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    Ig class switch recombination (CSR) occurs by 
intrachromosomal deletion and results in the 
exchange of antibody constant regions, thereby 
improving the eff ector function of the humoral 
immune response. Recombination between the 
switch (S) regions located 5 �  of each constant 
region gene (except C � ) results in CSR ( 1 ). DNA 
double-stranded breaks (DSBs) in the S regions 
are essential intermediates in the recombination 
process. In recent years, much progress has been 
made toward understanding the molecular mech-
anism of CSR because of the discovery that the 
enzyme activation-induced cytidine deaminase 
(AID) is required for CSR ( 2, 3 ). Compelling 
data show that AID initiates the formation of 
DSBs by deamination of cytosines, generating 
uracils in S regions ( 4 – 7 ). The base excision repair 
enzyme uracil DNA glycosylase (UNG) subse-
quently excises the uracils, resulting in abasic sites, 
and mice and humans defi cient in UNG have 
greatly reduced CSR and S region DSBs ( 6 – 8 ). 
How the abasic sites in S regions are converted 
to DNA breaks during CSR is unknown. In the 
base excision repair pathway, the enzyme that 
acts subsequent to UNG is apurinic/apyrimidinic 

endonuclease (APE), which nicks the DNA 
backbone at abasic sites to create DNA single-
stranded (SS) breaks (SSBs) ( 9 – 11 ). DNA SS nicks 
that are spaced suffi  ciently close on opposite 
DNA strands could form a DSB spontaneously. 
However, during normal base excision repair, the 
SSBs introduced by APE do not progress to DSBs 
but are instead repaired by DNA polymerase  �  
and ligase. During CSR, DNA abasic sites result-
ing from UNG activity might be cleaved by APE, 
but no evidence for involvement of APE in CSR 
has been reported. 

 In mammals, two homologues of the  Esche-
richia coli  exonuclease III have been cloned and 
characterized, representing the APEs. APE1 is 
considered to be the main APE: it is essential 
for early embryonic development in mice and 
for the viability of human cell lines ( 12, 13 ). 
APE1 has strong endonuclease activity and weak 
3 � -5 �  exonuclease and 3 � -phosphodiesterase 
activities ( 14, 15 ). In addition to its function in 
base excision repair, APE1 also regulates tran-
scription factors such as p53, activator protein 1, 
Myb, and NF- � B, although the mechanism is 
not yet clear ( 16 – 19 ). However, the yeast Apn1 
protein, which lacks the ability to stimulate tran-
scription factors, is able to restore viability of 
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 Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requir-

ing generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in 

DSB formation have been elucidated, involving cytosine deamination by activation-induced 

cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is 

not known how abasic sites are converted into single-stranded breaks and, subsequently, 

DSBs. Apurinic/apyrimidinic endonuclease (APE) effi ciently nicks DNA at abasic sites, but it is 

unknown whether APE participates in CSR. We address the roles of the two major mammalian 

APEs, APE1 and APE2, in CSR. APE1 defi ciency causes embryonic lethality in mice; we there-

fore examined CSR and DSBs in mice defi cient in APE2 and haploinsuffi cient for APE1. 

We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR 

and thereby describing a novel in vivo function for APE2. 
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  RESULTS  

 Splenic B cell subsets in  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice 

 APE1 defi ciency causes early embryonic lethality in mice 
( 13 ); therefore, in this study we used APE1 heterozygous 
mice ( ape1 +/ −   ), which have DNA repair defects ( 24, 25 ). 
Adult  ape2 Y/ −    mice have reduced white blood cell counts and 
fewer B and T cells in the bone marrow and thymus, respec-
tively, compared with WT littermates ( 20 ).  Ape2 Y/ −    and DBL 
mice have smaller spleens compared with WT littermate 
controls (unpublished data). However, the proportions of 
cells in splenic mature B cell subsets from  ape1 +/ −   ,  ape2 Y/ −   , 
or DBL mice are not diff erent from WT mice, as shown by 
fl ow cytometry analysis using anti-B220, -CD23, -CD21, and 
-CD24 antibodies ( Fig. 1 ).  Although the fraction of marginal 
zone B cells in  ape2 Y/ −    and DBL mice appears to be increased, 
and the percentage of follicular B cells slightly decreased, the 
diff erences are not statistically signifi cant. 

 Expression of APE1 and APE2 proteins in stimulated B cells 

 The expression of APE1 and APE2 in unstimulated ex vivo 
splenic B cells and in B cells stimulated in vitro for CSR was 
examined by immunoblotting of nuclear and cytosolic ex-
tracts. APE1 protein is expressed constitutively in the nuclei 
of both resting and stimulated B cells ( Fig. 2 A ).  APE1 is 
detected in the cytosol only after stimulation, suggesting 
that induction of synthesis and turnover of APE1 protein 
occurs upon B cell stimulation. A negative regulatory element, 
which binds the APE1 protein itself, has been identifi ed in 
the APE1 promoter ( 26 ), consistent with the lack of an in-
crease in APE1 in stimulated B cells. In contrast, APE2 is 
induced in both the nucleus and the cytosol of B cells stimu-
lated to switch ( Fig. 2 B ). Both APE1 and APE2 are abun-
dant 48 h after stimulation, when AID protein expression and 
DNA DSBs in S �  are detectable ( 7 ). Cytosolic APE2 ex-
pression declines to basal levels after 72 h, consistent with 

human cell lines in which APE1 expression was downmodu-
lated using small interfering RNA ( 12 ). These results show 
that the trans cription regulatory function of APE1 is not es-
sential for cellular viability. 

