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Abstract: Promoting the separation of photogenerated charges and enhanced optical absorption
capacity is the main means to modify photocatalytic capacities to advance semiconductor photocatalyst
applications. For the first time, a novel ternary photocatalyst for dual Z-scheme system
AgBr/LaNiO3/g-C3N4 (ALG) was prepared via a modest ultrasound-assisted hydrothermal method.
The results indicated that LaNiO3 nanoballs and AgBr nanoparticles were successfully grown
on the surface of g-C3N4 nanosheets. A dual Z-scheme photocatalytic reaction system could be
constructed based on the energy band matching within AgBr, LaNiO3 and g-C3N4. Metallic Ag
during the photocatalytic reaction process acted as the active electrons transfer center to enhance
the photocatalytic charge pairs separation. The chemical composition of ALG was optimized and
composites with 3% AgBr, 30% LaNiO3 and 100% g-C3N4 which was noted as 3-ALG displayed the
best photocatalytic performance. A total of 92% of norfloxacin (NOR) was photodegraded within
two hours over ALG and the photodegradation rate remained >90% after six cycles. The main active
species during the degradation course were photogenerated holes, superoxide radical anion and
hydroxyl radical. A possible mechanism was proposed based on the synergetic effects within AgBr,
LaNiO3 and g-C3N4. This work would offer a credible theoretical basis for the application of dual
Z-scheme photocatalysts in environment restoration.
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1. Introduction

In previous decades, antibiotics were widely used for the treatment and prevention of bacterial
infections in human and animal healthcare. A large number of antibiotic wastewater is discharged
into the environment without appreciating treatment [1]. Especially the fluoroquinolone antibiotic,
norfloxacin (NOR), which was extensively used as a therapeutic and prophylactic antimicrobial agent
in clinical medical treatment, aquaculture, and animal husbandry [2]. NOR has been detected in
rivers, lakes and ground water [3]. The continuous accumulation of NOR can damage the security and
stability of the natural environment.

Numerous researches had found that semiconductor photocatalytic technology can be efficacious
means of solving the growing environmental pollution and energy crisis around the world [4–7].
However, common photocatalyst are limited in application for narrow light absorption range,
poor stabilization, and lower photodegradation efficiency [8,9]. To improve the photocatalytic performance,
abundant research was carried out concentrating on the formation of Z-scheme heterojunction [10,11],
especially dual Z-scheme system photocatalyst [12]. In the course of a photocatalytic reaction over

Molecules 2020, 25, 3706; doi:10.3390/molecules25163706 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/25/16/3706?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25163706
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 3706 2 of 17

a dual Z-scheme photocatalyst, benefited from the nice matching of energy bands, photogenerated
charge pairs are effectively separated, transferred. Finally the reaction center could be formed duo to
the accumulation of conduction band (CB) and valence band (VB) to remove the organic pollution
in water.

Nowadays, g-C3N4 has a great application prospect for removal of organic contamination
from water [13]. It has the advantages of controllable, inexpensive synthesis, and stable chemical
properties [14,15]. But wide band gap and high charge recombination were the shortcoming of g-C3N4,
It still needs essential improvement. For the improvement of this situation and to make it more suitable
for practical application, it needs to be modified and compounded with other activated materials,
especially establishing the dual Z-scheme system photocatalyst according to the energy bands matching
of related materials.

