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Abstract  
Lithium promotes autophagy and has a neuroprotective effect on spinal cord injury (SCI); however, the underlying mechanisms remain 
unclear. Therefore, in this study, we investigated the effects of lithium and the autophagy inhibitor 3-methyladenine (3-MA) in a rat model 
of SCI. The rats were randomly assigned to the SCI, lithium, 3-MA and sham groups. In the 3-MA group, rats were intraperitoneally in-
jected with 3-MA (3 mg/kg) 2 hours before SCI. In the lithium and 3-MA groups, rats were intraperitoneally injected with lithium (LiCl; 
30 mg/kg) 6 hours after SCI and thereafter once daily until sacrifice. At 2, 3 and 4 weeks after SCI, neurological function and diffusion 
tensor imaging indicators were remarkably improved in the lithium group compared with the SCI and 3-MA groups. The Basso, Beattie 
and Bresnahan locomotor rating scale score and fractional anisotropy values were increased, and the apparent diffusion coefficient value 
was decreased. Immunohistochemical staining showed that immunoreactivities for Beclin-1 and light-chain 3B peaked 1 day after SCI in 
the lithium and SCI groups. Immunoreactivities for Beclin-1 and light-chain 3B were weaker in the 3-MA group than in the SCI group, 
indicating that 3-MA inhibits lithium-induced autophagy. Furthermore, NeuN+ neurons were more numerous in the lithium group than 
in the SCI and 3-MA groups, with the fewest in the latter. Our findings show that lithium reduces neuronal damage after acute SCI and 
promotes neurological recovery by inducing autophagy. The neuroprotective mechanism of action may not be entirely dependent on the 
enhancement of autophagy, and furthermore, 3-MA might not completely inhibit all autophagy pathways.

Key Words: nerve regeneration; spinal cord injury; lithium; secondary injury; autophagy, diffusion tensor imaging; neuroprotection; functional 
recovery; immunohistochemistry; Beclin-1; light-chain 3B; neural regeneration

Graphical Abstract   

Mechanisms by which lithium promotes the repair of spinal cord injury 

Introduction 
Spinal cord injury (SCI) is the direct or indirect damage to 
any part of the spinal cord that results in permanent impair-
ment in strength, sensation or other body function below 
the injury site (Wyndaele and Wyndaele, 2006; Krause et al., 
2017). Secondary injury mechanisms play important roles 
in the acute, sub-acute and chronic phases and lead to vaso-
spasm, ischemia, inflammation, and free radical production 
(Oyinbo, 2011). These events result in neuronal loss, which 
is the key cause of permanent neurological dysfunction 

(Kanno et al., 2009; Tang et al., 2014; Li et al., 2015a; Kwan 
et al., 2017).

Cell autophagy or type II programmed cell death is an 
intracellular catabolic mechanism for recycling damaged or-
ganelles and senescent proteins and plays a very important 
role in cell survival, differentiation and homeostasis (Erlich 
et al., 2007; Mizushima et al., 2010). It was reported that 
enhancing autophagy promotes the recovery of neurological 
functions by inhibiting apoptosis (Sekiguchi et al., 2012; Liu 
et al., 2015; Colón and Miranda, 2016; Dai et al., 2017). Sev-
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eral studies have reported that autophagy is involved in SCI. 
Lysosomal dysfunction and the disruption of autophagy, as 
well as increased neuronal apoptosis, have been observed in 
SCI, suggesting that autophagy is involved in SCI (Silva et 
al., 2008; Liu et al., 2015). Accordingly, an increasing num-
ber of studies have focused on the therapeutic effect of mod-
ulating autophagy in SCI.

Lithium is the first line drug for treating bipolar disor-
der, and provides neuroprotection in multiple neurologic 
diseases (Young, 2009; Huo et al., 2012). Accumulating ev-
idence suggests that lithium has numerous actions, includ-
ing neuroprotection, inflammation inhibition, induction 
of neurotrophic factor secretion, and the enhancement of 
neurogenesis (Son et al., 2003; Senatorov et al., 2004; Su et 
al., 2007; Yasuda et al., 2009; Yuskaitis and Jope, 2009; Chi-
Tso and Chuang, 2011; De Meyer et al., 2011; Li et al., 2011; 
Lauterbach, 2016). However, it remains unclear whether au-
tophagy plays a positive or negative role in SCI (O’Donovan 
et al., 2015; Del Grosso et al., 2016; Fabrizi et al., 2017).