 Much less is known about APE2, which is encoded on 
the X chromosome. APE2-defi cient mice show a slight growth 
defect and have a twofold reduction of white blood cells 
in the periphery, mainly aff ecting T and B cells ( 20 ). Further-
more, splenocytes and thymocytes from these mice exhibit 
a moderate accumulation in the G 2 /M phase of the cell cycle 
upon mitogen stimulation ( 20 ). Enzyme assays using abasic 
site – containing oligonucleotide substrates showed that re-
combinant purifi ed human APE2 has a weaker APE activ-
ity than APE1 ( 21 ). Its 3 � -5 �  exonuclease activity, however, 
is strong compared with APE1 ( 14 ). It is not clear to what 
extent APE2 carries out these activities in vivo, but they are 
not required for embryonic development or cell viability 
because they are essentially normal in APE2-defi cient mice. 
APE2 might be important for the repair of oxidative damage 
in mitochondrial DNA, as it has a putative mitochondrial 
targeting signal and was detected in mitochondria by elec-
tron microscopic immunocytochemistry and Western blot-
ting ( 22, 23 ). 

 In this study, we demonstrate that both APE1 and APE2 
are important for CSR, as we fi nd reduced switching to 
all isotypes in splenic B cells from  ape1 +/ −   ,  ape2 Y/ −   , and 
 ape1 +/ −  /ape2 Y/ −    APE double-defi cient (DBL) mice. Because 
APE2 is located on the X chromosome, we used APE2-
deficient ( ape2 Y/ −   ) male mice in all experiments. Linker 
 ligation-mediated PCR (LM-PCR) analysis shows that DSBs 
in S �  are greatly reduced in DBL B cells and, unlike DSBs 
in WT B cells, do not occur preferentially at the G:C bp or 
AID hotspots. Our data show that APE2 contributes con-
siderably to the CSR mechanism, describing a new role for 
this protein. 

 Figure 1.   Normal splenic B cell subsets in WT,  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice. FACS analysis of ex vivo splenocytes gated on B220 +  lymphocytes 

and stained for CD21, CD23, and CD24. (A) Mean percentages (+SEM) of B220 +  splenocytes are shown. (B) Mean percentages (+SEM) of marginal zone 

B cells (CD21 hi /CD23 lo ), follicular B cells (CD21 lo /CD23 hi ), newly formed B cells (CD21 lo /CD23 lo ), and immature B cells (B220 lo /CD24 hi ) from three to fi ve mice 

are shown. B cell subsets are shown as a percentage of B220 +  splenocytes, except for immature B cells, which are a percentage of total splenocytes.   
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In each experiment, WT littermates from  ape1 +/ −    and  ape2 +/ −    
crossbreedings were used as controls. An example of a FACS 
analysis showing switching to IgG1 and IgG2a in the diff erent 
genotypes is shown in  Fig. 3 A .  Overall, CSR is reduced in 
 ape1 +/ −    B cells to a mean of 77  ±  4.9% (SEM) of WT ( Fig. 3 B ). 
 Ape2 Y/ −    B cells show a reduction to 65  ±  3.9% of WT, com-
parable to the reduction observed in DBL mice (64  ±  2.7%). 
The reduction in CSR is highly signifi cant for all three geno-
types (P  <  0.001).  Fig. 3 C  shows that switching to each of the 
isotypes tested is reduced in the APE-defi cient B cells. The 
reduction in switching reaches signifi cance for the IgG2b and 
IgG3 isotypes in  ape1 +/ −    B cells and for the IgG1, IgG2a, and 
IgG2b isotypes in  ape2 Y/ −    B cells, whereas all isotypes are sig-
nifi cantly reduced in DBL B cells. These results indicate that 
both APE1 and APE2 are involved in CSR. 

 To ascertain whether the reduction in CSR was caused by 
perturbed proliferation or cell-cycle progression, CFSE was 
used to track cell division and to determine CSR after equal 
numbers of cell divisions.  Fig. 4  shows that splenic B cells from 
 ape1 +/ −   ,  ape2 Y/ −   , and DBL mice divided equally well compared 
with WT cells in response to LPS plus IL-4 treatment, there-
fore excluding a proliferation defect as the cause of the decreased 
CSR.  In addition,  Fig. 3 A  presents an example of results 
obtained when we analyzed isotype expression in CFSE-
stained cells, further illustrating that CSR is not reduced be-
cause of an eff ect on cell division by APE defi ciency. Staining 
of DNA content by propidium iodide revealed a moderate 
increase in G 2 /M phase in stimulated  ape2 Y/ −    and DBL splenic 
B cells (not depicted), consistent with a previous report on 
mitogen-stimulated  ape2 Y/ −    thymocytes and splenocytes ( 20 ), 
but this has no apparent eff ect on proliferation as assessed by 
CFSE staining ( Fig. 4 ) and [ 3 H]thymidine incorporation (not 
depicted). Perhaps APE2-defi cient B cells compensate for the 
G2/M phase delay by a shortened G1 and S phase, resulting 
in unaltered overall proliferation. 