Perovskite structure semiconductor possesses excellent performance in fuel cells, catalytic combustion,
conductive materials, and photocatalysis [16,17]. Among them, a p-type semiconductor, LaNiO3,
has promising applications in the field of photodegradation of organic contaminants and in hydrogen
production benefitting from suitable band gap and electronic magnetic property. Many photocatalytic
composites were successfully prepared, such as LaNiO3/ZnIn2S4 [18], LaNiO3/SnS2 [19], LaNiO3/CdS [20]
and LaNiO3/TiO2 [21], which have made some progress in hydrogen production, dye degradation and
tetracycline hydrochloride removal. Besides, as a semiconductor material with good photosensitivity,
silver bromide (AgBr) is easy to synthesize, possesses stable physical and chemical properties,
a narrow band gap, and outstanding renewability [22,23]. What’s more, numerous heterojunctions
were synthesized based on AgBr according to previous researches such as AgPO3/AgBr/g-C3N4 [24],
BiOBr/AgBr/LaPO4 [25], and AgBr/p-g-C3N4 [26]. Because AgBr possesses a narrow band gap,
strong photosensitivity and high charge separation ability, also AgBr is easiest to produce metallic
Ag under illumination, which can promote electron transfer in heterojunctions and improve charge
separation efficiency. In addition, LaNiO3 and AgBr have good energy band matching with g-C3N4,
which is an excellent choice for the formation of a dual Z-scheme system over the heterojunction to
promote photocatalytic reactions. However, the research concerning on dual Z-scheme reaction system
over AgBr/LaNiO3/g-C3N4 has not been reported until now to our knowledge.

Herein, AgBr/LaNiO3/g-C3N4 (ALG) ternary component dual Z-scheme photocatalyst was
prepared by an ultrasound-assisted hydrothermal method. The samples obtained were further
characterized by XRD, FT-IR, XPS, SEM, TEM, DRS, BET, PL, EIS. We also examined the
photodegradation of norfloxacin (NOR) under xenon lamp in aqueous solution over ALG. Benefiting
from the energy band matching and activated materials modified, this ternary photocatalyst
has remarkable optical absorption capacity and excellent photocatalytic decomposition of NOR.
The intentionally constructed dual Z-scheme not only improves the separation of charge pairs but
also provides more active species for photodegradation. A probable reaction mechanism within the
dual Z-scheme over the photocatalyst was proposed depended on the relative energy bands of the
three materials.

2. Results and Discussion

2.1. Microstructure and Surface Morphology

The crystal structures of samples were characterized using XRD and the patterns were depicted
in Figure 1. It was obvious that the diffraction peaks of AgBr, g-C3N4, and LaNiO3 as-prepared,
were matched well with standard PDF card AgBr (JCPDS 64-38) [27], g-C3N4 (JCPDS 87-1526) [28],
and LaNiO3 (JPCDS 33-0711) [29], respectively. To be specific, the characteristic peaks of AgBr found
at 26.92◦, 31.01◦, 44.39◦, 52.66◦, 55.18◦, 64.58◦, and 73.32◦ corresponded to (111), (200), (220), (311),
(222) and (400) crystal faces, the diffraction peaks of g-C3N4 could be investigated at 13.02◦ and 27.56◦

which were attributed to (100) and (002) crystal planes. While those at 22.70◦, 32.36◦, 40.04◦, 47.44◦,
54.14◦, 58.22◦, 67.46◦ and 78.4◦ were assigned to (101), (110), (021), (202), (211), (122), (220) and (312)
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lattice planes of LaNiO3. As revealed in Figure 1b, the diffraction peaks in Figure 1a can also be
investigated in the patterns of Figure 1b. All the peak positions were well matched and no additional
peaks appeared, which confirms the successful preparation of 30% LaNiO3/g-C3N4 (LG) and ALG
photocatalysts. The average crystalline sizes of all the samples could be calculated by the Scherrer
equation [25], and the detailed data could be found in Table 1. The average crystalline sizes of AgBr
and LaNiO3 were 43.49 nm and 12.03 nm. The average crystalline size of x-ALG samples increase
gradually from 20.56 to 26.47 nm because of the introduction of AgBr nanoparticles.
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Figure 1. XRD patterns of bare g-C3N4, AgBr, LaNiO3 (a), 1-ALG, 3-ALG and 5-ALG (b).

Table 1. The average pore sizes and specific surface areas of g-C3N4, 1-ALG, 3-ALG and 5-ALG.

