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Abstract: The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is
controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had
been broadly stated that phytohormones control the plant development, and they are considered to
play a significant part in the bulb formation. The past decade has witnessed significant progress in
understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable
query is to what degree the mechanisms discovered in bulb crops are also shared by other species and
what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein
has a role in flowering; however, the FT genes were afterward reported to play further functions in
other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic
regulation, where the FT genes seem to have experienced significant development at the practical
level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of
FT homologs in the photoperiodic environments detects these proteins as a new class of primary
signaling mechanisms that control the growth and organogenesis in these agronomic-related species.
In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated
bulb enlargement in Allium species. Therefore, the present review aims to systematically review the
published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also
provide evidence showing that the bulbing transitions are controlled by phytohormones signaling
and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also
show that an autorelay mechanism involving FT modulates the expression of the bulbing-control
gene. Although a large number of studies have been conducted, several limitations and research
gaps have been identified that need to be addressed in future studies.
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1. Introduction

The photoperiod is demarcated as the portion of light and dark hours in a diurnal cycle of 24 h [1].
The continual discrepancy in length of day, predominantly at better notches of latitude, is a dependable
scale of the evolution of the spells and controls when the plant shifts its growing strategies and
twitches forming bulbs. Arabidopsis is a facultative long-day plant, and flowers prior under long-day
environments. Long days promote bulb enlargement. Nevertheless, day length does not distress the
floral switch in tomato, which is a day-neutral plant. The photoperiod is believed to interrelate to
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stimulate bulbing [2,3]. Far-red light is also obligatory. In alliaceous crops, bulb initiation is exceedingly
inclined by day length. Bulb swelling is attracted if the day length exceeds 12–15 h, which is liable on the
cultivar [3]. Brewster [4] informed that garlic produces inadequate bulbs in warm, short-day lowland
tropical areas, but in temperate zones, the bulb size is characteristically large. The photoperiod, similar
to other ecological parameters, regulates the control of plants over inner indicators and alterations in
hormonal profile. Endogenous gibberellins levels are enhanced with a long photoperiod, which has
been shown to have a dynamic part in the bulbing of garlic and growing quantity of cloves [5]. There is
variability in bulb characteristics, clove color, harvest, and aroma according to growing atmosphere
and cultivar [6]. Present-day garlic cultivars are purified, and seed manufacture was testified only for
a limited genotype in some sites. Garlic is frequently proliferated vegetatively, and adopting an early
planting routine that is of adequate scope and eminence is decisive for accomplishing high produce
yield [7]. The properties of photoperiod on progressive developments of bulbing in onion have been
studied [8]. The onion cultivars of varied origin exhibited better bulbing under a long photoperiod
(17 h·d−1). It has been reported that the degree of bulb growth over long photoperiods increases [9].
Under short-day environments, onion plants formed new plants indeterminately deprived of bulb
development, whereas at longer day lengths, bulbs were formed [10]. Photoperiods under 11 h muted
bulbing in the two tropical onion varieties, and bulbing was enlarged gradually with as the day length
surged [11].

The FLOWERING LOCUS T (FT) gene family in Arabidopsis encrypts the transportable flowering
indicator formed in the leaves that is responsible for generating bulb development in the subversive
stolon, thereby providing a vital innovation about the way bulbing is controlled. Further research in onion
exhibited that diverse FT genes similarly control bulb enlargement, stressing the evolutionary-focused
maintenance of FT proteins as key producers of the bulb alteration. This too influences the offshoot
meristems at the axillary buds and vascular cambium etches for this progressive changeover. FT-like
genes switch onion bulb development; however, unlike Arabidopsis FT, it is not a long-distance indicator.
These fallouts and the preceding information indicate that FT-like genes activate bulb development in
Allium, proposing the turnover of all controllers of bulb advance in varied taxonomy [12]. Furthermore,
expression of the LONELY GUY (LOG1) gene, encrypting a cytokinin (CK)-activating enzyme, converses
axillary tomato meristems to an aptitude of de novo creation of tuber-like organs [13], recommending
that CKs may have a purpose as extensive controllers of storage-organ formation in plants. This research
work displays that the ectopic expression of TLOG1, which is a cytokinin-activating gene, gives axillary
tomato meristems the capability to produce midair tiny tubers that reflect the involvement of cytokinin
in initiating the storage organ development in a non-tuberizing plant. This makes an outline for
researching tuber beginning grounded on the unexpected similarities in the parameters of tuberization
among axillary meristems and tempted stolons.

Plants respond to different seasons to initiate evolving strategies at specific times of year.
The photoperiod controls several evolving developments in plants. Genomic studies have revealed the
fundamental responses to alterations in photoperiod and the generation of a vigorous cyclic response.
Current advances in plant genome analysis have established the variation in these controlling structures
in several crops. Plants are visible to a sturdy rhythm of day and night due to the rotation of the earth
around its own axis. This rhythm varies throughout the year, and the more distant an area is from the
Equator, the sturdier these variations are, therefore demanding the adaptation of life procedures to this
altering rhythm. The adjustment sequence and thus the synchronization of frequent biological and
progressive developments with the ecological sequences is understood by an inner circadian clock.
Throughout evolution, a quantity of plant classes has achieved the skill of distinguishing their leaves,
stems, or roots into storage organs (bulb), as observed in garlic and onion. The formation of these
bulbs is attracted throughout drought and freezing conditions that pacify plant feasibility, acting as
a mechanism for asexual propagation that delivers a survival strategy to the plant. As such, these
bulbs are continuously dormant in soil throughout divergent cold and dry times, after which they are
sown in the following term and produce a healthy plant. Early growing of the new shoot is liable on
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the metabolic properties that have accumulated in these bulbs, generally in the formula of starch or
soluble sugars, which makes them an outstanding caloric supplementation to the human nutritional
requirements. An iterative breeding collection for bigger bulbs and form to diverse latitudes could
improve the recent cultured genotypes, which is of high financial significance and tactical in equilibria
of food safety. Therefore, understanding the mechanisms recycled by the plant to signal the distinction
of these bulbs is a vital area to see the nutritious stresses of the increasing world population, and it is
also an ultimate query in developing environmental skills.