Multiple signaling pathways are involved in autophagy, 
including the PI3K/Akt/mTOR, AMPK/TSC/mTOR and 
eIF2α/Atg12 pathways (Periyasamy-Thandavan et al., 2009). 
It was reported that lithium affects several signaling path-
ways, including the PI3K/Akt and IP3 pathways, which are 
involved in autophagy. Therefore, it is reasonable to specu-
late that lithium promotes functional recovery by inducing 
autophagy in rat models of SCI, which has not yet been 
studied (Periyasamy-Thandavan et al., 2009; Chi-Tso and 
Chuang, 2011; Li et al., 2015b).

In the present study, we investigate the neuroprotective 
effect of lithium and the role of autophagy in SCI using the 
autophagy inhibitor 3-methyladenine (3-MA). To objective-
ly and accurately evaluate recovery following SCI, we per-
formed diffusion tensor imaging (DTI), which is an effective 
method of assessing neurological recovery, in addition to 
the Basso, Beattie, Bresnahan (BBB) locomotor rating scale 
(Zhang et al., 2015).

Materials and Methods
Animal care and groups
A total of 72 specific-pathogen-free adult healthy male 
Sprague-Dawley rats weighing 230–270 g were provided by 
the Experimental Animal Center of Xi’an Jiaotong Univer-
sity of China (production license No. SCXK (Shaan) 2007-
001; user license No. SYXK (Shaan) 2007-003). All rats were 
housed under a 12-hour light/dark cycle. All experimental 
procedures were performed in accordance with the Guide-
lines for the Care and Use of Laboratory Animals published 
by the US National Institutes of Health. The protocols were 
approved by the Animal Ethics Committee of Xi’an Jiaotong 
University of China. All efforts were made to minimize dis-
tress to the rats.

The rats were randomly separated into sham, SCI, lithium 
and 3-MA groups (n = 18 per group). Six rats from each 
group were randomly selected for BBB scoring and DTI ex-

amination, and three rats from each group were sacrificed 
for immunohistochemical staining at each time point.

SCI model
Rats in the SCI, lithium and 3-MA groups received SCI oper-
ation as previously described (Basso et al., 1995). Briefly, the 
rat was anesthetized with intraperitoneal injection of chloral 
hydrate (300 mg/kg) and placed in the prone position with 
a heating pad to maintain body temperature. After shaving 
and aseptic preparation, the spinal cord was exposed. Dorsal 
laminectomy was performed at T9–11. The T10 segment of 
the spinal cord was impacted with an NYU weight-drop im-
pactor (10 g rod dropped from a height of 25 mm; Rutgers 
University, USA), which led to hemorrhage and edema at the 
site of impact, wagging tail reflex and lower limb spasm. All 
manifestations indicated the success of the injury model. The 
rats in the sham group underwent laminectomy alone. The 
tissue was sutured layer by layer, with a piece of fat sutured 
under the skin at the T10 level. After SCI surgery, manual 
bladder massage was performed three times, and intraperito-
neal injection of penicillin 20 U/kg was given once daily until 
bladder function was reestablished.

Lithium and 3-MA treatments
Lithium chloride (LiCl; Kemiou, Tianjin, China) and 3-MA 
(Sigma-Aldrich, St. Louis, MO, USA) were dissolved in 0.9% 
NaCl. Rats in the 3-MA group were given intraperitoneal 
injection of 1 mL 3-MA (3 mg/kg) 2 hours before SCI (Chen 
et al., 2013; Tang et al., 2014). Rats in the lithium and 3-MA 
groups were administered 1 mL lithium by intraperitoneal 
injection (LiCl, 30 mg/kg) 6 hours after SCI and then once 
daily until sacrifice (Yick et al., 2004; Zakeri et al., 2014). The 
sham and SCI groups received 1 mL 0.9% NaCl via intraper-
itoneal injection.

