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ABSTRACT Malaria continues to be a major global health problem, where disease transmission is deeply
linked to the repeated blood feeding nature of the anautogenous mosquito. Given the tight link between
blood feeding and disease transmission, understanding basic biology behind mosquito physiology is a
requirement for developing effective vector-borne disease control strategies. In the mosquito, numerous
loss of function studies with notable phenotypes demonstrate microRNAs (miRNAs) play significant roles in
mosquito physiology. While the field appreciates the importance of a handful of miRNAs, we still need
global mosquito tissue miRNA transcriptome studies. To address this need, our goal was to determine the
miRNA transcriptome for multiple tissues of the pre-vitellogenic mosquito. To this end, by using small
RNA-Seq analysis, we determined miRNA transcriptomes in tissues critical for mosquito reproduction and
immunity including (i) fat body-abdominal wall enriched tissues, (ii) midguts, (iii) ovaries, and (iv) remaining
tissues comprised of the head and thorax. We found numerous examples of miRNAs exhibiting pan-tissue
high- or low- expression, tissue exclusion, and tissue enrichment. We also updated and consolidated the
miRNA catalog and provided a detailed genome architecture map for the malaria vector, Anopheles
gambiae. This study aims to build a foundation for future research on how miRNAs and potentially other
small RNAs regulate mosquito physiology as it relates to vector-borne disease transmission.
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Malaria is a major health problem world-wide, where disease transmis-
sion is tightly linked to the repeated blood feeding nature of the
anautogenous mosquito, Anopheles gambiae. Thus, understanding
how the mosquito processes a blood meal for egg production is vital
for future vector control strategies. Upon digesting a blood meal, the
female mosquito’s physiology drastically changes, with over 50% of
her genes showing significant changes in transcript levels (Marinotti
et al. 2006). While mechanisms are known for how gene expression
fluctuates during a blood meal at the transcriptional level (Attardo

et al. 2005), the mechanisms of post-transcriptional regulation of
gene expression are largely unknown. As a much-needed step to
address this gap in knowledge, the vector biology field is currently
exploring post-transcriptional regulation of mRNA transcripts and its
effects on female mosquito physiology by studying a class of small
RNAs called microRNAs (miRNAs) (Mead and Tu 2008; Li et al.
2009; Gu et al. 2013; Hu et al. 2015; Skalsky et al. 2010; Biryukova
et al. 2014; Liu et al. 2017; Jain et al. 2014; Castellano et al. 2015; Liu
et al. 2014b; Jain et al. 2015; Allam et al. 2016; Lampe and Levashina
2018; Fu et al. 2017; Liu et al. 2014a; Zhao et al. 2017; Zhang et al.
2016; Lucas et al. 2015a; Lucas et al. 2015b; Ling et al. 2017; Zhang
et al. 2017; Akbari et al. 2013).

Since the discovery of lin-14 in 1993 (Lee et al. 1993) and the func-
tional characterization of let-7 in 2000 within Caenorhabditis elegans
(Reinhart et al. 2000), numerous studies in other metazoans have dem-
onstrated that miRNAs regulate developmental timing, drive conver-
gent evolution, and maintain tissue homeostasis (Carthew et al. 2017).
miRNAs are small non-coding RNAmolecules of approximately 22 nu-
cleotides (nt) in length, where the coding region of the miRNA reside
either as individual coding sequences or as a cluster, and are either
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expressed in numerous or single tissues (Carthew et al. 2017). Approxi-
mately two-thirds of miRNAs are expressed from intergenic regions of the
genome. The remaining third of miRNAs are intragenic, mostly found
in introns, many of which are thought to be hot spots for novel miRNA
evolution (Berezikov 2011). IntragenicmiRNAs are conventionalmiRTrons
or 39 tailed miRTrons, depending on their placement within the intron of
the gene (Westholm and Lai 2011). Intergenic miRNAs follow canonical
processingusingRNApolymerase II for transcription to formapri-miRNA,
Drosha for cleavage to form the pre-miRNA, and Exportin-5 for exporta-
tion from the nucleus to the cytoplasm (Liu et al. 2008). In contrast,
miRTrons do not require Drosha for cleavage (Westholm and Lai 2011).
Both intergenic and intragenic miRNAs control mRNA transcript abun-
dance by physically binding the mRNA transcript, resulting in either deg-
radation or translation inhibition (Okamura et al. 2007; Liu et al. 2008).

Mosquito biologists appreciatemiRNAs are important formosquito
physiology relevant tovector-bornedisease transmission.Deep sequenc-
ing studies in Aedes albopictus, Aedes aegypti, Culex quinquefasciatus,
Anopheles stephensi, Anopheles anthropophagus, Anopheles funestus,
and An. gambiae demonstrate (i) evolutionarily conserved miRNAs,
(ii) mosquito-specific miRNAs, and lastly (iii) novel miRNAs (Mead
and Tu 2008; Li et al. 2009; Gu et al. 2013; Hu et al. 2015; Skalsky et al.
2010; Biryukova et al. 2014; Liu et al. 2017; Jain et al. 2014; Castellano
et al. 2015; Liu et al. 2014b; Jain et al. 2015; Allam et al. 2016; Akbari
et al. 2013; Zhang et al. 2017). By microarray technology, a recent study
in Anopheles gambiae found midgut- and ovary-enriched miRNAs
(Lampe and Levashina 2018). A recent report foundmosquitomiRNAs
to preferentially load into Argonaute 1 over Argonaute 2 (Fu et al.
2017), similar to Drosophila (Czech and Hannon 2011). Further-
more, functional studies demonstrate miRNAs play significant roles
in mosquito physiology, wheremiR-1174 andmiR-275 regulate midgut
enzyme levels, miR-309 regulates ovarian development, miR-8 regu-
lates wingless signaling in the fat body, miR-1890 regulates juvenile
hormone-controlled enzymes, and miR-277 regulates lipid metabolism
(Liu et al. 2014a; Zhao et al. 2017; Zhang et al. 2016; Fu et al. 2017; Lucas
et al. 2015a; Lucas et al. 2015b; Ling et al. 2017). Thus, continuing to
develop our knowledge on miRNA regulation of mosquito physiology
will pay dividends for future efficientmosquito vector control strategies.