2. Photoperiodic Control in Bulb Enlargement

A bulb is a vegetative growing point or an unexpected flowering shoot. The base is from a reduced
stem, and plant growth occurs from this basal plate. Root development forms from the underside
of the base and new stems and leaves form from the upper side. A long photoperiod is crucial for
bulb initiation and growth in Allium sativum [2,3,13–17]. Although the precise structures are uncertain,
the photoperiod and the mechanism for bulbing have been crucial limits for the progressive development
of bulbs or the strategy of agricultural systems. A detailed understanding of the properties of ecological
environments (photoperiod) on bulb growth would increase our information of the bulb developments
and enable the production of a continual stock of bulbs. The photoperiod expressively impacts the
propagative developments [7]. The bulbing and cloving are inclined by the day length to which
the dormant cloves or budding plants are subjected before bulbing starts [18]. At large, low early
temperatures followed by long days are crucial for the development of bulbs and cloves. At the same
time, the struggle for resources by the parallel developing bulb regulates the providence of bulbing [19].
In onion bulbs, a healthy sink in the initial bulb growth phases pacifies the evolution and divergence
of the new inflorescence with subsequent drying of the flower stem. Henceforth, it was planned that
the stimulation of the photoperiod on bulb growth should be meticulous in the background of the
corresponding but uncertain growth of bulbs in garlic [7] (Table 1).

Up to the present time, the result of photoperiod on bulb development has been researched for
some Alliums. The bulb enlargement of onion and its subsequent development were influenced by the
photoperiod, and bulbing was encouraged by long days. Furthermore, in some cultivars, bulbing only
occurred once double thresholds of a least thermal period of 600-degree days and a photoperiod of
13.75 h were achieved [20–23]. However, to the best of our information, the risky conditions for bulbing
and the alteration in the indicator ingredient through this development inside Allium sativum have
attracted limited investigation reflection, apart from the research of Kamenetsky and Rabinowitch [24],
Mathew et al. [7], Wu et al. [16], and Atif et al. [2]. The properties of irradiance on crop growing and
interrelations among growth and the developing procedures of bulbing in onions have been studied [8].
Findings with respect to light spectral eminence have revealed that the photoperiodic switch of
bulbing is a high-irradiance response of the phytochrome scheme [25]. Far-red light, which turns over
phytochrome A, encourages bulbing most efficiently throughout the central portion of an 18-h inductive
photoperiod, necessitating around five spells as abundant energy for the similar response at the start
and finish of this photoperiod [26]. Furthermore, the lesser the red to far-red proportion, the better
the raise of bulbing in a certain photoperiod [27–29]. Red light unassisted or useful proximately after
separate far-red radiation repressed bulb enlargement in onion [30]. A lower red to far-red ratio rushes
bulb measure at the beginning and maturity as the leaf area index rises. The light intensity, light
quality, and additional features interrelate with day length to affect the bulbing response of onion
cultivars. In warm weather and bright days, onions bulb at shorter day lengths than the cool and
cloudy days [31,32]. Environmental factors, such as for example the day length, affect bulb enlargement
and taste eminence in onion [33]. In onion, light range and quality impacts bulb formation and
quality [34–41]. The bulb initiation and growth of further Allium species including garlic have been
shown to be influenced by day length, temperature, and carbohydrates [42,43]. Earlier investigators
testified that plants treated with shorter day lengths than they needed will form solitary leaves with
poor bulbs [44], and in some conditions, thick bulb necks might too occur [45]. Equally, untimely bulb
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development, bulb growth, and maturity tolls rise after plants are subjected to longer day lengths than
they require, which results in small bulbs and small yield [11,46].

Table 1. Bulbing response to the photoperiod and its mechanism.

Highlights

Bulb enlargement and its subsequent development were influenced by photoperiod and bulbing was
encouraged by long days [2,3].

Bulbing is regulated by internal signals, which can be stimulated or inhibited by the environmental conditions.
It has been widely reported that phytohormones regulate the plant growth and are considered to play
an important role in the formation of bulbs [5,7].

Long photoperiods are known to improve the levels of endogenous gibberellins, with consequent flower bud
differentiation. Many studies have shown that gibberellic acid (GA) could partially or fully replace vernalization
for some plants. Endogenous GA levels of long day or biennial plants during the process of floral induction
increased. However, GA is considered to be an inhibitor of bulb formation. Exogenous GA inhibited the increase
of the scape and bulb yield. It was likely that GA did not act directly on the inhibition of bulbing; instead,
it enhanced the activity of a “bulbing inhibition substance” [5,7].

Abscisic acid (ABA) generally plays an important role in plant defense against biotic or abiotic stresses.
It was assumed that ABA acts similarly to GA in the early stage of plant bolting. Endogenous ABA levels of Welsh
onion (Allium fistulosum L.) increased significantly during flower bud differentiation and decreased dramatically
after the completion of flower bud differentiation [5,7]

Indoleacetic acid (IAA) showed the opposite effect, decreasing with increases in the flower bud differentiation rate
but increasing significantly during the bolting process of Welsh onion. It is reasonable to assume that IAA inhibits
flower bud differentiation but improves plant bolting [5,7].

Zeatin riboside (ZR) also showed an enhancing effect on plant bolting. Cytokinin (CTK) was a bulbing initiator but
had no visible effect on bulb enlargement, while IAA and ethylene improved bulb formation. However, few
studies have investigated the role of abscisic acid (ABA) on garlic bolting or bulbing [5,7].

Jasmonic acid (JA) and related compounds are widely distributed among higher plants and play important roles in
the regulation of plant development. It was found that jasmonates were potent inducers of vegetative storage
protein gene expression and proteinase inhibitors of defense proteins. It is generally believed that the bulbing
process is regulated by the balance between the “bulbing hormones” and GA. By considering that bulbing was
involved in the disruption of microtubules, jasmonic acid (JA) and methyl jasmonate (MeJA) were candidate
bulbing hormones because of their microtubule-disrupting activities and wide distribution in higher plants [5,7].