 Reduced CSR in B cells treated with the APE inhibitor 

7-nitro-1H-indole-2-carboxylic acid (CRT0044876) 

 To further confi rm that APEs are important for CSR, splenic 
B cell cultures were treated with the small molecule inhibitor 
CRT0044876, which was previously shown to selectively 
inhibit APE1 ( 27 ). Whether this compound also inhibits 
APE2 has not been demonstrated, but active-site compari-
sons of APE1 and APE2 indicate a high degree of similarity 
in their abasic-site binding pockets, which are the targets of 
this inhibitor ( 15 ). CFSE-stained splenic B cells from WT mice 
were cultured for 3 d with LPS plus IL-4 and various doses 
of CRT0044876. Overall, IgG1 class switching in cells treated 
with 100 and 200  � M CRT0044876 was 77 and 35%, re-
spectively, of that in untreated cells ( Fig. 5 A ).  Although some 
apoptosis and a decrease in the proliferation of CRT0044876-
treated B cells was observed (Fig. S1, available at http://www
.jem.org/cgi/content/full/jem.20071289/DC1), the eff ect of 
APE inhibition on CSR was not caused by toxicity or dif-
ferences in cell proliferation, as IgG1 switching was reduced 
when comparing treated cells that had divided the same number 

our observation that CSR is mostly completed after 72 h of in 
vitro stimulation. 

  Fig. 2 C  demonstrates that APE1 protein levels are reduced 
in stimulated splenic B cells from  ape1 +/ −    and DBL mice but not 
in  ape2 Y/ −    B cells. We found no diff erence in APE2 protein 
levels between WT and  ape1 +/ −    B cells. Moreover, expression 
of AID and UNG is not aff ected by APE defi ciency. 

 Class switching is reduced in  ape1 +/ −   ,  ape2 Y/ −   , 

and DBL B cells 

 To determine the function of APE1 and APE2 in CSR, CFSE-
stained splenic B cells from  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice 
were cultured for 3 d with LPS and specifi c combinations of 
cytokines that induce CSR to diff erent isotypes, and analyzed 
by fl ow cytometry for surface Ig expression and cell division. 

 Figure 2.   APE1 is constitutively expressed and APE2 expression is 

induced in the nuclei of switching B cells. 10  � g of nuclear and cyto-

plasmic protein extracts from unstimulated ex vivo splenic B cells (lysed 

immediately after B cell enrichment; t = 0) and from splenic B cells stimu-

lated with LPS plus IL-4 or anti –  � -dextran for 24, 48, or 72 h were elec-

trophoresed in each lane and immunoblotted with rabbit – anti-APE1 

(A) and rabbit – anti-APE2 (B). Whole-cell extracts of LPS plus anti –  � -dextran –

 stimulated splenic B cells from WT,  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice (48 h) 

were immunoblotted with the indicated antibodies (C). TATA box – binding 

protein 1 (TBP1) and GAPDH were used as steady-state/loading controls 

for nuclear and cytoplasmic/whole-cell extracts, respectively.   
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 DSBs in S �  are reduced in  ape1 +/ −   ,  ape2 Y/ −   , and DBL B cells 

 To determine whether the DSBs in S regions observed during 
CSR are dependent on APE1 and APE2, splenic B cells from 
WT,  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice were stimulated with 
LPS plus IL-4 or LPS plus anti –  � -dextran for 2 d, genomic 
DNA was isolated, and DSBs in the S �  region were detected 
by LM-PCR using primers specifi c for the 5 �  or 3 �  ends of S � . 
Using this assay, we have previously demonstrated that blunt 
DSBs in S �  are AID- and UNG-dependent in switching 
B cells ( 7 ). Fewer blunt S �  breaks are detected in switching 
B cells from  ape1 +/ −    and  ape2 Y/ −    mice than from WT mice, 
although the reduction varies between experiments ( Fig. 6 ).  
However, we consistently detect very few breaks in B cells 
from DBL mice. Moreover, treatment of DNA with T4 poly-
merase to fi ll in or excise SS overhangs from staggered DSBs 
before linker ligation increased the number of detected breaks, 
but they were still reduced in B cells from  ape1 +/ −   ,  ape2 Y/ −   , 
and DBL mice relative to WT B cells (Fig. S3, available at 
http://www.jem.org/cgi/content/full/jem.20071289/DC1). 

of times as untreated cells ( Fig. 5 B ). However, we could 
not test the eff ect of higher doses of the inhibitor on CSR 
because of increased apoptosis. Also, we were unable to fur-
ther reduce CSR by treating APE-defi cient cells with this 
inhibitor. We verifi ed that treatment with the APE inhibi-
tor results in the accumulation of abasic sites by measur-
ing the binding of a biotinylated aldehyde-reactive probe 
(ARP) to DNA from switching cells in an ELISA-based 
assay ( Fig. 5 C ). 