While the vector biology field has made significant progress in
identifying how some miRNAs regulate mosquito physiology, we still
lack an overall understanding for howmosquito tissues vary in miRNA
abundance. To this end, our overarching goal was to elucidate how
across tissues miRNA transcriptomes in the pre-vitellogenic mosquito
are different or similar. In addition, we updated and consolidated the
miRNAcatalog, providedamiRNAloci genomemap, and foundcertain
tissues to possess more multi-mapping small RNAs over other tissues.
Altogether, this studyprovides anessential foundation for furtheringour
appreciation of the importance of miRNAs and other small RNAs for
mosquito physiology in the malaria vector, An. gambiae.

MATERIALS AND METHODS

Animals and Tissues
The An. gambiae G3 strain was reared as previously described (An et al.
2011). Adult female mosquitoes were collected at 3-5 days post-eclosion
and four tissue groups were dissected. Adult female (i) midgut, (ii) ovaries,
(iii) fat body-enriched abdominal walls (fat body-Ab), and (iv) remaining
mosquito tissues including head and thorax were obtained. Dissected
tissues were stored in DNA/RNA Shield (Zymo Research, Irvine, CA,
USA) at 4� until further processing. For each of the four mosquito tissue
groups, three separate cages of mosquitoes were used for the three bi-
ological replicates.

Small RNA Library Preparation and Sequencing
Mosquito tissues were removed from DNA-RNA Shield (Zymo Re-
search) and further processed for RNA by using The Direct-zol RNA
MiniPrep Kit (Zymo Research) following manufacturers protocol.
While Direct-zol removes most DNA, remaining DNA was digested
by on-the-column DNAse I treatment. Prior to library construction,
RNA quality was assessed with Agilent 2100 Bioanalyzer using an
RNA6000 Nano kit chip (Agilent, Santa Clara, CA, USA). For each
tissue sample, 1mg of total RNAwas used as input into IlluminaTruSeq
Small RNA Sample Preparation Kit v2 (Illumina, SanDiego, CA, USA).
Following library construction, libraries were indexed with Illumina
Small RNA adapters, followed by 15 cycle PCR amplification
(Illumina). Following library preparation, a Sage Pippin Prep 3%
cassette size fractionation system (Sage Science, Inc, Beverly, MA,
USA) was used to capture fragment sizes ranging from 125-160bp,
which includes the 113bp adapter sequence. The Sage Pippin Prep
cassette size capture system targets small RNAs approximately within
13 - 48bp. To validate purified libraries, the Agilent 2100 Bioanalyzer
was used with the High Sensitivity DNA Kit (Agilent, Santa Clara,
CA, USA). Following quality control of library preparation and sub-
sequent library quantification, small RNA libraries were adjusted to
2 nM and pooled for multiplexed sequencing. The small RNA librar-
ies were sequenced for 50 cycles on a HiSeq2500 in Rapid Read
Run using the TruSeq Rapid SBS kit-HS (Illumina). Sequence data
were converted to FASTQ files and de-multiplexed into individual
sequences for further downstream analysis.