Neurological function assessment
The BBB locomotor rating scale was used to assess neuro-
logical function after SCI (Zhang et al., 2015). The BBB score 
ranges from 0 (complete paralysis) to 21 (normal), based on 
the range and extent of motion, weight loading, coordina-
tion of the forelimbs and hindlimbs, and motion of the fore-
paw, hindpaw and tail. Three independent examiners blindly 
assessed the BBB score before operation, and at 6 hours and 
1, 2, 3 and 4 weeks after SCI. The average score was taken as 
the final score for each rat at each time point.

DTI examination
A DTI scan was performed 24 hours before SCI and at 6 
hours and 1, 2, 3 and 4 weeks after SCI using a 3.0 T SIG-
NA MRI scanner (GE Medical Systems, Milwaukee, WI, 
USA) at the same loci as the conventional MRI scan. The 
scanning parameters were as follows: diffusion-weighted 
coefficient (b-value) = 1000 s/mm2; diffusion-sensitive gra-
dient = 15 different directions; repetition time = 3500 ms; 
echo time = 87.5 ms; thickness = 2.4 mm; space = 0; field of 
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view = 10; acquisition matrix = 64 × 64. All data were input 
into a workstation running Advantage Windows 4.2 (GE 
Healthcare). The region of interest (ROI) was identified by 
the fat under the skin, which was displayed as a high signal 
on conventional T2WI MRI (Yan et al., 2007). Based on the 
fractional anisotropy (FA) map, the ROI was placed in the 
inferior medulla and the inferior oblongata. The ROI was 
selected by two independent testers, and apparent diffusion 
coefficient (ADC) and FA values were obtained. FA values 
reflect the degree of spatial displacement of water molecules, 
and higher FA values indicate stronger anisotropy. ADC 
values are independent of the diffusion directions, and indi-
cate the diffusional displacement of water molecules.

Immunohistochemical staining
Three rats were randomly selected from the sham group, 
while three rats were randomly selected from the other groups 
at 6 hours and at 1, 3 and 7 days for immunohistochemistry. 
The rats were anesthetized with chloral hydrate (300 mg/kg) 
and received aortic cannulation through the apex of the left 
ventricle. The rat was then perfused with 4% paraformalde-
hyde. A 2.0-cm spinal cord tissue segment centered at the 
injury site (T10 segment) was harvested and immersed in 4% 
paraformaldehyde at 4°C for 12 hours, and thereafter, 6 µm-
thick coronal paraffin sections were prepared.

Three slices from each rat were selected for immunohisto-
chemical staining for the neuronal nuclear antigen NeuN and 
the autophagy markers Beclin-1 and microtubule-associated 
proteins 1A/1B light-chain 3B (LC3B). Briefly, the sections 
were deparaffinized, rehydrated in distilled water, placed in 
3% H2O2 to remove residual peroxidase, and then rinsed with 
phosphate-buffered saline (PBS). The slices were blocked 
with 10% normal goat serum for 2 hours following permea-
bilization with 0.1% Triton X-100. Afterwards, the sections 
were incubated with anti-NeuN antibody (rabbit anti-rat 
IgG; 1:1000; Abcam, Cambridge, UK), anti-Beclin-1 antibody 
(mouse anti-rat IgG; 1:400; Santa Cruz Biotechnology, Dallas, 
TX, USA) or anti-LC3B antibody (mouse anti-rat IgG; 1:400; 
Santa Cruz Biotechnology) at 4°C for 24 hours. The sections 
were then incubated with the corresponding horseradish per-
oxidase-labeled antibody (goat anti-mouse; 1:100; Beyotime, 
Shanghai, China) at 37°C for 30 minutes, followed by three 
washes with PBS. Specific staining was visualized with diam-
inobenzidine according to the supplier’s instructions (Beyo-
time), followed by counterstaining with hematoxylin. Finally, 
sections were washed with PBS, dehydrated through a graded 
alcohol series (50%, 75%, 95%, 100%), cleared with dimethyl-
benzene, and mounted using a coverslip.