 S – S junctions are similar in WT and APE-defi cient B cells 

 To determine if APE1 or APE2 defi ciency altered the micro-
homologies at the S – S junctions, we cloned S �  – S � 3 junctions 
from B cells induced to switch to IgG3 from DBL and WT 
cells. No signifi cant diff erences were detected in the lengths of 
junctional microhomology (Fig. S2, available at http://www
.jem.org/cgi/content/full/jem.20071289/DC1), suggesting 
that APE1 and APE2 are not involved in the processing of 
DNA ends during the formation of S – S junctions. 

 Figure 3.   CSR is reduced in splenic B cells from mice with reduced levels of APEs. CFSE-stained splenic B cells were cultured for 3 d with LPS 

plus IL-4 (IgG1 switching); LPS plus IFN- �  (IgG2a); LPS plus dextran sulfate (IgG2b); LPS plus anti –  � -dextran (IgG3); LPS plus IL-4 plus IL-5 plus anti –  � -

dextran plus TGF- �  (IgA); and BlyS. Ig class switching was assessed by fl ow cytometry using Ig isotype – specifi c antibodies. At least four independent ex-

periments were performed for each mouse and all isotypes, except for IgG2a ( n  = 3). For each experiment, splenic B cells from a WT littermate were used 

as a control. (A) Examples of FACS analyses for IgG1 and IgG2a switching in CFSE-stained cells. The percentage of switched cells is indicated in each plot. 

(B) The mean percentages (+SEM) of overall switching (all isotypes pooled) relative to WT are shown. WT switching was set at 100% (horizontal line). ***, 

P  <  0.001, as determined by the one-sample  t  test. (C) The mean percentages (+SEM) of switching relative to WT for the different isotypes are shown. 

WT switching was set at 100% (horizontal line). *, P  <  0.05; and **, P  <  0.01, as determined by the one-sample  t  test.   



JEM VOL. 204, November 26, 2007 

ARTICLE

3021

cgi/content/full/jem.20071289/DC1). Collectively these 
data suggest that APE1 and APE2 are functioning during 
CSR to incise abasic sites created by AID – UNG activity, 
and in the DBL cells, some of the few DSBs created are 
probably AID – independent. 

 Mutations in unrecombined S �  in APE-defi cient cells 

 In switching B cells from APE-defi cient mice, one would 
expect the number of abasic sites in S �  to be increased com-
pared with WT B cells, which might result in increased mu-
tations at the G:C bp after replication. However, the frequency 
of mutations in the 5 �  portion of unrecombined (germline) 
S �  segments is not altered in DBL B cells ( Table II ).  Interest-
ingly, the proportion of mutations at A:T is decreased in 
DBL cells (P = 0.012). Such a G:C bias would be consistent 
with the hypothesis that mutations at A:T are introduced during 
repair DNA synthesis initiated at SSBs, which are reduced in 
the DBL B cells. 

 As abasic sites are lethal, they must be repaired, and yet 
the DBL B cells show unperturbed viability and proliferation. 
The remaining APE1 in the DBL cells could be responsible 
for correct repair of some of these abasic sites. We conclude 
that the DNA breaks in S �  occurring during CSR can origi-
nate from both APE1 and APE2 activity. However, the fi nd-
ing that the level of CSR in DBL cells is not further reduced 
compared with  ape2 Y/ −    cells suggests that APE2 activity might 
be more important than APE1 for DSB formation in S � . 

These results suggest that APE1 and APE2 act in CSR by 
cutting at abasic sites rather than functioning as exonucleases 
converting staggered DSBs into blunt breaks. 

 Sites of DSBs in S �  in  ape1 +/ −   ,  ape2 Y/ −   , and DBL B cells 

 To provide further evidence that APE1 and APE2 function 
as APEs during CSR, the nt ’ s at which the breaks occur 
were determined by cloning and sequencing LM-PCR pro-
ducts. Deamination of dC residues by AID followed by UNG 
activity and APE incision would create breaks at the cytosine 
(or its complementary G), predominantly in the AID hotspot 
motif WR C / G YW. In agreement with our previous report 
( 7 ), S �  breaks in WT B cells occur preferentially at the G:C 
bp (82.6%) and at the G:C bp within AID hotspots (48%), a 
highly signifi cant diff erence relative to the S �  sequence itself 
(consisting of 56.8% G:C bp and 23.2% AID hotspots;  Table I ).  
In contrast, we found that only 69.4% of S �  breaks occur at 
the G:C bp and 30.6% at AID hotspots in B cells from DBL 
mice, which is not signifi cantly diff erent than the frequency of 
these elements in the S �  sequence. The S �  breaks in  ape1 +/ −    
B cells showed a signifi cant preference for the G:C bp but 
not for AID hotspots. Breaks in  ape2 Y/ −    B cells, however, 
do not display a G:C bp preference and occur at AID hot-
spots only with borderline signifi cance (P = 0.047;  Table I ). 
Likewise, the staggered S �  breaks in DBL B cells show a 
reduced preference for the G:C bp and AID hotspots rela-
tive to WT cells (Table S1, available at http://www.jem.org/