Small RNA Sequence Analysis
Analysis of FASTQ files obtained from the small RNA libraries was
performed using CLC Genomics Workbench version 11.0.1 (Qiagen,
Hilden,Germany).Rawreads from12 libraries, composedof fourmosquito
tissue types with three biological replicates, were trimmed of adapter
sequences. For miRNA analysis, trimmed sequences were size filtered for
reads of 20 - 24nt in length. Trimmed and size-selected reads weremapped
to theAn. gambiaePEST genome, AgamP4 (Giraldo-Calderón et al. 2015).
Next, mapped reads were divided into multi-mapping- or unique- reads.
Asmulti-mapping reads are repetitive in nature, only their percentage from
the total reads was determined. Further, the multi-mapping reads were
removed from further analysis, routine practice formiRNA transcriptomic
studies (Sherstyuk et al. 2017;Wen et al. 2014). Unique reads were queried
against miRBase v22 (Kozomara and Griffiths-Jones 2014) pre-miRNA
sequences from An. gambiae and Ae. aegypti mosquitoes and miRNAs
from recent studies (Fu et al. 2017; Biryukova et al. 2014), allowing up to
2nt mismatches. Reads matching these sequences were designated as
annotated reads. Reads not matching these sequences were designated as
unannotated reads. For annotated reads, each miRNA was manually
inspected to ensure accuracy of annotatedmiRNA read counts determined
by CLCWorkbench. For unannotated reads, these sequences were fed into
miRDeep2 with default parameters (Friedländer et al. 2012) as a means to
determine candidate miRNAs. Predicted candidate miRNAs were exam-
ined manually to assess their potential based on guidelines suggestive of
RNase III enzymatic cleavage (Wen et al. 2014; Berezikov et al. 2011):
(1) candidate sequence must form a stable hairpin structure of at
least -30kcal/mol using RNAfold (Gruber et al. 2008), (2) candidate
sequence must have at least one star strand read, and (3) the 5p and 3p
miRNA sequence must pair with at least a 2-nt overhang. To account for
redundancy of miRNA nomenclature, all candidate miRNAs were cross-
referenced to miRNAs reported in (Fu et al. 2017; Biryukova et al. 2014),
which are not currently represented in v22 miRBase. Finally, candidate
miRNAs were then included in the annotated read group for chromosome
mapping analysis.
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For miRNA genome map illustration purposes, chromosomal loca-
tions of miRNAs obtained from VectorBase through BLAST (Giraldo-
Calderón et al. 2015) were constructed with Adobe Illustrator (Adobe
Systems, San Jose, CA, USA) using a 10,000 bp:1 pixel ratio. For
miRNA expression analysis, all miRNAs were interrogated for expres-
sion in our twelve small RNA-Seq libraries with annotated reads
converted to reads per million (RPM). Normalized log10 miRNA ex-
pression values were used to generate a heatmap using Morpheus from
the Broad Institute (software.broadinstitute.org/morpheus/). Values
were hierarchically clustered by Euclidean distance for the metric, average
for linkage method, and rows (miRNAs) and columns (tissues) were clus-
tered. The heatmap for the miRNA cluster expression analysis used the
relative color scheme option in Morpheus (software.broadinstitute.org/
morpheus/), which assesses the minimum and maximum values for
eachmiRNA across tissues and converts the expression data into colors
for strictly qualitative non-statistical assessment purposes. Principle
component analysis (PCA) was performed on annotated reads RPMs
across tissues with singular value decomposition (SVD) along with no
scaling as a means to keep the original variability of the data (Metsalu
and Vilo 2015). Qualitative guidelines for categorization of miRNA
tissue expression patterns include the following. miRNAs with expres-
sion values $3.5 log10 RPM across all tissues were designated pan-
tissue high expression. miRNAs with expression values #2.0 log10
RPM across all tissues were designated pan-tissue low expression.
miRNAs with tissue exclusion or tissue enrichment were determined
by comparing the average expression values between the two lowest
and highest expressing tissues for each miRNA, respectively. miRNAs
with $0.5 log10 RPM difference between the two lowest tissues had a
tissue exclusion expression pattern. Conversely, miRNAs with $0.5
log10 RPM difference between the two highest had a tissue enrichment
expression pattern.

Quantitative PCR
Quantification of miRNA expression was performed as previously dem-
onstrated (Bryant et al. 2010). RNA was extracted with same methods
described for small RNA libraries. Reverse transcription (RT) was
performed using Qiagen miScript II RT Kit (Qiagen) followed by quan-
titative PCR (RT-qPCR) using the Qiagen miScript SYBR Green PCR
Kit (Qiagen). The PCR condition was as follows: Step 1, 95� 15min; Step
2, 95� for 15 s, 56� for 30 s, 70� for 30 s for 40 cycles; Step 3, 95� 1 min;
melt curve analysis. FormiRNA expression, (i) forward primers were the
sequence of thematuremiRNAup to 58�Tm, wheremiRNA candidates
with a low Tm contained extra sequence added to the 59 end of the
forward primer, and (ii) the reverse primer for all miRNAs was the
universal reverse primer, as described previously (Bryant et al. 2010).
All primer sequences are listed in Table S1. Ribosomal S7 gene served
as the normalizer. Transcript expression was determined by 2-ΔCt

(Schmittgen and Livak 2008).

DATA AVAILABILITY
Sequencing data have been submitted toNCBI SRAdatabase (ncbi.nlm.
nih.gov/sra) under accession number PRJNA435430. Data were also
submitted to Vectorbase (Giraldo-Calderón et al. 2015). Supplemental
material available at Figshare: https://doi.org/10.25387/g3.7732994.

RESULTS

Small RNA sequencing of An. gambiae tissues
To determine the miRNA transcriptome at the tissue level for An.
gambiae, we divided the female mosquito into four tissue groups, (i)
abdominal walls for fat body-Ab sample, (ii) midguts, (iii) ovaries, and

(iv) remaining tissues comprised of the head and thorax. From these
four tissue groups, each with three biological replicates, we generated
and sequenced twelve small RNA libraries, which resulted in a total
148.2million reads. Reads trimmed of adaptor sequences yielded a total
of 141.3 million reads (Table S2). Across all tissues, the number of
trimmed reads was roughly similar with a range of 10.8-12.3 million
reads (Table S2). However, size profile distributions of these small RNA
reads demonstrated a noticeable difference across tissues (Figure 1A-D).
Fat body-Ab and midgut tissues possessed peaks at 22-23, 29, 32, and
41nts (Figure 1A and B), ovary tissue possessed peaks mostly from
25-30nts (Figure 1C), and remainder tissue only yielded a slight peak
at 29nt (Figure 1D).