Salicylic acid (SA) played an important role in garlic bulb formation and MeJA likely enhanced the endogenous SA
content of garlic plant, thus improving bulbing [5,7].

Cultivars grown at diverse latitudes required a least day length for bulbing, and cultivars are classified on this into
short-day (SD), intermediate, and long-day (LD) categories. The short-day cultivars procedure bulbs at low
latitudes whenever the day length is close to 12 h, whereas intermediate ones grow bulbs at mid latitudes
whenever the day length lies between 12 and 16 h, and long-day cultivars initiate bulbing at high latitudes
whenever the day length is close to or above 16 h [6–11].

Numerous key genes are intricate in circadian regulation, where the clock derives the rhythmic expression of key
genes FLAVIN-BINDING, KELCH REPEAT, F-BOX (FKF1), GIGANTEA (GI), and CONSTANS (CO). FKF1 and GI
promote CO expression and this CO positively controls FLOWERING LOCUS T (FT). Then, the FT protein is
translocated to the apical meristem through the phloem and forms a FT/FD (FLOWERING LOCUS D) complex.
This compound triggers the APETALA 1 (AP1) and suppressor of overexpression of CONSTANS 1 (SOC1) genes,
which triggers LEAFY (LFY) gene expression and causes flowering at the floral apical meristem in Arabidopsis.
The expression of GI, FKF1, and ZTL homologs under short-day and long-day environments was observed using
quantitative reverse transcription-PCR (qRT-PCR), where the results presented that key genes—namely GI, CO,
and FT—controlling photoperiodic flowering in Arabidopsis are conserved in Alliums, and a role for these genes
in the photoperiodic control of bulb instigation is anticipated [12,13].

The FLOWERING LOCUS T gene (FT), which was first documented in Arabidopsis thaliana, has been discovered
to be the main feature of the floral signal molecule florigen. FT plays a key role in the photoperiodic pathway for
the initiation of flowering in the apical meristem with the help of other floral homeotic genes such as LFY.
Moreover, FT is a target of CONSTANS (CO) and turns upstream of suppressor of CONSTANS overexpression
(SOC1) and can act as a mobile flowering signal to encourage flowering by long-distance transport. For bulbing,
as with flowering, photoperiod insight develops in the leaves, while the response is in the meristem. These indorse
that a mobile signal with properties similar to FT might be involved [12,13].
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3. Phytohormonal Control of Bulb Enlargement

Phytohormones are considered the most important endogenous substance for modulating
physiological and molecular responses, and they are a critical requirement for plant survival as sessile
organisms. Phytohormones act either at their site of synthesis or elsewhere in plants following their
transport. The examination of the paraphernalia of photoperiod on bulb growth will offer vision
into the mechanism of bulbing and environmental tools (adaptable photoperiods) for developing
parameters. The directive of bulbing is comprised of intricate evolutions determined by an intricate
system of signaling pathways. In order to improve propagation ability and bulb production through
horticultural practices, regulating environmental conditions (photoperiod) and phytohormones are
the most effective ways, which have a key role in the development of bulbs [7,15,47,48]. Hormonal
balance has a large effect on storage organ formation and development. The role of hormones in
the sprouting of garlic cloves has been demonstrated. In addition to environmental cues, such as
photoperiod, bulbing is also controlled by endogenous signals, including phytohormones level and
plant age [49,50] (Table 1) (Figure 1).Int. J. Mol. Sci. 2020, 21, x 6 of 25 
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Allium sativum and Allium cepa bulb formation.

3.1. Gibberellic Acid

Endogenous gibberellins were found at high levels in the storage leaf during clove sprouting,
and they also inhibited dormancy induction in whole tulip bulbs [51–53]. Long photoperiods
are identified to improve the levels of endogenous gibberellins, with substantial flower sprout
divergence [5,7]. Various experiments have revealed that gibberellic acid (GA) might partially or
completely substitute vernalization [54–56]. Surge is detected in the endogenous GA levels of long-day
or biennial plants throughout the development of floral initiation. However, GA is a well-organized
inhibitor of bulb growth [56]. The application of exogenous GA on garlic revealed that exogenous GA
subdued the rise of the bulb produce. It was likely that GA did not turn reliably on the inhibition of
bulbing, in its place attracting the outbreak of a “bulbing reserve substance” [57,58]. GA3 application
could increase shoot weight in carrot [59], seed yield in lettuce [60], and fruit weight in pear [61]
and plum [62]. Earlier reports have revealed that the application of GA3 increased bulb weight in
onion under deficit irrigation [63]. On the contrary, a few results have shown that the application
of GAs caused a decline in tuber production in potato [64]; fruit production in sweet pepper [65],
grape [66], and pear [67]; and root weight in carrot [59]. In potatoes, it was testified that GA3 treatment
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improved the number of tubers per plant [68]. The application of GA3 also encouraged tillering
in welsh onions [69], encouraged airborne tubers development in turnip [70], and promoted shoot
branching in Jatropha curcas [71]. GA was also used to progress fruit morphological characteristics
(skin color and firmness) and nutritive quality in apples, bananas, plums, and sweet peppers [72–74]
(Table 1).