Sample Name Average Pore
Sizes (nm)

Specific Surface
Areas (m2/g)

Pore Volume
(cm3/g)

Crystalline Size
(nm)

g-C3N4 27.99 27.32 0.78 2.57
1-ALG 27.50 45.81 0.72 20.56
3-ALG 26.19 65.39 0.64 25.68
5-ALG 30.54 30.72 0.89 26.47

The vibrational features of functional groups existing in the samples were analyzed by FT-IR.
The FT-IR spectra of AgBr, LG and ALG were depicted in Figure 2, consistent with g-C3N4, the sharp
band discerned at 802 cm−1 represented the triazine units breathing mode [15]. The absorption bands
ranging from 1207–1649 cm−1 corresponds to the vibration of C-N stretching modes [30]. The peaks
are caused by the stretching vibrations of heptazine-derived repeating units. The wide band ranging
from 3087–3395 cm−1 could be attributed to N-H vibration modes [31].

Because AgBr and LaNiO3 were both inorganic materials and the stretching vibrations of them
were hard to investigate by FT-IR. Based on this situation, TEM was employed to investigate the
deposition of AgBr and LaNiO3 on the surface of g-C3N4. The characteristic bands of absorption water
was overlapped by the absorption bands of g-C3N4, and the existent of water could confirmed by
XPS [32].

The elemental composition of 3-ALG was examined by XPS and displayed in Figure 3a including
La, Ni, O, Ag, Br, C, and N, which agrees with the chemical constituents of ALG. In Figure 3b, two pairs
of shoulder peaks at 837.74, 834.70 eV and 851.69, 855.21 eV represent La 3d5/2 and La 3d3/2 [17].
The peaks at 855.04 and 869.59 eV are assigned to Ni 2p3/2 and Ni 2p1/2, also the satellite peak appeared
at 864.35 and 878.75 eV, as shown in Figure 3c, indicating that Ni valence is +3 [33]. As shown in
Figure 3d, The peaks at 529.64 and 531.23 are attributed to lattice oxygen and the chemisorbed oxygen
from absorption water [33]. In Figure 3e, the peaks at 284.80, 286.12, and 288.43 eV are attributed to
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C-C coordination, sp2 hybridized carbon, and sp3 N-C=N group in g-C3N4. The N 1s spectrum is
shown in Figure 3f, three peaks are fitted at 396.89, 398.95, and 402.54 eV, which are assigned to C-N=C,
N-(C)3 and N-H groups, respectively [12]. In Figure 3g, two peaks could be observed at 366.90 and
372.39 eV, which were assigned to Ag 3d5/2 and Ag 3d3/2 [23]. Br 3d spectrum in Figure 3h displayed
two peaks at 68.23 and 69.52 eV which represent Br 3d5/2 and Br 3d3/2 [22]. The results investigated by
XPS could confirm the successful synthesis of 3-ALG sample.Molecules 2020, 25, x FOR PEER REVIEW 4 of 17 
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Figure 2. FT-IR spectra of bare AgBr, g-C3N4, 1-ALG, 3-ALG and 5-ALG.

To examine the surface microstructure and morphology, the morphological observation of AgBr,
LaNiO3, g-C3N4, LG and 3-AlG. The SEM and TEM images of samples were shown in Figure 4.
In Figure 4a, AgBr displayed irregular-shaped nanoparticle structures with dimensions from 30–50 nm,
which is consistent with the previously reported results. As examined in Figure 4b, LaNiO3 exhibited
nanosphere structures with a smooth surface and a diameter of about 60 nm. As observed in Figure 4c,
g-C3N4 showed the aggregated and slightly transparent layered nanosheet structures, which is the
typical surface morphology of g-C3N4 nanosheets. As displayed in Figure 4d, LaNiO3 nanospheres
were assembled with g-C3N4 indicating the formation of LG. After the addition of LaNiO3 and AgBr
(Figure 4e), we found that LaNiO3 and AgBr were deposited on g-C3N4 nanosheets. The microstructure
of 3-ALG was further characterized by TEM. The TEM result was shown in Figure 4f, in which darker
LaNiO3 and AgBr were evenly grown on the surface of g-C3N4 demonstrating the successful formation
of ALG ternary component hybrid.
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Figure 4. The SEM images of (a) AgBr, (b) LaNiO3, (c) g-C3N4, (d) LG, (e) 3-ALG and TEM image of
3-ALG (f).