For analysis, four randomly selected fields were photo-
graphed at 400× magnification on a microscope (Olympus, 
Tokyo, Japan). NeuN-positive cells at the injury site were 
counted manually and blindly by three examiners. Images 
of Beclin-1 and LC3B-stained sections were imported into 
Image Plus Pro 6.0 software (Media Cybernetics, Rockville, 
MD, USA) to quantify the positively-stained area. Relative 

area, which was defined as the ratio of the average area in 
the experimental group to that in the sham group, was ana-
lyzed to compare autophagy levels among the groups.

Statistical analysis
Data are expressed as the mean ± SD. Statistical analysis was 
performed using SPSS 20.0 software (IBM Corporation, Ar-
monk, NY, USA). One-way analysis of variance followed by 
the least significant difference post hoc test was used to com-
pare differences in intergroup data at each time point. Pear-
son correlation analysis was used to analyze FA and ADC 
values and BBB scores. A value of P < 0.05 was considered 
statistically significant.

Results
General condition of the experimental animals
All 72 rats recovered from anesthesia within 2 hours of sur-
gery and survived over the course of the experimental peri-
od. All 72 rats were included in the final analysis.

Neurological function assessment
Lower hindlimb function was assessed with the BBB scale 
24 hours before SCI, and at 6 hours and 1, 2, 3 and 4 weeks 
after SCI. All rats were evaluated on schedule and received 
21 points before SCI. The rats in the SCI, lithium and 3-MA 
groups displayed flaccid paralysis and a failure of autonom-
ic urination. Neurological function in the sham group was 
the same as in the pre-operative period at all time points 
after laminectomy. The graph shows the BBB scores at the 
different time points. Locomotor function was dramatically 
reduced after SCI and gradually improved with time in the 
SCI, lithium and 3-MA groups (P < 0.05; Figure 1). Recov-
ery was significantly better in the lithium group than in the 
SCI and 3-MA groups at 1, 2, 3 and 4 weeks after SCI (P < 
0.05). There was no difference in BBB scores between the 
3-MA and SCI groups at 1 and 2 weeks after SCI (P > 0.05), 
but BBB scores were higher in the 3-MA group than in the 
SCI group at 3 and 4 weeks (P < 0.05).

Changes in FA and ADC values at the injury site
FA values significantly decreased (P < 0.05), while ADC 
values increased significantly (P < 0.05) after SCI. FA val-
ues gradually increased over time in all groups (P < 0.05), 
and there was no difference among the three groups at 6 
hours after SCI (P > 0.05). At 1 week after SCI, the FA value 
was higher in the lithium group than in the SCI and 3-MA 
groups (P < 0.05), and there was no difference between the 
SCI and 3-MA groups (P > 0.05). At 2, 3 and 4 weeks after 
SCI, the FA value was higher in the lithium group than in 
the SCI and 3-MA groups (P < 0.05), and higher in the 3-MA 
group than in the SCI group (P < 0.05; Table 1).

ADC values gradually decreased with time in all groups (P 
< 0.05), and there was no difference among the three groups 
at 6 hours or 1 week after SCI (P > 0.05). At 2 weeks after 
SCI, the ADC value was lower in the lithium group than in 
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the SCI and 3-MA groups (P < 0.05), and there was no dif-
ference between the SCI and 3-MA groups (P > 0.05). At 3 
and 4 weeks after SCI, the ADC value was again lower in the 
lithium group than in the SCI and 3-MA groups (P < 0.05), 
and was lower in the 3-MA group than in the SCI group (P 
< 0.05; Table 2).

Correlation between DTI and neurological function
Pearson correlation analysis showed that FA values were 
negatively correlated with ADC values in the rat model of 
spinal cord contusion injury (r = −0.9537, P < 0.05; Figure 
2A), consistent with our previous observations (Zhang et 
al., 2015; He, 2015). FA values were positively and linearly 
correlated with BBB scores (r = 0.9279, P < 0.05; Figure 2B). 
ADC values were negatively correlated with BBB scores, and 
the correlation was linear (r = −0.9173, P < 0.05; Figure 2C).