Gibberellins are imperative phytohormones that control many evolving developments in
plants [75]. According to Liu et al. [75], GA3 treatment intensely encouraged lateral bud development
but repressed the growth of plants and bulbs, and lateral bud formation doubled in garlic plants treated
with GA3. Bulb nutritious qualities were enhanced by applying GA3. Briefly, the number of cloves and
whorls per bulb improved with a higher concentration of GA3. After application of a low concentration
of GA3, the number of cloves per bulb and the soluble sugar content were expressively improved,
but the mean bulb weight was significantly reduced for plants treated with a high concentration of
GA3 [75]. Gibberellins (GAs) are a growth-encouraging phytohormone [76–78], and the application of
GAs might significantly increase plant weight in cauliflower and sweet peppers [65,79,80]. In addition,
it has been stated that a high concentration of GA3 and high frequency of application GA3 inhibit
lettuce growth [60] and decrease fruit weight in plum [81]. The application of GA3 decreased root,
tuber, fruit weight, and yield in other crops as well [59,64,67]. Previous reports have revealed that
the application of GA3 had a positive and negative effect on the organ nutritive eminence of potatoes,
sweet peppers, and sweet cherries [65,82,83]. GA3 can significantly induce lateral bud formation and
increase the clove number per bulb, which improves the reproduction efficiency in garlic. However,
the physiological and metabolic changes of garlic plants under GA3 treatment are unknown [75].
Lately, many genes for lateral bud development have been specified in other plants, and future work
will focus on changes in gene expression and protein interaction in garlic plants after exogenous
GA3 treatment [84–87]. Liu et al. [88] also studied the effect mode and time of application of GA3 on
garlic plant architecture and bulb structure. Here, they investigated the effect of both soaking seed
cloves in GA3 solution and injecting plants with GA3 on plant growth and bulb development in garlic.
They detected that soaking seed cloves in GA3 solution induced secondary plant (equated with tiller or
lateral branch) development and expressively increased the incidence rate of secondary plants, clove
numbers per bulb, and bulb weight. Clove number per bulb and bulb weight were sharply increased
by the application of GA3. Exogenous GA3 induced the axillary bud formation of garlic via the changes
of soluble sugar content and soluble protein content in the stem [88]. Exogenous gibberellic acid
(GA3) induced axillary bud formation and promoted the growth of lateral branches in tomato [89],
potato [90], cherry tree [91], Jatropha curcas [71], and welsh onion [69]. The application of exogenous
GA3 not only intensely increased clove number per bulb but also changed bulb morphology [75].
Currently, the application of exogenous GA3 is considered a new means for improving propagation
competence and garlic yield. These results highlight the status of exogenous GA3 as a start of axillary
bud development [88]. According to Liu et al. [88], soaking seed cloves with GA3 solution and
injecting plants with GA3 caused a substantial increase in the incidence rate of secondary plants,
clove numbers per bulb, and bulb weight, which can be used for improving propagation efficiency in
horticultural practice.

3.2. Abscisic Acid

Abscisic acid (ABA) normally plays a vital part in plant resistance to biotic or abiotic stresses. It was
expected that ABA plays an important role in the initial phase of plant bolting [92,93]. Su [94] described
that endogenous ABA influences the flower shoot distinction of welsh onion (Allium fistulosum L.),
which improved expressively and reduced subsequently after the flower bud variation. According to
the outcomes of Wu et al. [16], ABA also exhibited a surge under the longer photoperiod. The increased
endogenous ABA might accelerate the maturation process of garlic plants, which leads to the shorter
growth period under longer photoperiods. However, when investigating the result of each factor
and their interactions, ABA responded otherwise to the photoperiod; the ABA level was increased by



Int. J. Mol. Sci. 2020, 21, 1325 7 of 25

a shorter photoperiod [16]. Abscisic acid (ABA) was recommended to play a key part in the whole
growing development of garlic [51]. In Dutch iris, under bulb-inducing environments, endogenous
ABA levels increased [95]. ABA were related to temperature regulation in dormancy initiation [96].
ABA was also found to play a crucial part in improving plant lenience to cold, as well as inducing
leaf senescence in wheat and barley [97]. A further development that is facilitated by phytohormones
was found in apical dominance control by balanced hormonal signaling between auxin, cytokinin,
and the recently discovered strigolactones in grasses [98]. The role of ABA in the deep dormancy
of seeds, tubers, and bulbs has been recommended in several investigations and reviews [99–102].
A variation in ABA level was also confirmed in onion (Allium cepa L.), where the level of ABA was
higher during the dormancy period and decreased when dormancy broke. Furthermore, later research
established that exogenous ABA delays sprouting in Allium wakegi plants [103]. ABA’s role in the later
growth stages, the sprout regulation of potato tubers, and the effect of sucrose on its level have been
proposed [102]. However, cold stress has been shown to cause the accretion of ABA in plants as part of
their defense mechanism [104]. According to Rohkin Shalom [48], significantly higher ABA levels were
observed in garlic cloves stored at warm versus cold temperatures, signifying that warm temperatures
are a more effective sprouting inhibitor in garlic cloves (Table 1).

3.3. Indole Acetic Acid

Indole acetic acid (IAA) exhibits inconsistent results, decreasing with rising flower bud variation
degree and then growing expressively throughout the bolting procedure of welsh onion [94]. It is
normal to accept that IAA derivatives have been affected by environmental conditions [105]. Although
IAA and ethylene enhanced bulb development, rare research reports are available discussing role of
abscisic acid (ABA) on bulbing [16,106]. Auxins have long been occupied to play a regulatory role in
potato (Solanum tuberosum L.) tuber growth. Endogenous auxin levels were found to be high just prior
to and during stolon swelling, after which auxin levels steadily decreased [107]. Moreover, Xu et al. [56]
detected earlier tuberization when IAA was applied to single node cuttings in a tuber-inducing medium.
Instead, tuber formation was totally inhibited by high concentrations of IAA. In potato, only a single
Aux/IAA (StIAA) [107] and ARF protein (ARF6) [107] have been designated up to the present time.
StIAA expression levels increased after fungal infection, wounding, or the application of auxin [107].
Arf6 expression levels are reduced in the apical meristem of the stolon tip at the tuber beginning and
development, and they are induced during meristem instigation in dormant tuber buds [107] (Table 1).