To focus on miRNAs, we size-filtered for reads within 20-24nts.
Here, we obtained a total of 20.1 million reads across all tissue groups
(Figure 1E-H). On average for these size-filtered small RNAs: the fat
body-Ab had �1.9 million reads, the midgut had �3.1 million reads,
the ovary had�0.4 million reads, and the remainder had�1.2 million
reads (Table S2). The size-filtered reads mapped to the genome with a
range of 99.4–99.7% (Table S2). Further, these reads were partitioned
into four groups based on two parameters, (i) genome mapping prop-
erties and (ii) miRNA gene annotation (explained in Materials and
Methods) (Figure 1E-H). The first group, all reads, simply contained
all reads and represented the sum of the remaining three groups
discussed below. The second group, annotated reads, contained reads
with uniquemapping properties andmiRNA gene annotation based on
miRBase databases, miRNAs reported in (Fu et al. 2017; Biryukova
et al. 2014), and miRDeep2 candidate miRNAs. The third group,
multi-mapping reads, contained reads with non-unique mapping
properties with no annotation. The fourth group, unannotated
reads, contained reads with unique mapping properties but no
available annotation.

The unannotated group contained the smallest number of reads
representing �6.5% of size-filtered small RNA reads across all tissues
(Figure 1E-H and Table S2), where small RNAs species within this
group remain to be discovered in future studies. Interestingly, on av-
erage across all tissues �43.3% of the size-filtered small RNA reads
were multi-mapping (Figure 1E-H and Table S2), in agreement with
other mosquito small RNA studies demonstrating that close to half
of small RNA reads are multi-mapping (repetitive or non-unique)
(Fu et al. 2017; Biryukova et al. 2014). Furthermore, each tissue group
varied in the percentage of multi-mapping small RNAs. On average,
multi-mapping reads accounted for �26.2% for the fat body-Ab,
�41.8% for themidgut,�36.6% for the ovary, and�68.6% for remaining
tissues of the size-filtered small RNAs (Figure 1E-H and Table S2). The
annotated group represented themajority of size-filtered small RNA reads
at �50.2% across all tissues (Figure 1E-H and Table S2), and were the
focus of the study. For the rest of the results, only annotated reads are
discussed.

Annotated miRNA systematics
Our small RNA libraries yielded a catalog of 139 unique miRNAs
(complete catalog found in Dataset S1) comprised of 103 An. gambiae
v22 miRBase sequences, 8 Ae. aegypti orthologs, 21 previously reported
novel miRNAs (Fu et al. 2017; Biryukova et al. 2014), and 7 candidate
miRNAs predicted by miRDeep2 in this study. For v22 miRBase
Anopheles sequences, we found 103miRNAs represented in our librar-
ies and removed 26 v22 miRBase Anopheles sequences due to their
genomemulti-mapping properties. Removing multi-mapping small
RNAs is a common practice in miRNA transcriptomic studies
(Sherstyuk et al. 2017; Wen et al. 2014; Biryukova et al. 2014; Fu et al.
2017) (Dataset S2). For Ae. aegypti orthologs, our libraries contained
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both previously reported miRNAs miR-71, miR-252, miR-999, and
miR-2940 (Biryukova et al. 2014) and miRNAs discovered in this
current study, miR-193, miR-316, miR-2765, and miR-2942 (Dataset S1).
For previously reported 41 novel miRNAs (Fu et al. 2017; Biryukova
et al. 2014), our libraries possessed 21 of these miRNAs (Dataset S1)
and 20 of these novel miRNAs (Fu et al. 2017; Biryukova et al. 2014)
were removed due to (i) genome multi-mapping properties or (ii)
redundant miRNA naming (Sherstyuk et al. 2017; Wen et al. 2014;
Biryukova et al. 2014; Fu et al. 2017) (Dataset S2). For candidate
miRNAs in this study, unannotated mapped reads were further in-
terrogated by miRDeep2 (Friedländer et al. 2012) where output yield-
ed (1) a predicted hairpin, (2) miRNA -star and -mature sequences,
(3) number of reads for candidate miRNA, (4) and number of mis-
match reads for candidate miRNA. Here, we obtained 7 candidate
miRNAs, and kept the generic miRDeep2 ID, as future work is needed
to determine their importance in mosquito physiology (Dataset S1
and Figure S2).

Genome mapping properties for annotated
miRNA reads
As our main goal was to determine the uniqueness of the various
mosquito tissuemiRNA transcriptomes, (i)wemappedannotated reads
across all chromosomes todetermine the chromosomal contribution for
each tissue’s miRNA transcriptome, and (ii) for each chromosome,
determined genome placement and the level of annotated read intensity
across all tissues. However, it is important to note that the number of
annotated reads vary for each tissue group. For example, while on
average the fat body-Ab andmidgut had�1.4 million and�1.8million
annotated reads, respectively (Table S2), ovary and remainder tissues
had a lower number of annotated reads at�0.2 and�0.3 million reads,
respectively (Table S2). Both fat body-Ab and midgut possessed more

annotated reads mapped to individual chromosomes compared to
ovary and remaining tissues (Figure 2A).

By determining the percentage of mapped annotated reads across
chromosomes (Figure 2B), we determined the chromosomal con-
tribution for each mosquito tissue miRNA transcriptome. We found
chromosomes 2L, 2R, 3L, and 3R contributed roughly similar to
ovary- and remainder- tissues’miRNA transcriptomes with a range of
12.51–39.58% and 8.74–31.11%, respectively (Figure 2B). Conversely,
for fat body-Ab and midgut tissues, chromosome 3L at 68.60%
and chromosome 2L at 74.58% contributed the most to these tissue
miRNA transcriptomes, respectively (Figure 2B). Across all tissues,
X and UNKN chromosomes contributed minimally with highest val-
ues only at 3.27% for the remainder tissue and 0.08% for the fat body-
Ab, respectively (Figure 2A-B).