Immunolabeling for neurons
Immunohistochemical staining showed that the number of 
neurons (NeuN+ cells) at the site of injury was reduced in 
the SCI group at 6 hours after SCI, and continued to dimin-
ish with time compared with the sham group. In the lithium 

Figure 1 Effects of lithium and 3-MA on motor function in rats with 
SCI.
The BBB locomotor rating scale scores ranged from 0 to 21 points. 
Lower scores indicate poorer motor function. BBB scores were signifi-
cantly higher in the lithium group than in the SCI and 3-MA groups at 
1, 2, 3 and 4 weeks after SCI (P < 0.05). There was no difference in BBB 
scores between the 3-MA group and the SCI group at 1 or 2 weeks after 
SCI, while BBB scores were higher in the 3-MA group than in the SCI 
group (P < 0.05). *P < 0.05, vs. SCI group; #P < 0.05, vs. 3-MA group 
(mean ± SD, n = 6; one-way analysis of variance followed by the least 
significant difference post hoc test). BBB: Basso, Beattie & Bresnahan; 
3-MA: 3-methyladenine; SCI: spinal cord injury; h: hours; W: week(s).

Figure 2 Correlation between diffusion tensor imaging and neurological function assessment (Pearson correlation analysis).
(A) FA values were negatively correlated with ADC values, and the correlation was linear (r = –0.9537, P < 0.05). (B) FA values were positively cor-
related with BBB locomotor rating scale scores, and the correlation was linear (r = 0.9279, P < 0.05). (C) ADC values were negatively and linearly 
correlated with the BBB scores (r = –0.9173, P < 0.05). SCI: Spinal cord injury; FA: fractional anisotropy; ADC: apparent diffusion coefficient; BBB: 
Basso, Beattie & Bresnahan.

Table 1 FA values at the injury site at different time points after SCI

FA

Time point SCI group Lithium group 3-MA group

24 h before SCI 0.599±0.0024 0.600±0.0022 0.600±0.0019
6 h after SCI 0.180±0.0048 0.179±0.0043 0.180±0.0041
1 w after SCI 0.240±0.0061 0.253±0.0070 0.244±0.0059
2 w after SCI 0.329±0.0064 0.346±0.0081† 0.358±0.0071*

3 w after SCI 0.353±0.0048 0.384±0.0070† 0.377±0.0057*

4 w after SCI 0.409±0.0055 0.436±0.0056† 0.419±0.0063*

*P < 0.05, vs. SCI group; †P < 0.05, vs. SCI group and 3-MA group 
(mean ± SD, n = 6; one-way analysis of variance followed by the least 
significant difference post hoc test). FA: Fractional anisotropy; SCI: 
spinal cord injury; 3-MA: 3-methyladenine; h: hours; w: week(s).

Table 2 ADC values at the injury site at different time points after SCI

ADC (10–4 mm2/s)

Time point SCI group Lithium group 3-MA group

24 h before SCI 10.01±0.088 10.01±0.111 10.03±0.096
6 h after SCI 18.47±0.423 18.52±0.538 18.45±0.638
1 w after SCI 17.85±0.446 17.42±0.417 17.75±0.618
2 w after SCI 16.30±0.410 15.02±0.618† 15.78±0.293
3 w after SCI 14.76±0.320 13.82±0.354† 14.32±0.387*

4 w after SCI 14.16±0.363 13.07±0.398† 13.68±0.393*

*P < 0.05, vs. SCI group; †P < 0.05, vs. SCI group and 3-MA group 
(mean ± SD, n = 6; one-way analysis of variance followed by the least 
significant difference post hoc test). SCI: Spinal cord injury; ADC: 
apparent diffusion coefficient; 3-MA: 3-methyladenine; h: hours; w: 
week(s).
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group, neurons were similarly reduced at 6 hours after SCI 
but were more numerous than in the SCI and 3-MA groups 
at 1 and 3 days and 1 week after SCI. In the 3-MA group, 
neurons were greatly reduced in number compared with 
the SCI group at 6 hours after SCI and compared with the 
SCI and lithium groups at 1 and 3 days and 1 week after SCI 
(Figure 3A). Furthermore, these neurons had an abnormal 
morphology.