  Table I.    S �  DSBs in APE-defi cient B cells show reduced targeting to the G:C bp and AID hotspots 

nt at break WT  ape1 +/ −    ape2 Y/ −   DBL Sequence  a  

G 73.3%  b   (55) 79% (45) 64.3% (18) 67.4% (33) 40.7%

C 9.3% (7) 1.8% (1) 10.7% (3) 2% (1) 16.1%

A 8% (6) 8.8% (5) 21.4% (6) 14.3% (7) 21.4%

T 9.3% (7) 10.5% (6) 3.6% (1) 16.3% (8) 21.8%

Total 75 breaks 57 breaks 28 breaks 49 breaks 2,000 nt ’ s

G + C 82.6% 80.7% 75% 69.4% 56.8%

   p-value  c  0.001 0.007 NS NS

Hotspots 48% 40.4% 46.4% 30.6% 23.2%

   p-value  c  0.002 NS 0.047 NS

  a  Frequency of nt ’ s in the analyzed genomic sequence.

  b  Percentage of the DSBs at each nt reading the top-strand sequence.

  c  Fisher ’ s exact  t  test showing the signifi cance of difference from the S �  sequence.

  Table II.    Mutation frequency and spectrum in germline S �  segments from splenic B cells cultured with LPS plus anti –  � -dextran 

and LPS plus IL-4 

WT DBL p-value  a  

Total mutations 24.6 (51)  b  19 (124) NS

Mutations at A:T 70.6% (36)  c  49.2% (61) 0.012

Mutations at G:C 29.4% (15) 50.8% (63)

nt ’ s analyzed 20,718 65,344

  a  Fisher ’ s exact  t  test showing the signifi cance of difference between WT and DBL mutations.

  b  Mutation frequency  × 10  − 4  (number).

  c  Percentage of total mutations (number).
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in DSB end processing during CSR, but rather act as endo-
nucleases upstream of the generation of DSBs in S regions. 

 The fi nding that APE2 plays an important role in CSR is 
surprising, as it has been reported that APE2 has low endo-
nuclease activity despite its highly conserved nuclease domain 
( 15, 21 ). However, it must be noted that in these studies 
DNA incision activity was determined using partially purifi ed 
human APE2 produced in  E. coli  ( 15, 21 ). In a more recent 
study, it was shown that purifi ed human APE2 produced in 
 S. cerevisiae  possessed considerable endonuclease activity at 
physiological salt conditions ( 14 ). It is conceivable that cellular 
cofactors increase the endonuclease activity of APE2. 

  DISCUSSION  

 In this study, we provide the fi rst evidence that APEs act in 
CSR. Moreover, we report the unexpected fi nding that APE2 
plays a signifi cant part in CSR. It has been shown previously 
that both AID and UNG are essential components of the CSR 
machinery, initiating DSBs in S regions ( 3, 6 – 8, 28 ). Our fi nd-
ings that (a) both blunt and staggered S �  breaks are reduced in 
B cells from  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice; (b) unlike DSBs in 
WT cells, the remaining DSBs in the DBL mice do not specifi -
cally occur at the G:C bp in AID-targeting hotspots; and (c) the 
lack of signifi cant   alterations in S – S junctional microhomology 
indicate that APE1 and APE2 do not function as exonucleases 

 Figure 4.   Splenic B cells from  ape1 +/ −   ,  ape2 Y/ −   , and DBL mice proliferate normally upon CSR induction. Splenic B cells were stained with CFSE 

and cultured for 3 d with LPS plus IL-4 and analyzed by FACS. (A) Overlay CFSE histograms of ex vivo B cells immediately after CFSE staining and after 3 d 

of stimulation are shown. CFSE fl uorescence is represented by red profi les for WT splenic B cells, and by blue profi les for  ape1 +/ −   ,  ape2 Y/ −   , and DBL splenic 

B cells. (B) Computational integration of the level of CFSE fl uorescence in B cells stimulated for IgG1 switching. The numbers of cell divisions are given 

above the CFSE peaks.   
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study ( � 35% reduction in DBL B cells), whereas the number 
of DSBs are reduced to a much greater extent in B cells from 
DBL mice. Conversely, it was recently found that in DNA 
polymerase  �  – defi cient B cells, a two- to threefold increase 
in DSBs results in only a modest CSR increase ( 35 ). 

 Elimination of all APE1 protein or function leads to rapid 
cell death ( 36 ), hampering assessment of the contribution of the 
remaining APE1 to DSB formation in CSR ( 12 ). Thus, com-
plete inhibition of APE function was probably not achieved by 
the CRT0044876 dosage used in this study, but a further dose 
increase resulted in decreased proliferation and considerable 
cell death, preventing analysis of CSR. 