At the chromosomal level with varying annotated read intensities
across all tissues, we found multiple mapping hot spots (Figure 2C-H).
As the number of annotated reads mapped to each chromosome varies
for each tissue, it is important to pair mapping data (Figure 2C-H) with
total number of reads per tissue (Figure 2A). For example, on chromo-
some 2L, amajority of the annotated readsmapped to the�18Mb locus
across all tissues (Figure 2C). However, the midgut contributed 90.4%
to these 2L chromosome mapped annotated reads across all tissues
(Figure 2C). Similarly, on chromosome 3L, a major portion of the
annotated reads across tissues mapped to the �39Mb locus across all
tissues, but the fat body-Ab contributed 81.9% to these 3L chromo-
some mapped annotated reads across all tissues (Figure 2E). Lastly,
while 2R and X chromosomes shared similar trends of tissue contri-
bution to annotated reads mapped to these chromosomes (compare
Figure 2D and G), it is important to note that 2R chromosome con-
tributed more to the mosquito’s overall miRNA transcriptome over
the X chromosome (Figure 2A-B).

Figure 1 Summary of small RNAs in An. gambiae mosquito tissues. Female mosquitoes were divided into differing tissue groups, fat body-
abdominal walls (FB-Ab, purple), midgut (MG, green), ovary (OV, red), and remaining tissues comprised of mosquito head and thorax (R, black).
For size distributions of small RNAs across mosquito tissue groups, (A-D) histograms of read length over read number show the diverse small RNA
read distributions for each mosquito tissue group. For each tissue group, size-selected small RNAs of 20-24 nts highlighted in gray were put into
four classifications (E-H): (1) All Reads, designated with black circles, represented total reads, (2) Annotated Reads, designated with black triangles,
represented annotated miRNAs, (3) Multi-mapping Reads, designated with white squares, represented non-unique sequence reads, and (4)
Unannotated Reads, designated with white diamonds, represented undetermined small RNAs. All values represent three biological replicates,
and values are graphed as average +/2 SEM.
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miRNA genome architecture
In addition to updating and consolidating the An. gambiae miRNA
catalog (Datasets S1 thru S3), we further developed a concise miRNA
genome architecture map for future work on An. gambiae miRNAs.
The miRNA genome architecture map illustrates the An. gambiae
chromosome placement for all 139 miRNAs (Figure 3), further
corresponding datasets are found in (Datasets S1 and S3). The
miRNA genome architecture map highlights intergenic- and intra-
genic- miRNAs, as well as clusters for these two different miRNA
types (Figure 3). Similar to previous studies, 64.0% of the miRNAs
were intergenic, while the remaining 36.0% were intragenic
(Westholm and Lai 2011; Rodriguez et al. 2004; Biryukova et al.
2014). For the intragenic miRNAs, 88.0% were intronic, 6.0% were
conventional miRTrons, 4.0% were 39 tailed miRTrons, and 2.0%
were within an exon (Dataset S3). Corresponding Anopheles gambiae
Pest strain (AGAP) numbers for these miRNAs can be found in

Datasets S1 and S3. Based on previous studies, groups of miRNAs
were designated as clusters if they resided within 10 kb (Marco et al.
2013; Mohammed et al. 2014). Indeed, 37.4% of miRNAs resided in
clusters, of which we found conserved miRNA clusters (Marco et al.
2013; Liu et al. 2014a) and novel miRNA clusters comprised of our
miRDeep2 candidate miRNAs and previously described miRNAs
(Fu et al. 2017; Biryukova et al. 2014) (Dataset S3). Lastly, 42.3% of
miRNA clusters were intragenic (Figure 3 and Dataset S3).

By combining the genome mapping properties of annotated reads
(Figure 2) with the miRNA genome architecture map (Figure 3), we
correlated mapping annotated read peaks to a single miRNA or mul-
tiple miRNAs. For example, on chromosome 2L across all tissues, a
prominent peak of mapped reads at approximately 18Mb (Figure 2C)
representedmiR-281 (Figure 3). On chromosome 3L across all tissues, a
prominent peak of mapped reads at approximately 39Mb (Figure 2E)
represented miR-8 (Figure 3). On chromosome 3L in ovary tissue, a

Figure 2 Genome-wide mapping of annotated reads in An. gambiae mosquito tissues. (A-B) Chromosomal contribution of annotated reads to
each tissue miRNA transcriptome. Data are graphed as (A) annotated read count and (B) percentage of annotated reads. (C-H) miRNA expression
hot spots across chromosomes, (C) 2L, (D) 2R, (E) 3L, (F) 3R, (G) X, and (H) UNKN, for each tissue group, which include the percentage of tissue
contribution to mapped annotated reads as graphed by pie graphs. Mosquito tissues include the Fat body-abdominal walls (FB-Ab, purple),
Midgut (MG, green), Ovary (OV, red), and Remainder (R, black). This figure shows a representative from three biological replicates, with additional
replicates available in (Figure S3). (A) values represent three biological replicates, and values are graphed as average +/2 SEM. (B, C-H) Average
values from three biological replicates were used for pie graphs.
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prominent peak at approximately 3Mb (Figure 2E) representedmiR-989
(Figure 3). Lastly, on chromosome 2R in ovary tissue, a prominent peak
at approximately 39Mb (Figure 2D) represented miR-92a and miR-92b
(Figure 3). Altogether, these prominent specific miRNAs accounted for a
substantial proportion of the mapped annotated reads.