3.4. Zeatin Riboside

Zeatin riboside (ZR) was reported to have an enhancing effect on plant bolting [94]. According
to Wu et al. [16], ZR levels increased as the photoperiods increased. Cytokinin (CTK) was a bulbing
originator but had no noticeable impact on bulb widening [16]. Exogenous cytokinin was revealed to
induce early differentiation and cell division in developing leaves [51]. Wybouw and De Rybel [108]
highlighted how cytokinin influences growth and development in plants. In addition to being the
main determinants of shoot development, cytokinins have also been implicated in many aspects of
root development. For example, this is very clear when looking at the wide range of root-related
phenotypes of biosynthesis, perception, and signaling mutants [109]. The Arabidopsis root shows clear
bilateral symmetry within the vascular tissues, with a central xylem axis flanked by two phloem poles
and intervening procambium cells. In this diarch setup, there is high auxin signaling in the xylem cells,
whereas neighboring procambium and phloem cells display high cytokinin signaling. This bilateral
character of the vasculature is a consequence of a tight interplay between auxins and cytokinins
because auxin signaling in xylem cells induces AHP6, which in turn represses cytokinin signaling [110].
In addition, cytokinin signaling in procambial cells affects auxin efflux through PIN-FORMED (PIN)
protein expression and localization [111]. Mathematical modeling suggests that this interplay is
sufficient to achieve bilateral symmetry within the vasculature [112–115]. Cytokinins are tightly linked
to vascular development because classical mutants in the signaling pathway such as wooden leg
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(ahk4/cre1/wol) and ahp6 were identified because of their vascular defects. In the past few years, the
heterodimeric transcription factor complex formed by the bHLH transcription factors TARGET OF
MONOPTEROS 5 (TMO5) and LONESOME HIGHWAY (LHW) has emerged as an important regulator
of vascular proliferation [116–119]. Cytokinins also regulate root development in a longitudinal sense.
In the root, cytokinins control root meristem size by limiting auxin activity in the transition zone. Here,
cytokinins repress auxin activity through the direct induction of SHY2/IAA3 by ARR1 and ARR12.
SHY2/IAA3 acts as a repressor of ARF activity and negatively regulates PIN proteins, leading to auxin
redistribution [120,121]. Plant–microbe interactions between plants from the Fabaceae family and
nitrogen-fixating bacteria lead to the formation of specialized plant structures called root nodules,
and this process is strongly linked to cytokinin signaling. In Medicago truncatula and Lotus japonica,
the inoculation of nitrogen fixating bacteria leads to an increase in cytokinin biosynthesis and signaling
within the affected roots [122–125] (Table 1).

3.5. Jasmonic Acid

Jasmonic acid (JA) and connected amalgams are extensively dispersed amongst higher plants
and play significant parts in the directive of plant growth [126,127]. Jasmonates have been shown
to be effective inducers of nonsexual storage protein gene expression [128] and proteinase inhibitors
of resistance proteins [129,130]. It is usually supposed that the bulbing course is controlled by the
equilibrium amid the ‘bulbing hormones’ and GA [131,132]. Regvar et al. [133] and Žel et al. [134]
testified that JA improved the bulb growth in vitro in absorptions from 1 to 10 µM and recommended
that JA could play a significant role in the development of storage tissues in plants, for instance bulbs.
Nojiri et al. [135] observed that bulbing was complex in the disorder of microtubules and suggested
that jasmonic acid (JA) and methyl jasmonate (MeJA) were candidate bulbing hormones due to their
microtubule-disrupting activities and extensive transport in higher plants (Table 1).

3.6. Salicylic Acid

Salicylic acid (SA) also has a significant role in garlic bulb development, and MeJA probably
boost the endogenous SA content of garlic plant, therefore refining bulbing. Cytokinins have also
been shown to have a part in tuberization by persuading local cell propagation throughout the initial
tuberization start. Tuber development can be tempted in stem node carvings cultured in media with
a high absorption of sucrose in the occurrence of these hormones. There was a decrease in the number
of tubers per plant in transgenic lines ectopically articulating the cytokinin oxidase (CKX) inactivating
enzyme [136]. It is significant to answer what is incomparable to the potato plant and can reverse
potatoes with the ability to technique underground tubers as a vegetative propagation mechanism.
Curiously, ectopic expression of the tomato LONELY GUY 1 (TLOG1), a cytokinin biosynthesis gene
that alters in-active sugar-coupled cytokinin into their free active formula, has been revealed to consult
juvenile tomato axillary meristems with the skill to form tuber-like structures [13] (Table 1).

4. Genetic Regulation of Photoperiod

Cultivars grown at diverse latitudes required a least day length for bulbing, and cultivars are
classified on this into short-day (SD), intermediate, and long-day (LD) categories. The short-day
cultivars procedure bulbs at low latitudes wherever the day length is close to 12 h, whereas intermediate
ones grow bulbs at mid-latitudes wherever the day length lies between 12 and 16 h, and long-day
cultivars initiate bulbing at high latitudes wherever the day length close or above 16 h [137]. Bulbing
erstwhile to bulb anticipation is a thoughtful flaw instigating leading yield damage [138]. In the 21st
century, notable development has been done in cereals and several additional crops to recognize
the homologs of the Arabidopsis diurnal clock and additional flowering linked genes. All these
investigations reflect that flowering genes are preserved in monocots and dicots to control flowering
paths [139,140]. There is a sum of counterparts amongst the photoperiodic switch of onion bulb
enlargement and flowering [12,141]. As with flowering, day length insight perhaps happens in the
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leaves, while Brewster [4] observed that the retort is in the meristem, signifying that a moveable indicator
with characteristics similar to FT might be involved. For instance, as with the long-day initiation of
flowering, bulbing requires the availability of light with a considerable unit of far red in the second
half of the long day, concluding the dimension of the length of daylight in the evening via the chance
of a daily controlled protein and its stabilization in the light involving phytochrome [4]. The financial,
social, and nutritional implications of onion are a problematic topic for genetic investigation due to its
incomplete genomics properties and an absence of agreed reference resources [142,143] (Table 1).