Cell counting showed that the number of neurons in all 
three experimental groups decreased significantly at 6 hours 
after SCI compared with the sham group (P < 0.05). The 
number of neurons in the experimental groups continued 
to decrease at 1 and 3 days and 1 week after SCI, compared 
with the previous time point (P < 0.05). More neuronal cells 
survived in the lithium group than in the SCI group, and 
more neuronal cells survived in the SCI group than in the 
3-MA group (P < 0.05; Figure 3B).

Beclin-1 immunohistochemistry
The Beclin-1+ area was larger and more strongly stained, 
and Beclin-1+ cells were more numerous in the SCI group at 
6 hours after SCI compared with the sham group. Further 
expansion of the Beclin-1+ area was found at 1 day, but it 
diminished from 3 days after SCI. In the lithium group, the 
Beclin-1+ area was larger and more intensely stained, and 
Beclin-1+ cells were more numerous at 6 hours after SCI 
compared with the SCI group. The Beclin-1+ area was even 
larger at 1 day, but it started to diminish from 3 days after 
SCI, although the staining was still more intense than in the 
SCI group at 1 week. In the 3-MA group, the staining was 
slightly more intense than in sham group 1 day after SCI, 
while it was weaker than in the SCI group at 3 days and 1 
week after SCI (Figure 4A).

The relative Beclin-1+ area in the SCI group at 6 hours af-
ter SCI was significantly greater than 1 (P < 0.05), indicating 
that it was larger than in the sham group and that the level 
of autophagy increased after SCI. The relative Beclin-1+ area 
reached a peak at 1 day after SCI and decreased from 3 days 
after SCI. There was a similar trend in the lithium group, 
with the relative area increasing from 6 hours after SCI, 
peaking at 1 day, and decreasing significantly from 3 days (P 
< 0.05). Compared with the SCI group, the relative Beclin-1+ 
area in the lithium group was greater at 6 hours, 1 and 3 
days and 1 week after SCI (P < 0.05). In comparison, the 
relative Beclin-1+ area was significantly smaller in the 3-MA 
group than in the SCI group at 6 hours and 1 and 3 days af-
ter SCI (P < 0.05; Figure 4B).

LC3B immunohistochemistry
The LC3B+ area was expanded, the staining intensity was 
greater, and positive cells were increased in the SCI group 
at 6 hours after SCI compared with the sham group. Fur-
ther expansion of the LC3B+ area was found at 1 day, but 
it decreased from 3 days after SCI. The LC3B+ area was 
expanded, the staining intensity was greater, and positive 

cells were increased in the lithium group at 6 hours after 
SCI compared with the SCI group. Further expansion of the 
LC3B+ area was found at 1 day, and it shrank from 3 days af-
ter SCI, although the staining was still more intense than in 
the SCI group at 1 week after SCI. In the 3-MA group, 1 day 
after SCI, the staining was slightly stronger than in the sham 
group, while it was weaker than in the SCI group at 3 days 
and 1 week after SCI (Figure 5A).

The quantitative analysis revealed that the relative LC3B+ 
area in the SCI group at 6 hours after SCI was significantly 
greater than 1 (P < 0.05), indicating that the LC3B+ area was 
larger than in the sham group, and suggesting that the level 
of autophagy increased after SCI. The relative LC3B+ area 
peaked at 1 day after SCI and decreased from 3 days after 
SCI. There was a similar trend in the lithium group, with the 
relative area increasing from 6 hours after SCI, peaking at 
1 day, and significantly decreasing from 3 days (P < 0.05). 
Compared with the SCI group, the relative LC3B+ area in the 
lithium group was greater at 6 hours, 1 and 3 days and 1 week 
after SCI (P < 0.05). However, the relative LC3B+ area was 
significantly smaller in the 3-MA group than in the SCI group 
at 6 hours and 1 and 3 days after SCI (P < 0.05; Figure 5B).