Multiple tissue miRNA transcriptome-wide analysis in
An. gambiae
First,PCAwasperformedonannotated readsRPMacross tissues,where
biological replicates for each tissue sufficiently grouped (Figure S1).
Further, to illustrate miRNA expression across mosquito tissue groups,
reads were converted to RPM and the average for the three biological
replicates were log10 transformed (Dataset S4). Dendrograms of the
different tissue groups illustrated fat body-Ab and remainder tissues
clustered closely together, followed by midgut and ovary tissues (Figure
4A, top of heatmap). To illustrate the range of miRNA expression
across tissues, we separated the heatmap into three clades, Clade I
representing the highest expressed miRNAs (Figure 4B), Clade II
representing middle (Figure 4C), and Clade III representing lowest
expressed miRNAs (Figure 4D). To validate our mosquito tissue
miRNA transcriptome data, fourteen miRNAs were assessed for tissue

expression trends by RT-qPCR analysis. In all cases, miRNA tissue ex-
pression trends as determined by RT-qPCR agreed with miRNA tissue
expression trends as determined by small RNA-Seq (Figure S4).

Our small RNA-Seq analysis found a myriad of miRNA tissue
expression patterns formost but not all miRNAs. To determinemiRNA
tissue expression patterns, miRNA expression values were interrogated
with a qualitative set of guidelines to yield (i) pan-tissue high expression,
(ii) pan-tissue low expression, (iii) tissue exclusion, and (iv) tissue
enrichment (see Methods for guidelines, see Dataset S5 for miRNA
list).Of importantnote, therewerevaryingdegreesof tissue-exclusionor
-enrichment across all miRNAs. Examples of miRNAs with pan-tissue
high expression included miR-281, miR-8-3p, miR-306, miR-184, ban-
tam, miR-276, and miR-14 which resided within Clade I (Figure 4B)
and within the top twenty most abundant miRNAs across all tissues
(Figure 5). On the converse, the majority of themiRNAs exhibited pan-
tissue low expression (Dataset S5), some within Clade II but mostly
within Clade III (Figure 4C, D). Examples of miRNAs excluded from
ovary include miR-10, miR-34, miR-2940, and miR-317 (Dataset S5)
within Clade I (Figures 4B). Examples of miRNAs excluded from mid-
gut include miR-276 3p, miR-263a, and miR-71 (Dataset S5) within
Clade I (Figure 4B). Examples of miRNAs excluded from remainder

Figure 3 An. gambiaemiRNA genome map. The distribution of 139 miRNA genes over the An. gambiae genome in top-down tier order, with (+)
strand annotations on the right of the chromosome and (-) strand annotations on the left of the chromosome. miRNA clusters are represented by
black triangles. Intragenic miRNAs, which reside within genes, are represented by individual box outlines. Lastly, intragenic miRNA clusters are
represented by black triangles and an all-encompassing box outline. Current annotated miRNAs are in black, while candidate miRNAs from this
study are in orange.
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tissue include miR-281 3p and miR-9b (Dataset S5) within Clade I
(Figure 4B).

We foundmultiple examples of miRNAs with tissue enrichment for
each tissue type analyzed with certain miRNAs demonstrating higher
degrees of tissue enrichment over others. For example, while miR-8-3p
was in the top twenty miRNAs across all tissues (Figure 5), it was
enriched in fat body-Ab tissue (Dataset S5) within Clade I (Figure
4B). Additionally, miR-PN8 from (Fu et al. 2017; Biryukova et al.
2014) exhibited slight enrichment in fat body-Ab tissue (Dataset S5)
within Clade II (Figure 4C). Similarly, even though miR-281 belonged
to pan-tissue high expression (Dataset S5) and resided in the top twenty
miRNAs across tissues (Figure 5), this miRNA was enriched in midgut
tissue (Dataset S5) within Clade I (Figure 4B). Additionally, miR-1174
and miR-1175 were enriched in midgut tissues (Dataset S5) within
Clades I and II, respectively, agreeing with previous reports (Liu et al.
2014a; Lampe and Levashina 2018) (Figure 4B-C and Figure 5). Exam-
ples of miRNAs enriched in remainder tissue included miR-957 and
miR-133 fromClade II (Figure 4B-C, Figure 5, Dataset S5). Examples of
miRNAs enriched in ovary tissue includedmiR-989 (Clade I),miR-92b
(Clade I), miR-92a (Clade II), miR-PN29 (Clade II), miR-PN5 (Clade
III), miR-PN33 (Clade III), miR-N3 (Clade III), miR-2944b (Clade III),
and miR-309 (Clade III) with varying degrees of ovary tissue enrich-
ment (Figure 4B-D and Dataset S5). Of interest, miR-PN8, miR-PN29,
miR-PN5, miR-PN33, and miR-N3, (Fu et al. 2017; Biryukova et al.