A difference among garlic cultivars in bulbing and responses to environmental indicators is
predictable and is furthermost probably alike to what mutual happens in other Allium crops [4,144–146].
In alliaceous crops, bolting is dependent on ecological signs, i.e., long photoperiods (lily) or high
(tulip, narcissus) or low (onion) temperatures [4,144–146]. Long photoperiods are vital for floral scape
elongation. Generally, bolting-type garlic plants need 30–40 days under 0–4 ◦C or 50–60 days under
10 ◦C at the four-leaf age for vernalization. Later in that phase, a long photoperiod (≥13 h) and higher
temperature (25 ◦C) is mandatory for the bulbing of garlic [14,15,147]. Day length consideration
places a remarkable barrier on breeding agendas as the choice typescripts that initiate in onions from
a specific day-length cluster cannot be moved to alternative day length collection by cross breeding,
since the precise day-length response of the offspring is unidentified. Furthermore, crossing onions
with different day length necessities is problematic, as the progeny will be compromised. Classifying
the genes accountable for the day-length obligation of bulb enlargement will help understand the
foundation of the alteration, which is significant for familiarizing new cultivars for evolution and
progress at diverse latitudes. Whole genomes have been sequenced for numerous species, for example
Arabidopsis thaliana [148] and the crops rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum),
and legumes such as soybean (Glycine max) and barril medic (Medicago truncatula) [149–154]. However,
because of the limitations regarding evolving, maintaining, and switching genetic brands, there are
low records of genetic researches for Allium development [155]. Allium bulb enlargement is reliant on
day length, and it is therefore similar to the day-length retort of flowering [141]. In contrast to the
information added regarding the photoperiodic regulation of flowering, relatively little is recognized
about the genetic parameters of bulb development [12,141].

5. Gene Expression and Bulb Enlargement

Gene expression is the process by which information from a gene is used in the synthesis of
a functional gene product. These products are often proteins, but in non-protein coding genes
such as transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a functional
RNA [156–162]. In onion, the physiology of the bulb beginning was precisely defined by Mettananda
and Fordham [163]; photoperiodic conditions mark bulb beginning, similar to the photoperiodic
switch of flowering in other species [20,164]. A topical investigation discovered that the flowering
genes of Arabidopsis that have elaborate day-length responses are functionally preserved with respect
to those intricate in onion bulbing [141]. An investigation of several species has discovered that
FT-like proteins act throughout developing courses, such as for example the termination of meristem
development and tomato produce [165,166], tuberization in potato [167], termination development
in poplar trees [168], plant architecture in maize [169], stomatal control [170], and multiplicative
architecture in Arabidopsis [171]. Hereafter, it was meticulously possible that the genes leading
photoperiodic flowering also control bulbing [12]. Although biological trials have discovered the
standing of plant age, light quality, and photoperiod for the initiation of bulb formation [20,163],
the “hormones” directing this process are not yet known. It has been lately stated that the FT protein,
whose expression is promoted by vernalization over repressor release, panels not only flowering but
also bulb formation in onion [172] and tuber formation in the Solanaceae [173]. Several key genes
are involved in circadian regulation, where the clock derives the rhythmic expression of key genes
such as FLAVIN-BINDING, KELCH REPEAT, F-BOX (FKF1), GIGANTEA (GI), and CONSTANS (CO).
FKF1 and GI promote CO expression [174], and this CO positively regulates FLOWERING LOCUS T
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(FT) [175]. Then, the FT protein is translocated to the apical meristem through the phloem and forms
a FT/FD (FLOWERING LOCUS D) complex [176–180]. This compound triggers the APETALA 1 (AP1)
and suppressor of overexpression of CONSTANS 1 (SOC1) genes, which triggers LEAFY (LFY) gene
expression and causes flowering at the floral apical meristem in Arabidopsis [181–183]. The expression
of GI, FKF1, and ZTL homologs under short-day and long-day environments was observed using
quantitative reverse transcription-PCR (qRT-PCR), where the results presented that key genes—namely
GI, CO, and FT—controlling photoperiodic flowering in Arabidopsis are conserved in onion, and a role
for these genes in the photoperiodic control of bulb initiation is projected [163] (Figures 1 and 2).Int. J. Mol. Sci. 2020, 21, x 11 of 25 
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Figure 2. Schematic representation of photoperiodic responses. Model for regulation of bulbing
transitions. Light entrains the circadian clock regulating CO mRNA expression. Light entertainments
over an external occurrence mechanism to alleviate CO protein, which encourages or obstructs the
expression FT mRNA. FT protein, form in the leaves, journeys through the phloem to distant locations
of accomplishment with the apical or basal meristems or underground stolons (bulbs).

Bulbing is an alterable development, and plants grown under inductive environments promote
bulb formation, but if they are moved to non-inductive condition, they quickly return to vegetative
growth [8,184]. Bulb instigation can be distinct as the theme at which the “bulbing ratio”—the ratio
of the maximum bulb diameter at the base to the minimum at the neck—increases to greater than
two [8,185]. Bulb formation in temperate areas is photoperiod-reliant, and the leaves of the plant
are the photoperiodic stimulus receptor [11,186,187]. Long-day crops are grown in temperate areas
and need a minimum of 14 or more hours of light to stimulate bulb beginning, whereas short-day
crops grow in additional tropical regions and need a photoperiod of only 10 h or more for bulbing [4].
The substance is more complex, as some cultivars are central and thus require 12 h or more of daylight
before they will start producing the bulbs. This photoperiod-reliant bulb beginning is comparable to the
photoperiodic regulation of flowering in plants [141,163]. Hence, it is assumed that the genes involved
in the photoperiodic regulation of flowering in Arabidopsis are also responsible for the photoperiodic
regulation of bulb formation. Both developments are induced by long days; indicator insight is in the
leaf blade, response is at the meristem, and both are promoted by far-red light through phytochrome
A (PHYA) [27,188]. Rashid et al. [189] conducted an investigation to characterize the advanced and
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longitudinal expression of supposed photoperiodism-related genes by quantifiable gene expression
analysis in different response types of onion under a variety of bulbing and non-bulbing environments
so as to further comprehend their possible roles in the photoperiodic parameter of bulbing. Moreover,
their research team intended to obtain a better consideration of the molecular regulation of bulbing
in response to photoperiod and explicitly examine whether the molecular regulation involved genes
controlling flowering by photoperiod in Arabidopsis [189] (Table 1).

