a single health center, it is possible that model performances may not be
used across racial boundaries. Second, because long axial lengths are commonly seen in
highly myopic eyes, considerable experience and expertise may be necessary to record high
quality images from highly myopic eyes. Moreover, it is common to see various pathologies
co-existing in PM eyes, and these lesions may lead to ambiguous or uncertain diagnosis
of labeling PM lesions and further increase the threshold for training and validating the
AI models.

To address these limitations during the implementation of AI-assisted automated anal-
yses in highly myopic eyes, extensive research and substantial expenditures are required.
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A deeper understanding of high myopia and the PM-related risk factors based on big data
are essential. These important variables or relationships could lead to a better performance
of automatic techniques and be critically helpful for the screening for PM. Furthermore,
multimodal medical image fusion techniques may be of great help in further assistance in
AI-assisted PM detection. A combination of two or more fundus images or a combination of
fundus and OCT images may improve the image content and directly preserve information
for physicians or the training of AI models [78].

Finally, as each AI model was trained with specific dataset or data type, the per-
formance of models may be restricted to solving only questions through datasets with
restrictions of the same structure. It is expected that, in the future, the evolution of comput-
ing algorithms could make it more generalizable or easier to distribute across various data
types. Additionally, as the model should ideally be consistent and generalizable in the clinic
even across multiethnic eyes, multicenter cooperation has been imbued with a stronger
sense of urgency, especially in nations with heterogeneous populations. Last but not least,
since machine learning models were born with overfitting and reached a promising accu-
racy, currently, it is imageable that future models would make trades between accuracy
and floating-point operations per second. Scaling accuracy and efficiency by controlling
network depth, width, and image size would makes the distribution of models easier.

5. Conclusions

In conclusion, the prevalence of high myopia and PM is rapidly increasing, and they
require long-term follow-up monitoring and timely interventions. Meeting with a general
situation of unevenly distributed medical resources, future AI-assisted studies should focus
more on telemedicine, which could be easily and efficiently distributed in rural areas, which
would be of great help to high myopia screening and control in areas that lack myopia
specialists. To promote personalized monitoring and treatment of highly myopic eyes, a
rational policy of support and a deeper level of cooperation are needed. The relevance and
effectiveness of AI in myopia are still in dispute. Before the widespread use of AI healthcare
for high myopia, several technological and clinical difficulties must be overcome.
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