In order to examine the surface physico-chemical properties, the N2 adsorption-desorption
isotherms and corresponding pore size distribution were illustrated in Figure 5. As shown in Figure 5a,
according to IUPAC classification, all the samples demonstrated type-IV isotherm with H3 hysteresis
loops, suggesting that all the samples presented typical mesoporous structure [33]. Among them,
3-ALG exhibited the highest adsorption isotherm, which demonstrates that sample 3-ALG possesses
large pore size and tight intermolecular interactions of adsorbate molecules. The mesoporous structure
of ALG composites and g-C3N4 was further proved by the plot of the pore-diameter distribution
(Figure 5b) in which the average pore sizes of ALG composites and g-C3N4 were 27.99 nm (1-ALG),
27.50 nm (3-ALG), 26.19 nm (5-ALG) and 30.54 nm (g-C3N4) calculated by BJH model. The BET specific
surface areas of g-C3N4 was shown in Table 1, which was calculated to be 27.32 m2/g. After coupling
with AgBr and LaNiO3, the BET specific surface areas increased from 45.81 to 65.39 m2/g and decreased
to 30.72 m2/g. Because AgBr and LaNiO3 were assembled on the g-C3N4 nanosheets by ultra-sonic
treatment, more microvoids were appearing on the surface of g-C3N4 nanosheets, the BET specific
areas increased first. When the superfluous LaNiO3 was loaded on the surface of g-C3N4 nanosheets,
partial pores of the hybrid were blocked leading to the decrease in the BET specific surface area.
Generally, larger pore diameter and specific surface area are beneficial to the photocatalytic activity,
which can adsorb more organics and increase the active sites for photocatalytic reaction.
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Figure 5. Nitrogen adsorption-desorption isotherms (a) and pore distribution curves (b) of bare g-C3N4

and 1-ALG, 3-ALG, and 5-ALG.

2.2. Optical Properties

The UV-Vis DRS was employed to analyze the light absorption capacities of obtained samples.
The results were illustrated in Figure 6a. What could be observed is that all the samples examined
could be excited by both visible light and UV light. It could also be seen that the absorption edges
of LaNiO3, g-C3N4, and AgBr were about 441, 488, and 500 nm. The sample LG showed stronger
absorption than bare g-C3N4. The optical absorption edge of ALG exhibited redshift which gradually
became larger with the increasing amount of AgBr. The band gaps of all the samples were estimated
by the Tauc/David-Mott model [34]. The band gap value of bare g-C3N4 is 2.73 eV, after coupled with
LaNiO3 the value increased to 2.77 eV, furthermore, the band gap value became more smaller after the
formation of ALG composites, the value of 5-ALG decreased to 2.70 eV even. Strong optical absorption
capacity and narrow band gap are a benefit to the photocatalysis, so ALG hybrid will possess more
enhanced photocatalytic performance than bare g-C3N4.Molecules 2020, 25, x FOR PEER REVIEW 8 of 17 
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Meanwhile, the band edge positions of CB and VB of all the semiconductor obtained could be
calculated by Tauc equation [15]. The calculated CB and VB were shown in the following Table 2.
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Table 2. The band edge positions of conduction and valence band for the sample g-C3N4, AgBr and
LaNiO3 (pH = 7).