Arabidopsis flowering and onion bulbing are both photoperiodically-controlled developmental
events [190] that are induced by long days; signal insight lies in the leaf and response is at the
top. Sepals, petals, stamens, and anthers are formed as the end produce in Arabidopsis, whereas
storage-scale leaves are formed as the end produce in bulbs [191]. Arabidopsis flowering and onion
bulbing can be linked via the phytochrome, and both developments are promoted by far-red light
through PHYA [192]. Flowering in Arabidopsis has been considered at the molecular and genetic level
and is regulated by six major separate pathways viz., photoperiodic, convergent autonomous, sucrose,
gibberellin, temperature, and light quality pathways [190,193,194]. For onion, the key ecological stimuli
are the photoperiod and temperature [195], but these are mostly grounded on physiological activity
more than genetics analyses [196]. Rashid and Thomas [197] emphasized an independent mechanism
that generates endogenous rhythms in a 24-h period in the leaf [1] and is controlled by various reaction
circles on the photoperiodic pathway, which is intermediated by the circadian clock [198]. Light plays
a vital part in the photoperiodic response in Arabidopsis and interrelates with the circadian clock as
a fragment of the photoperiodic flowering pathway [199]. In the leaf, light is acknowledged by diverse
photoreceptors, including cryptochromes in blue light, phytochromes in red/far-red light, and inputs
into the circadian clock [200,201].

6. FT Gene Regulates Bulb Formation

The FLOWERING LOCUS T (FT) gene was first recognized in Arabidopsis thaliana [202,203] and
has been revealed to be the main factor of the floral signal molecule, florigen [175]. FT plays a key role
in the photoperiodic pathway for the initiation of flowering in the apical meristem with the help of
other floral homeotic genes such as LFY [204]. Moreover, FT is a target of CONSTANS (CO), turns
upstream of suppressor of CONSTANS overexpression (SOC1), and can act as a mobile flowering
signal to induce flowering by long-distance transportation [163,180]. For bulbing, as with flowering,
photoperiod insight emerges in the leaves, while the response is in the meristem [4]. These recommend
that a mobile signal with properties parallel to FT might be involved. Additionally, to the regulation
of flowering, FT genes have been found to be involved in a range of physiological developments,
signifying a more extensive role as a plant hormone [12]. For instance, FT promotes vegetative
growth and the inhibition of bud set in poplar in response to warm temperatures and long-day
photoperiods [171,205,206] in tomato and maize. In addition, FT genes have been found to function as
general growth controllers [207,208]. Other than vegetative growth and flowering, FT is also involved
in the short-day initiation of tuberization in potato [170]. Describing genes involved in the photoperiod
requirement of bulb formation will help in understanding the basis of the difference between different
photoperiod categories, which is important for acclimating novel cultivars for growth and development
at diverse latitudes [189] (Table 1) (Figure 1).

The FLOWERING LOCUS T (FT) gene plays a central role in integrating flowering signals in
Arabidopsis, because its expression is regulated antagonistically by the photoperiod and vernalization
pathways. FT encodes a mobile signaling protein involved in regulating flowering, as well as other
aspects of plant development such as bulb formation [12,209]. FT is an important integrator gene and
has a significant part in directing the time of evolution to the reproductive phase [202,203,210,211].
The expression of FT genes is inclined by environmental indicators such as the photoperiod,
vernalization, hormones, and independent parameters [212,213]. In onion, three FT-like genes are
primary groups in directing bulb formation (AcFT1 and AcFT4) and flowering (AcFT2). While flowering
is authorized by vernalization and is associated with the up-regulation of AcFT2, a long-day photoperiod
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is associated with the down-regulation of AcFT4 and up-regulation of AcFT1, which ratifies bulbing [12].
Although warm storage shaped garlic bulb and vegetation stems under long days (12–14 h light) after
80–90 days of growth, the plants from cold storage formed a bulb after only 30 days of growth under
short-to-medium days (9–12 h light), and the floral stem was not formed. Furthermore, in nourishment
of the early bulbing phenotype after cold storage, gene-expression results established a higher
comparative expression of AsFT1 in garlic’s internal bud and in the storage leaf under cold as compared
to warm storage. AcFT1 has been suggested to induce bulbing in Allium cepa, and the potato FT ortholog
StSP6A is involved in the short-day initiation of tuberization [12,163]. AcFT2 is strongly exaggerated
by day-length conditions, but the expression outlines confirmed the alterations in bulb enlargement
under diverse ecological environments [4]. Manoharan et al. [214] examined that the mRNA levels of
AcFT1 genes of EM (Early maturation) and LM (Late maturation) lines of onion were down-regulated
when the plants were subjected to both photoperiod environments. Further, AcFT1 and AcFT4 were
down-regulated in the EM line under both short-day and long-day environments near bulb maturity,
and this was in distinction with the greenhouse environments. Although AcFT4 was up-regulated
throughout short-day conditions in the LM line, this might be because of genetic alterations connected
to the bulbing period in the two onion lines. Therefore, these fallouts offer additional indications that
AcFT4 might be twisted in bulb enlargement and propose that AcFT4 movement might be dependent
on internal factors. The functionality of the AcFT genes might be transformed by external factors,
for example light intensity and temperature inside the growth room [215]. The LM line reaches a critical
long-day length, while AcFT4 and AcFT1 transcription levels are reduced and improved individually
once subjected to short-day conditions, therefore encouraging bulb enlargement [12]. Additional
research will be required to recognize the instigation and inhibitory action of AcFT4 during short-day
and long-day environments in bulbing [215]. Manoharan et al. [214] also anticipated that the enlarged
expression of AcFT4 in short-day conditions might also be intricate in the late maturity of the LM
line. Bulbing occurs mainly under long-day conditions in onion. An alike outline linked to flowering
has been logical in other plants, particularly Arabidopsis, in which FT was up-regulated when plants
were visible to long-day photoperiod environments [216]. Tuberization in potato is meticulous by the
photoperiod response to short day [217], signifying that the genetic switch is parallel in tuberization.
Preceding conclusions evidently display that FT genes are connected to flowering [216]. FT genes
are well-maintained in species including rice [218], tomato [209], darnel ryegrass [5], sugar beet [219],
and wheat [220].