 Second, persistent abasic sites, as would be expected in 
these B cells, might have an intrinsic fragility in vivo, which 
when closely spaced might result in DSB formation. It has 
been shown that abasic DNA is highly unstable in vitro and 
undergoes spontaneous strand cleavage 3 �  to the abasic site, 
especially under alkaline conditions ( 37, 38 ). 

 Third, abasic sites might be cleaved by topoisomerase II �  
during DNA replication ( 39 ). However, we have found that 
AID-dependent S region DSBs are made and resolved in the 
G 1  phase of the cell cycle, arguing against a role for replica-
tion in the generation of DSBs ( 40 ). 

 Fourth, transcription is arrested when it encounters an 
abasic site, which might recruit transcription-coupled nt 
excision repair (NER) proteins capable of cleaving the DNA 
backbone ( 41 ). However, we have found that the gene for 
xeroderma pigmentosum A, which encodes an essential com-
ponent of the NER pathway, is dispensable for CSR ( 40 ). 
It is possible that this pathway might be used when APEs 
are reduced or absent, but whether this is physiologically 
relevant in WT cells is questionable ( 42 ). Furthermore, SSBs 
introduced by NER would not specifically occur at the 
G:C bp ( 43 ), whereas the DSBs and staggered DSBs detected 
in S �  regions in WT B cells occur specifically at the G:C 
bp ( 7, 44 ). 

 APE1 is a ubiquitous protein and is crucial during early 
embryogenesis and development, whereas APE2 is not re-
quired. The phenotype of APE2-defi cient mice appears to be 
restricted to the lymphoid compartment, suggesting a special 
role for this protein in lymphoid cells ( 20 ). In agreement, we 
have shown in this study that APE2 is induced in B cells upon 
CSR stimulation, whereas APE1 appears to be constitutively 
expressed in B cell nuclei. These data suggest that APE2 might 
fulfi ll a specialized function related to B cell activation, result-
ing in the generation of DNA DSBs needed for recombina-
tion, whereas APE1 is required for the maintenance of global 
genome stability, which is APE2 independent. 

 By the use of in vitro cleavage assays with purifi ed proteins, 
it has been suggested that Mre11 – Rad50 cleaves DNA at aba-
sic sites after AID and UNG action ( 29 ). However, whether 
the Mre11 – Rad50 complex is actually involved in creating 
DNA breaks in S regions in vivo is unknown. The MRN 
complex, consisting of Mre11, Rad50, and Nbs1, is essential 
for the repair of DSBs and, therefore, is likely to be important 
for recombination between S regions during CSR ( 30 – 32 ). 
Cleavage of apurinic/apyrimidinic sites by Mre11 – Rad50 
would result in 3 � -phospho- � , � -unsaturated aldehydes, which 
must be removed before DNA polymerases can extend from 
the 3 �  end. Both APE1 and APE2 are capable of removing 
such 3 �  groups either through their lyase or exonuclease activ-
ity ( 14, 33 ); thus, in principle it is possible that Mre11 – Rad50, 
APE1, and APE2 act in the same pathway during CSR. 

 Our observation that CSR is not ablated in B cells from 
DBL mice or in CRT0044876-treated B cells can be ex-
plained in several ways. First, the remaining APE1 allele in 
DBL mice might be responsible for suffi  cient APE1 activity, 
resulting in reduced but suffi  cient DSBs for recombination. It 
has been recently shown that even a single DSB in S �  and a 
downstream S region allows CSR ( 34 ). The notion that S re-
gion breaks are not limiting during CSR provides an expla-
nation for the relatively mild CSR defect observed in our 

 Figure 5.   The APE small-molecule inhibitor CRT0044876 inhibits CSR in a dose-dependent manner. CFSE-stained WT splenic B cells were cul-

tured for 3 d with LPS plus IL4 (IgG1 switching). CRT0044876 or DMSO was added at the start of the culture and again after 24 h. IgG1 switching per cell 

division was determined by fl ow cytometry. (A) Mean (+SEM) overall IgG1 switching in B cells treated with CRT0044876 is shown as a percentage of 

DMSO-treated B cells. **, P  <  0.01, as determined by the one-sample  t  test. (B) Mean percentage (±SEM) of IgG1 +  cells relative to DMSO-treated B cells, 

set at 100% (horizontal line), is shown for each cell division. The data are the mean of six independent experiments. (C) Abasic sites were measured in 

living cells using the ARP assay (see Materials and methods). Cells treated with 5 mM methyl methanesulfonate (MMS) before ARP incubation were used 

as a positive control. The data are representative of two independent experiments.   
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but did result in a decreased proportion of mutations at A:T bp’s. 
It was possible that accumulation of abasic sites in the S �  region 
followed by replication would result in an increased muta-
tion frequency, especially at G:C bp ’ s. However, the decrease in 
SSBs at abasic sites in APE-defi cient B cells might also reduce 
S �  mutations, as there are fewer entry sites for exonuclease1 
and subsequent repair by error-prone polymerase. 