2014) are not represented in v22 miRBase for Anopheles. Future work
is warranted to determine which of these tissue-enriched miRNAs re-
tain or lose their tissue expression patterns after stimuli such as blood
feeding or plasmodium infection.

Hierarchical clusteringof allmiRNAexpressiondatadidnotfindany
of the miRNAs within their respective cluster to exhibit co-expression
patterns across tissues (Figure 4). However, by analyzing miRNA clus-
ters alone with the ‘relative color scheme’ option in Morpheus (see
Methods) for strictly qualitative non-statistical assessment, nine of
the sixteen miRNA clusters demonstrated co-expression patterns
within their respective cluster across tissues. Examples included: (i)
miR-1174 and miR-1175 on chromosome 2R, (ii) miR-92a and miR-
92b on chromosome 2R, and (iii) miR-309, miR-2944a-1, miR-2944b,
and miR-286 on chromosome 3R (Figure S5).

DISCUSSION
By small RNA-Seq analysis, we determined the diverse range of small
RNAs across An. gambiae mosquito tissues. This study (i) updated and
consolidated the malaria vector miRNA catalog with additional Aedes
orthologs and seven candidate miRNAs, (ii) made a genome architecture
map to highlight chromosome loci for intragenic- and intergenic-
miRNAs and their respective clusters, (iii) foundmosquito tissues to vary
in amount of multi-mapping small RNAs, and (iv) determined assorted
miRNA tissue expression patterns in the malaria vector, An. gambiae.

Figure 4 Mosquito tissue miRNA transcriptome. (A) Heatmap of 139 miRNA genes across mosquito tissues. Mosquito tissues include the Fat
body-abdominal walls (FB-Ab), Midgut (MG), Ovary (OV), and Remainder (R). Expression levels were graphed as log10 transformed average reads
per million (RPM) from three biological replicate libraries. Heatmap was separated into three clades based on overall expression with (B) Clade I
representing highest expressed miRNAs, (C) Clade II representing middle, and (D) Clade III representing lowest expressed miRNAs.
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A recent report used microarray technology to determine miRNA
abundance in mosquito tissues in the An. gambiae strain, An. coluzzi
Ngousso (TEP1�S1) (Lampe and Levashina 2018). Despite differences
in mosquito strains and technology, there are numerous examples of
where data from both studies agree. For example, both studies found
miR-989 andmiR-1175 to be ovary- andmidgut- enriched, respectively
(Lampe and Levashina 2018). Additionally, both studies found miRNAs
miR-8, miR-306, and miR-184 to be highly expressed across tissues
(Lampe and Levashina 2018). However, we did find additional data from
our small RNA-Seq libraries. Our data foundmiR-1174 to be expressed
higher than its miRNA cluster companionmiR-1175, which agrees with
Ae. aegypti (Liu et al. 2014a) but disagrees with (Lampe and Levashina
2018). We found bantam, miR-276, miR-263a, and miR-14 to be of the
top twenty highest miRNAs across all tissues, which disagrees with
(Lampe and Levashina 2018) who reported these miRNAs to be lowly
expressed across tissues. RNA-seq has many advantages overmicroarray
technology: (i) lower false discovery rate, (ii) lower background noise,
and (iii) a larger dynamic range to quantify gene expression (Wang et al.
2009; Nault et al. 2015), which can explain the data variability between
these studies. However, despite these differences, taken together both the
(Lampe and Levashina 2018) and this current RNA-seq study, further
drive our appreciation and understanding of miRNA differences across
mosquito tissues in the malaria vector, An. gambiae.

Additionally, our mosquito miRNA transcriptome analysis found
multiple miRNAs to exhibit either global tissue expression, tissue
exclusion, or tissue enrichment. miRNAs with strong enrichment
in a specific tissue are termed tissue-specific miRNAs, where

current hypothesis suggests these small RNAs regulate the devel-
opment of novel cell types as well as maintain tissue homeostasis
(Wheeler et al. 2009; Christodoulou et al. 2010; Stark et al. 2005;
Chen et al. 2004). Examples include, (i) mouse thymus-specific
miR-181, which regulates hematopoietic tissue (Chen et al. 2004),
(ii) fruit fly muscle-specific miR-1, which regulates muscle physiol-
ogy (Sokol and Ambros 2005), (iii) mosquito midgut-specific miR-
1174, which regulates blood digestion enzymes (Liu et al. 2014a),
and (iv) mosquito ovary-specific miR-309, which regulates egg
development (Zhang et al. 2016). In this study, we found miRNAs
enriched in specific tissues to varying degrees. Given the drastic
transcriptional changes induced by blood feeding (Marinotti et al.
2006), future research is needed to decipher which of these tissue-
enriched miRNAs retain or lose their specific tissue expression. Of
interest to mosquito reproduction is miR-989. This miRNA was
exclusively expressed in the ovary, which is in agreement with
other mosquito studies (Lampe and Levashina 2018; Mead and
Tu 2008; Castellano et al. 2015; Jain et al. 2015) and the butterfly
(Pararge aegeria) (Quah et al. 2015). In Drosophila, functional
data demonstrate miR-989 controls border cell migration within
the ovary (Kugler et al. 2013), where defects in border cell migra-
tion severely affect egg fertilization and result in sterility pheno-
types (Montell et al. 2012). Given the ongoing interests in
mosquito sterility for vector population control strategies
(Catteruccia et al. 2009), future work on how the ovary-specific
miR-989 regulates the mosquito gonadotrophic cycle should prove
fruitful.