Genes encrypting FT-like proteins show a main part in monitoring both onion bulb enlargement
and flowering. A model of the roles of FT-like genes in the periodic switch of bulb crops growth
specified that in juvenile plants and those grown under a non-inductive photoperiod, AcFT4 prevents
the up-regulation of AcFT1. Once the plants are mature and the day length holds a risky length, AcFT4
is down-regulated and AcFT1 is up-regulated, leading to the initiation of bulb enlargement. Constant
with this prototypical, constitutive expression of AcFT4, AcFT1 up-regulation and bulb enlargement
are both prevented. In sugar beet, two FTs with different expression profiles and antagonistic purposes
control flowering are involved [219,221]. Rashid et al. [189] conducted an inclusive set of evolving and
longitudinal quantifiable mRNA expression trials to examine the expression of onion FLOWERING
LOCUS T (AcFT), LEAFY (AcLFY), and GIBBERELLIN-3 OXIDASE (GA3ox1) during the bulbing
response. Bulbing proportions were used to measure the response of onion plants under long-day
and short-day environments. AcFT1 was expressed in a long-day environment, which influences bulb
formation, while AcFT4 was expressed in a short-day environment, which inhibits bulb formation.
AcFT5 and AcFT6 were expressed in a long-day environment and might also be involved in bulb
formation itself. All AcFT, AcLFY, and GA3ox1 genes presented unique outlines of tissue specific
expression in onion, with AcFT genes were found mainly in the locations of insight in the leaf and LFY
was found in the basal tissues, which are the place of response. The outcomes are constant with AcFT1
expression being the indicator for long-day influenced bulb instigation and AcFT4 being involved in
overwhelming bulbing in short-day environments. According to Rashid and Thomas, [197] onion
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homologs of CO, FT, GI, and FKF1 genes exhibited diurnal forms of expression in both long-day and
short-day onions. The results back their connection in the day-length regulation of bulbing through
a mechanism similar to that found in Arabidopsis flowering. Two novel CO-like genes were identified
from the RNA-seq library. One of these, AcCOL2, showed an expression pattern very similar to CO
from Arabidopsis, which is consistent with a role in day-length regulation. The patterns of mRNA
expression presented in this report back the suggestion that AcFT1 encourages bulbing in long-day
onions while AcFT4 inhibits bulbing in short-day onions [12]. Furthermore, this study illustrates that
these genes are expressed at different times of the day, with AcFT1 expressed in the evening and AcFT4
expressed in the morning. Lyngkhoi et al. [222] stated that in the short-day onion variety Pusa Riddhi,
expression of five of the six genes evaluated (AcFT1, AcFT3, AcFT4, AcFT5, and AcFT6) was highest at
the bulbing period, signifying their role in bulbing in short-day onions. The expression of AcFT2 was
lowest at the bulbing point signifying that the down-regulation of this gene encourages bulbing in the
short-day variety. Differing from results observed in the short-day variety, the expression of all the
six genes confirmed under investigation was relatively very low at the bulbing stage in Brown Spanish.

Molecular genetic analysis in a wide collection of plants has exposed that sequence variations
in mechanisms of the circadian clock [223–226] and downstream mechanisms [226], including FT
genes [227,228], stimulate the difference in day length that is mandatory to influence flowering.
Therefore, it is likely that the variation of bulb at the suitable time in diverse latitudes comprises similar
mechanisms. Leek is a significant Allium crop that does not contain bulbs and consequently privations
a photoperiodic obligation [229–235]. These landscapes let leeks be implanted during the whole season
and fully grow over a wide range of latitudes. Attractively, the 35S:AcFT4 plants that do not bulb have
a similar presence to leeks and sustain budding vegetatively into the winter, despite being deprived of
their vegetation dying off. This recommends that the large phenotypic alterations between onion and
leek might be due to an uncertain genetic variation [236–241]. Although the occurrence of enlarged
bulbs is a distinct feature of onions, most members of the Allium genus produce some kind of storage
organ. For instance, garlic cloves (the storage organ) are formed from inflamed bladeless internal
sheaths, but distinct to onion, no storing happens in foliage leaf bases, while chive storage is in foliage
leaf bases; nonetheless, the bulbs are indefinite. It will be exciting to determine the role that FT-like
genes play in other Alliums and whether genetic discrepancy within FT genes, or their goals, clarifies
their phenotypic difference. In short, FT genes control both bulb enlargement and floral initiation.
It too enhances the growing body of indication that FT genes not only solitary control flowering, but
they also play a broader part in monitoring developing selections [242–247].

7. Conclusions

Substantial progress has been made in understanding the mechanisms regulating the initiation of
bulb enlargement in plants. Several genes have been identified to control bulb crops, and alterations of
their expression levels confirms the regulation of bulbing. Critical detections have been the outcome
that clock mechanisms and a CO-FT component connected to that testified in crops such as Arabidopsis
are concerned in the day-length switch of bulb enlargement, while as high gibberellins persuade the
enlargement of these tissues in types where this development has been evolutionarily stifled. Bulbs can
be tempted in axillary buds of stem node models, and it is being established that phytohormones play
an imperative role in axillary meristem instigation and obligation for bulb growth and enlargement.
Florigen FT proteins control the axillary shoot branching, and it will be vital to evaluate if extra
FT family affiliates are similarly concerned in the bulbing modification. It will be interesting to
examine if bulb initiation by high-temperature frameworks demonstrate leading fundamentals with the
photoperiod regimes. More importantly, bulb growth and development in geographical regions with
low temperatures that pacified the cultivation of these bulb crops might be interesting. Furthermore,
the main emphasis of future research should be on the identification of genes and gene products
controlling the bulbing parameters under different photoperiodic environments. Identification of both
host as well as photoperiodic specific protein factors regulating the synergetic association and the
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key cellular and metabolic pathways under different photoperiodic conditions can be hot areas for
future research. Understanding the photoperiodic-induced modulations in the bulbing mechanisms
and the cross-talk mechanism triggered to regulate the bulbing performance can help improve crop
productivity. Taken together, the photoperiod must be explored at all levels to further investigate their
role in nature as an environmental cue for managing and improving horticultural production.
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