Discussion
Advanced evaluation of SCI
Conventional MRI is widely used for patients with SCI. 
However, it fails to clearly display the degree of injury or the 
recovery and regeneration of neuronal fibers in the spinal 
cord after injury. Therefore, in the present study, we used 
DTI for the three-dimensional reconstruction of white mat-
ter fiber bundles.

Based on our previous study, DTI is an objective and ac-
curate method for evaluating recovery following SCI and the 
effect of therapeutic interventions in complete transection 
SCI models (Zhang et al., 2015). SCI causes damage to cell 
membranes and myelin sheaths, leading to the destruction 
of the molecular diffusion barrier and the unrestricted 
movement of water (Li et al., 2016). This occurred immedi-
ately after SCI. Subsequently, along with glial scar formation, 
the displacement of water molecules was reduced, and the 
regeneration of axons forced the water molecules to diffuse 
primarily in one direction, which was reflected as a gradual 
increase in the FA value and a decrease in the ADC value. 
The DTI outcomes we observed in this study were consistent 
with the pathological changes. The FA and ADC values cor-
related well with the BBB scores. Lithium promoted recov-
ery following SCI, while 3-MA reduced the therapeutic ef-
fectiveness of lithium. Therefore, DTI can accurately reflect 
axonal necrosis and degeneration, glial cell regeneration and 
demyelination after SCI, and display changes in the micro-
structure of the spinal cord in vivo (Zhang et al., 2015; Jirjis 
et al., 2017).

Autophagy in lithium treatment for SCI
Autophagy is an evolutionarily conserved process, and over 
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Figure 3 Immunohistochemical staining and counting of neurons (NeuN+ cells) in the injured rat spinal cord at different time points.
(A) Neurons were more numerous in the lithium group than in the other groups at 6 hours, 1 and 3 days, and 1 week. Arrows point to neurons. 
Scale bars: 50 μm. (B) Neurons in each experimental group were significantly decreased at 1 and 3 days and 1 week after SCI compared with the 
previous time point. More neurons survived in the lithium group than in the SCI group, while more neurons survived in the SCI group than in the 
3-MA group. All data are expressed as the mean ± SD (n = 3; one-way analysis of variance followed by the least significant difference post hoc test). 
*P < 0.05, vs. SCI group; #P < 0.05, vs. 3-MA group. SCI: Spinal cord injury; 3-MA: 3-methyladenine; h: hours; d: day(s); w: week.
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Figure 4 Immunohistochemical staining for Beclin-1 and the relative Beclin-1+ area in the injured spinal cord at different time points.
(A) The number of Beclin-1+ cells and the intensity of staining were higher in the lithium group than in the other groups at 6 hours, 1 and 3 days, 
and 1 week. Arrows point to Beclin-1 protein. Scale bars: 50 μm. (B) The relative area of Beclin-1+ staining was greater in the lithium group than in 
the SCI and 3-MA groups, while it was lower in the 3-MA group than in the SCI group. All data are expressed as the mean ± SD (n = 3; one-way 
analysis of variance followed by the least significant difference post hoc test). *P < 0.05, vs. SCI group; #P < 0.05, vs. 3-MA group. SCI: Spinal cord 
injury; 3-MA: 3-methyladenine; h: hours; d: day(s); w: week.
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30 autophagy-related genes (Atgs) have been identified, of 
which LC3B (or LC3II) and Beclin-1 are standard markers 
(Kirisako et al., 1999; Ohsumi, 2001; Mizushima and Yoshi-
mori, 2007; Periyasamy-Thandavan et al., 2009). Accumulat-
ing evidence suggests that lithium has neuroprotective prop-
erties, suggesting that it may have potential as a new therapy 
for SCI (Sarkar et al., 2005; Wada et al., 2005; Yan et al., 2007; 
Pasquali et al., 2009). Although lithium has been widely used 
for safely and effectively treating neuropsychiatric disorders, 
it is rarely used for acute SCI (Ohsumi, 2001; Chang et al., 
2011; Chen et al., 2013; Kim et al., 2013; Duo and He, 2015; 
Hou et al., 2015; Seo et al., 2015; Quartini et al., 2016; Zhou et 
al., 2016; Wu et al., 2018). Therefore, the effectiveness of lithi-
um treatment for acute SCI remained unclear.