 In conclusion, our studies are consistent with a model for 
CSR in which abasic sites generated by AID and UNG activ-
ity are converted to SSBs in an APE1- and APE2- dependent 
fashion. Further studies are required to determine the relative 
contribution of APE1 and APE2, and to establish if APE2 has 
special functions that favor its participation in CSR. 

 MATERIALS AND METHODS 
 Mice.   All mouse strains were backcrossed to C75BL/6 for at least four gen-

erations. a pe1 +/ −    mice ( 25 ) were obtained from E. Friedberg (University of 

Texas Southwestern Medical Center, Dallas, TX).  ape2 Y/ −    mice were previ-

ously described ( 20 ). These mice were crossed to generate DBL mice. WT 

littermates of the DBL mice were used as controls for all experiments re-

ported in this study. AID-defi cient mice were obtained from T. Honjo 

(Kyoto University, Kyoto, Japan). Mice were housed in the Institutional 

Animal Care and Use Committee – approved specifi c pathogen-free facility 

at the University of Massachusetts Medical School. The mice were bred 

and used according to the guidelines from the University of Massachusetts 

Animal Care and Use Committee. 

 Splenic B cell isolation and culture.   Single-cell suspensions were pre-

pared from the spleens of 2 – 5-mo-old mice by mechanical dispersion, and 

RBCs were lysed in Gey ’ s solution. B cells were enriched by guinea pig 

complement lysis of T cells using a cocktail of anti – T cell antibodies, as pre-

viously described ( 49 ). For CSR analysis, cells stained with CFSE (Invitro-

gen) were cultured at 10 5  cells per milliliter in 24-well plates and activated 

for switching to the diff erent Ig isotypes. Cultures contained 50  � g/ml LPS 

(Sigma-Aldrich) and 100 ng/ml human BLyS (Human Genome Sciences). 

For IgG1 switching, 800 U/ml IL-4 was added; for IgG2a switching, 10 U/ml 

IFN- �  was added; for IgG2b switching, 30  μ g/ml dextran sulfate (GE 

Healthcare) was added; for IgG3 switching, 0.3 ng/ml anti –  � -dextran (a gift 

from C. Snapper, Uniformed Services University of the Health Sciences, 

Bethesda, MD) was added; and for IgA switching, 2 ng/ml TGF- �  (R & D 

Systems), 800 U/ml IL-4, 1.5 ng/ml IL-5 (BD Biosciences), and 0.3 ng/ml 

anti –  � -dextran were added. For LM-PCR analysis, cells were cultured at 

2  ×  10 5  cell per milliliter in sixwell plates and activated for 2 d, as previously 

described ( 7 ). A 1-M stock solution of the selective APE1 inhibitor 

CRT0044876 (Maybridge Trevillett) was made in DMSO, and working 

stocks of 100 and 200 mM (1,000 × ) were prepared freshly in DMSO for 

each experiment. CRT0044876 was added at the start of the culture and 

again after 24 h of culture. An equal amount of DMSO was added to un-

treated control cultures. 

 Flow cytometry.   For FACS analysis, cells were washed twice with PBS, 1% 

FCS, and 0.2% NaN 3 , and were incubated for 30 min on ice with PE – goat 

F(ab ’ ) 2  anti – mouse IgG1, IgG2b, and IgG3 and PE – goat anti – mouse IgA 

(SouthernBiotech). For CFSE labeling, cells were washed in HBSS (Invitro-

gen) and resuspended at 40  ×  10 6  cells per milliliter. An equal volume of 

2  � M CFSE was added, and cells were incubated at 37 ° C for 15 min, quenched 

in 100% FCS, and washed twice with medium containing 10% FCS. For 

splenic B cell subset analysis, cells were stained with anti-B220 allophycocya-

nin (RA3-6B2; Invitrogen), anti-CD23 PE (2G8; SouthernBiotech), anti-

CD21 FITC (7G6; BD Biosciences), and biotinylated anti-CD24 (Invitrogen), 

followed by streptavidin-PerCP (BD Biosciences). CFSE fl uorescence and 

antibody staining were acquired on a fl ow cytometer (LSR; BD Biosciences) 

and analyzed using the FlowJo software package (Tree Star Inc.). 

 Fifth, the recently described endonuclease activity of MutL �  
(Mlh1-Pms2 heterodimer) might be responsible for some SSBs, 
although the possibility that this activity leads to DSBs is un-
likely, as the endonuclease activity is targeted only to previously 
nicked DNA strands, and the sites of SSBs introduced by MutL �  
are not likely to be restricted to the G:C bp ( 45 ). Moreover, we 
found that B cells from  pms2  − / −    mice did not show a greater 
reduction in CSR when treated with CRT0044876 than B cells 
from WT mice (unpublished data). 

 Finally, a novel APE termed PALF/APLF/XIP1 (PNK- 
and APTX-like FHA protein), which was recently identifi ed in 
human cells ( 46 – 48 ), might contribute to the remaining abasic-
site cleavage activity in CRT0044876-treated or DBL B cells. 
It is unknown, however, if this protein is expressed in B cells. 