Sample Name CB (V vs. NHE) VB (V vs. NHE)

g-C3N4 −1.18 1.55
AgBr 0 2.55

LaNiO3 0.23 3.23

Distinctly, the valence and conduction band potentials of LaNiO3, AgBr, and g-C3N4 can be
well-matched, making it possible to form a ternary component dual Z-scheme heterojunction composite
photocatalyst, and the well-designed construction can suppress the recombination of photogenerated
electrons and holes, promote the migration and transfer of photogenerated charge pairs, thereby
enhancing the photocatalytic behavior.

The photoluminescence (PL) spectra were employed to investigate the photogenerated charge
separation and migration in samples obtained by us with the excitation laser wavelength of 446 nm
and the results were displayed in Figure 7. Generally, lower PL emission intensity represents lower
recombination efficiency of photogenerated electrons and holes. As shown in Figure 7, the main
emission peaks of g-C3N4 were located at around 460 nm, which was mentioned in the previous
literature [15]. When compared with LG, 1-ALG, 3-ALG and 5-ALG, the PL peak intensity of g-C3N4

was stronger than them, and 3-ALG possessed the weakest PL intensity, which evidences that benefiting
from the addition of LaNiO3 and AgBr, LG and 3-ALG possessed better separation and migration
efficiency of photogenerated electrons and holes than bare g-C3N4. Furthermore, the PL spectra
explained the best photocatalytic performance of 3-ALG in all the samples obtained.Molecules 2020, 25, x FOR PEER REVIEW 9 of 17 
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The photocurrent response experiments of bare g-C3N4, LG and 3-ALG were employed to
investigate the separation efficiency of photogenerated electrons and holes within the photocatalysts.
As shown in Figure 8a, the transient photocurrent intensity of 3-ALG was much stronger than
bare g-C3N4 and LG, which revealed that 3-ALG possessed the optimum separation efficiency for
photo-aroused charge carriers. The migration and separation ability of photo-aroused electrons and
holes within the samples was further investigated by the electrochemical impedance spectroscopy
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(EIS). As illustrated in Figure 8b, it is apparent that the arc radius on the Nyquist plot of sample 3-ALG
is distinctly smaller when compared with bare g-C3N4 and LG, indicating the lowest transfer resistance
and highest separation efficiency of charge pairs.
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In short, considering the results of PL, photocurrent, and EIS, we found that by the
construction of the ALG ternary component heterojunction, the effective separation of photogenerated
electrons and holes were achieved, which can provide more photoactive electrons and holes for
subsequent photocatalytic reactions. The phenomena have a positive effect on enhancing the
photocatalytic performance of the photocatalyst. The conclusion can be verified in subsequent
degradation experiments.

2.3. Photocatalytic Activity

Norfloxacin (NOR) is a typical antibiotic, which is wide-used, colorless, odorless
non-biodegradable, and commonly detected in wastewater. In order to compare the photocatalytic
abilities of all the photocatalysts, the photocatalytic degradation experiment of NOR was implemented
under visible light. After 40 min the adsorption-desorption equilibrium away from light was gained,
and the curves of NOR degradation over all the photocatalysts were recorded and demonstrated in
Figure 9a. As displayed in Figure 9a, there is almost no degradation without any photocatalysts in
suspension. When with bare g-C3N4, AgBr, and LaNiO3, the degradation rates were still scant, reaching
40%, 38%, and 31%, respectively. While g-C3N4 coupled with LaNiO3, the photodegradation efficiency
increased significantly, 80% of NOR was degraded within 120 min. The photocatalytic performance
was enhanced further over the ternary component composite, the photocatalytic activities over ALG
was 83% (1-ALG), 92% (3-ALG), and 87% (5-ALG). Obviously, the ternary component photocatalyst
3-ALG possesses the highest degradation ability towards NOR. The NOR photodegradation process
was fitted by the pseudo-first-order kinetics. As displayed in Figure 9b and Table 3, the nice linear
relationship between −ln (Ct/C0) and t was gained using the model significantly. The apparent reaction
rate constant of bare g-C3N4, AgBr, and LaNiO3 were merely 0.00408, 0.00365 and 0.00299 min−1,
respectively. The degradation rate of NOR over LG hybrid was 0.01028 min−1 which is obviously
faster than them. It is worth noting that all the ternary composite ALG showed the superior k value
in which 3-ALG possessed the highest degradation rate of NOR up to 0.01790 min−1. It is obvious
that a significant improvement in catalytic performance can be achieved due to the addition of AgBr
and LaNiO3 on the surface of g-C3N4, which is benefited from the synergistic effect in the ternary
heterojunction. The synergistic effect can inhibit the recombination of photogenerated holes and
electrons, and promote the migration of photogenerated charge pairs. The photodegradation of NOR
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under visible light irradiation prove that the photocatalytic ability of x-ALG were higher than bare
g-C3N4, AgBr, LaNiO3 as well as LG samples.
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Figure 9. Photocatalytic performances (a) and the corresponding kinetic curves analyzed by the
pseudo-first-order kinetic model (b) for NOR degradation over different photocatalysts.