The role of autophagy in recovery following injury is still 
controversial. While some studies have reported that en-
hanced autophagy improves neuroprotection, others have 
suggested that the suppression of autophagy is beneficial to 
recovery (Li et al., 2010; Shimada et al., 2012; O’Donovan et 
al., 2015; Del Grosso et al., 2016). Previous studies in other 
fields have demonstrated that lithium can enhance autopha-
gy, or in contrast, reduce apoptosis and autophagy (Wong et 
al., 2011; Raja et al., 2015; Guttuso, 2016). Our results show 
that lithium promotes neurological functional recovery and 

neural cell survival, which supports the notion that lithium 
has neuroprotective properties. Furthermore, we observed 
that these neuroprotective effects were inhibited by 3-MA, 
which downregulated the autophagy induced by lithium. 
This implies that lithium reduces neuronal damage and 
promotes functional recovery by inducing autophagy. Nev-
ertheless, BBB scores were still higher in the 3-MA group 
than in the SCI group from 3 weeks after SCI, in accordance 
with the neural cell counting results. This suggests that the 
mechanisms of autophagy are complex and that other sig-
naling pathways that are not inhibited by 3-MA or activated 
by lithium play a role in the process (Galluzzi et al., 2017) 
Furthermore, lithium may also promote neurotrophin se-
cretion, inhibit inflammation or enhance the proliferation 
of neural progenitor cells (Son et al., 2003; Senatorov et al., 
2004; Su et al., 2007; Yasuda et al., 2009; Chi-Tso and Ch-
uang, 2011; Li et al., 2011).

The opposing concept that autophagy aggravates injury 
may be explained by differences in lithium concentrations 
and target cells in previous studies. Discrepancies may also 
be caused by differences in animal models, the therapeutic 
window and the treatment period. Fang et al. (2016) found 
that early activated autophagy alleviates spinal cord isch-
emia/reperfusion injury, while later excessively elevated au-
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Figure 5 Immunohistochemical staining for LC3B and the relative LC3B+ area in the injured spinal cord at different time points.
(A) Number of LC3B+ cells and the intensity of staining were greater in the lithium group than in the other groups at 6 hours, 1 and 3 days, and 
1 week. Arrows point to LC3B protein. Scale bars: 50 μm. (B) The relative LC3B+ area was larger in the lithium group than in the SCI and 3-MA 
groups, while it was lower in the 3-MA group than in the SCI group. All data are expressed as the mean ± SD (n = 3; one-way analysis of variance 
followed by the least significant difference post hoc test). *P < 0.05, vs. SCI group; #P < 0.05, vs. the 3-MA group. SCI: Spinal cord injury; 3-MA: 
3-methyladenine; h: hours; d: day(s); w: week.
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tophagy aggravates the injury. Therefore, autophagy appears 
to be a dynamic process with differential effects, depending 
on the time frame and model. Further study is needed to 
examine the signaling pathways affected by lithium and the 
dynamic changes in the autophagy pathway.

Summary
Further clinical trials are required to explore the effect of 
lithium therapy in acute SCI patients. In addition, studies 
are needed to optimize the time window of treatment, the 
treatment dose and protocol and to reduce the side effects of 
lithium.

In conclusion, our findings demonstrate that lithium 
protects neurons and promotes autophagy in a rat model of 
acute SCI. DTI is an effective method for evaluating recovery 
following SCI, and correlates well with neurological function-
al scores in our rat model of spinal cord contusion injury. The 
dynamic changes in autophagy after SCI and the effects of 
lithium on this process need to be investigated further.
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