Figure 5 Most abundant miRNAs in differing mosquito tissue groups. The top twenty miRNAs for each tissue small RNA-Seq library. Values
graphed are average reads per million (RPM) from three biological replicates. Mosquito tissues include the Fat body-abdominal walls (FB-Ab,
purple), Midgut (MG, green), Ovary (OV, red), and Remainder (R, black). Tissue enriched miRNAs,miR-1174 for MG,miR-989 andmiR-92b for OV,
and miR-957 and miR-133 for R, are highlighted in their respective small RNA-Seq library tissue group.
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A curious part of our mosquito tissue small RNA-Seq data are the
substantial number of multi-mapping small RNAs. While common in
small RNA-Seq studies (Sherstyuk et al. 2017; Wen et al. 2014; Johnson
et al. 2016; Biryukova et al. 2014; Fu et al. 2017), the current practice is
to remove multi-mapping reads frommiRNA analysis (Sherstyuk et al.
2017; Wen et al. 2014). Indeed, here we removed many Anopheles v22
miRBase and previously reported miRNAs (Fu et al. 2017; Biryukova
et al. 2014) due to their multi-mapping nature. However, while we
removed these small RNA sequences from the An. gambiae miRNA
catalog, we are not suggesting they are not important for mosquito
physiology. Rather, we suggest they were simply miscategorized.
Indeed, some small RNA researchers suggest multi-mapping (or re-
petitive) small RNAs must regulate some aspect of physiology given
their substantial abundance in plants and animals (Johnson et al.
2016; Axtell 2013; Slotkin 2018). Reproduction studies in the fruit
fly find multi-mapping small RNAs, called repeat associated siRNAs
(rasiRNAs), to regulate genomic stability, DNAdamage in the germline,
embryonic axis specification, and mRNA localization during oogenesis
(Theurkauf et al. 2006; Vagin et al. 2006; Klattenhoff et al. 2007). Also,
mutant flies lacking the ability to produce rasiRNAs result in sterile
females with oogenesis defects (Pane et al. 2007). Interestingly, our data
show the fat body-Ab and remainder tissues to greatly vary in their
abundance of multi-mapping small RNAs, while dendrogram analy-
sis of annotated reads grouped these mosquito tissues together. While
the above mentioned small RNAs differ in length to rasiRNAs,
20-24nt vs. 25-29nt, respectively, both small RNA groups are multi-
mapping. Given the vast abundance of multi-mapping small RNAs
across mosquito tissues and the inherent challenges of studying them
(Johnson et al. 2016; Axtell 2013), future work is needed to decipher
their multiple genomic loci, as well as their importance in mosquito
physiology. Lastly, this study focused on miRNAs, which account for
less than 20% of all small RNAs obtained in small RNA-seq studies, in
agreement with other studies performed in mosquitoes (Biryukova
et al. 2014; Fu et al. 2017; Akbari et al. 2013). Thus, future work is also
needed to classify, categorize, and quantify small RNAs outside the
20-24nt range.

Our tissue miRNA expression data represents the resting reproduc-
tive state of the previtellogenic adult female mosquito (Clements 2000).
Interestingly, we found less than a third of miRNAs to be highly
expressed across mosquito tissues. Further, given the high number of
lowly expressed miRNAs in the previtellogenic adult female mosquito,
stimuli required to induce expression for the majority of miRNAs
awaits discovery. Several insect studies demonstrate a wide range of
stimuli can induce expression of lowly expressed miRNAs. Hormonal
signals serve as developmental stimuli in both the fly and mosquito
(Sempere et al. 2003; Liu et al. 2014b; Hu et al. 2015; Gu et al. 2013;
Li et al. 2009). Environmental stimuli like insect swarm aggregation in
themigratory locust, Locusta migratoria, induces expression of amiRNA
required for synchronous egg hatching (He et al. 2016). Extreme cold
temperature induces specific miRNA expression required for freeze tol-
erance in the gall fly, Eurosta solidaginis (Courteau et al. 2012). Lastly,
lipopolysaccharide injection and infection with ZIKA virus serve as stim-
uli to induce expression of particular miRNAs in the tick, Rhipicephalus
haemaphysaloides, and mosquito, Ae. aegypti, respectively (Wang et al.
2015; Saldaña et al. 2017). Thus, future work on these lowly expressed
miRNAs will identify stimuli needed to induce their expression as well as
decipher their importance in disease transmission by An. gambiae.

As humanmalaria continues to be oneof themost important vector-
bornediseases, there is alwaysaneed to learnbasicmosquitophysiology.
Previous studies demonstrate the importance of miRNAs in mosquito
reproduction (Lucas et al. 2015b; Ling et al. 2017; Zhao et al. 2017;

Fu et al. 2017; Bryant et al. 2010; Liu et al. 2014a; Zhang et al. 2016;
Lucas et al. 2015a) and immunity (Dennison et al. 2015; Winter et al.
2007). However, we lack basic biology behind miRNA expression in
variousmosquito tissues. To this end, this study yielded an updated and
consolidated miRNA catalog, a genome architecture map highlighting
intragenic and intergenic miRNAs, and small RNA transcriptomes for
mosquito tissues critical for reproduction and immunity. As a whole,
this data will provide a stronger foundation for future work onmiRNAs
and potentially other small RNAs in the malaria vector, An. gambiae.
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