 APE defi ciency did not aff ect the frequency of mutations 
in the 5 �  region of the unrecombined (germline) S �  segment 

 Figure 6.   B cells from mice with reduced levels of APEs have 

fewer DSBs in S �  upon CSR induction. LM-PCR was performed on 

threefold dilutions of DNA isolated from splenic B cells stimulated to 

undergo CSR for 2 d. S � -specifi c primers were used in conjunction with a 

linker-specifi c primer. PCR products were blotted and hybridized to an 

internal S � -specifi c probe. Input of genomic DNA was normalized by 

performing PCR for  gapdh  on the same threefold DNA dilutions. (top) A 

representative experiment for LPS plus anti –  � -dextran – stimulated B cells. 

LM-PCR was performed for the 5 �  portion of S � ; the 5 �  S �  primer allows 

detection of blunt DSBs downstream of this primer. (bottom) A represen-

tative experiment for LPS plus IL-4 – stimulated B cells. In this experiment, 

LM-PCR was performed for the 3 �  portion of S � , detecting blunt breaks 

upstream of the 3 �  S �  primer. The sizes of the fragments detected on the 

blots range from 3 to 0.2 kb and, thus, occur over the entire S �  segment.   
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5 � , AGGGACCCAGGCTAAGAAGGCAAT for 5 �  S �  LM-PCR; or  �  

probe 3 � , CCTGTCCTGCTTGGCTTCCCTCTG for 3 �  S �  LM-PCR) 

end labeled with  � -[ 32 P]ATP at 37 ° C overnight and washed at 55 ° C with 

2 ×  SSC/0.1% SDS. LM-PCR products were cloned into the vector pCR4-

TOPO (Invitrogen) and sequenced by Macrogen using T3 and T7 primers. 

Cloned breaks in S �  were aligned with germline S �  sequenced from C57BL/6 

chromosome 12 (available from GenBank/EMBL/DDBJ under accesion no. 

 AC073553 ), with numbering starting at nt 136,645. This is the 5 �  S �  primer 

binding site and is  � 800 nt ’ s upstream of the beginning of the tandem repeats. 

 PCR amplifi cation of germline S �  segments.   S �  PCR was performed as 

previously described ( 51 ). Genomic DNA was isolated from B cells stimulated 

for 4 d with either LPS plus IL-4 or LPS plus anti –  � -dextran. The primers 

used for germline S �  PCR were 5 � 3 (5 � -AATGGATACCTCAGTGGTTTT-

TAATGGTGGGTTA-3 � ) and 3 � 2 (5 � -AGAGGCCTAGATCCTGGCTTCT-

CAAGTAG-3 � ). The 3-kb PCR products were excised from agarose gels and 

cloned into pCR4-TOPO and sequenced by Macrogen using T7 primers. 

 Online supplemental material.   Fig. S1 shows the overlay CFSE fl uor-

escence histograms of ex vivo B cells immediately after CFSE staining and 

after 3 d of culturing with LPS, BLyS, and IL-4 and diff erent doses of 

CRT0044876. Fig. S2 shows the S �  – S � 3 junction microhomology in 

splenic B cells from WT and DBL mice cultured for 4 d with LPS, BLyS, 

and anti –  � -dextran. Fig. S3 shows a Southern blot to compare the blunt 

and staggered S �  DSBs detected by LM-PCR after T4 DNA – polymerase 

polishing. Table S1 shows the sites of staggered DSBs in WT and APE-

 defi cient cells. Online supplemental material is available at http://www.jem

.org/cgi/content/full/jem.20071289/DC1. 
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ligation, 50  μ l of 1 ×  ligase buff er was added to the plugs, which were then 

heated to 62 ° C to melt the agarose. 20  μ l DNA ( � 10,000 cell equivalents) 

was added to 2  μ l T4 DNA ligase (2 Weiss units; MBI Fermentas), 10  μ l of 

DS annealed linker in 1 ×  ligase buff er, 3  μ l of 10 ×  ligase buff er, and 30  μ l 

dH 2 O and incubated overnight at 18 ° C. Linker was prepared by anneal-

ing 5 nmol each of LMPCR.1 (5 � -GCGGTGACCCGGGAGATCT-

GAATTC-3 � ) and LMPCR.2 (5 � -GAATTCAGATC-3 � ) in 300  μ l of 1 ×  

ligase buff er, which results in a DS oligo with a 14-nt SS overhang that can 

only ligate unidirectionally. Ligated DNA samples were heated at 70 ° C for 

10 min, diluted 5 ×  in dH 2 O, and assayed for  gapdh  DNA by PCR to adjust 

DNA input before LM-PCR. The primers 5 �  S �  (5 � -GCAGAAAATTTA-

GATAAAATGGATACCTCAGTGG-3 � ; Integrated DNA Technologies) 

or 3 �  S �  (5 � -GCTCATCCCGAACCATCTCAACCAGG-3 � ) were used 

in conjunction with the linker primer (LMPCR.1) to amplify DNA breaks. 

Threefold dilutions of input DNA (0.5, 1.5, and 4.5  � l) were amplifi ed by 

HotStar Taq (QIAGEN) using a touchdown PCR program. PCR products 
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