Table 3. Photocatalytic results and crystalline size of all the samples.

Sample Name Degradation (%) k (min−1) Standard Deviation Band Gap (eV)

g-C3N4 40 0.00408 0.01425 2.73
AgBr 31 0.00365 0.02134 2.55

LaNiO3 38 0.00299 0.02348 3.00
LG 80 0.01166 0.14129 2.77

1-ALG 83 0.01456 0.08799 2.73
3-ALG 92 0.01790 0.24918 2.72
5-ALG 87 0.01481 0.18515 2.70

In the actual application process, the photostability and reproducibility are essential for the
photocatalyst. The recyclability study on 3-ALG was implemented, and the results were depicted in
Figure 10a. 3-ALG was reused for four times, for each recycling experiment, 3-ALG was centrifuged
from the suspension and washed with ethanol and distilled water for several times, and dried before
the next recycle. As demonstrated in Figure 10b, it is not difficult that after four times recycle
experiments, the catalytic performance of 3-ALG did not decline significantly, and 90% of NOR can
still be degraded within two hours indicating the stability of 3-ALG. It can be confirmed by the XRD
patterns of 3-ALG before and after the experiments. We found that there is no obvious contradiction
can be detected, which further illustrated the reliability stability of 3-ALG in practical applications.
In addition, we found two peaks at 38.21◦ and 43.6◦ which can be associated with (111) and (200)
crystal plane of Ag (JCPDS 040783) [35], which could be attributed to the reduction of Ag+ to metal
Ag during the photocatalytic process. The metal Ag can act as a transit center for photogenerated
electrons, which is advantageous for the photocatalytic reaction.
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Figure 10. Recycling experiments (a) of the photocatalytic degradation of NOR over 3-ALG and
(b) patterns of 3-ALG before and after sequential photocatalytic reaction under visible irradiation.

2.4. Photocatalytic Degradation of NOF Comparing with Other Materials

As an objective evaluation of our work, we compared the photocatalytic degradation of NOF
over 3-ALG with other materials. According to the previous researches [4,36–39], FeVO4/Fe2TiO5,

CeO2/g-C3N4, CoWO4/g-C3N4, ZnS and BiWO4/WO3 were also taken and mixed with NOF aqueous
solution under a 500 W xenon lamp equipped with a 420 nm cut filter for the degradation of NOF,
which is as same as the degradation experiment over 3-ALG. As displayed in Table 4, apparently,
the photocatalytic degradation of NOF over the materials demonstrated that the photocatalytic ability
of 3-ALG under visible light illumination was at higher level.

Table 4. Photocatalytic degradation of 3-ALG, CeO2/g-C3N4, ZnS, FeVO4/FeTiO5, CoWO4/g-C3N4

and BiWO4/WO3.

Photocatalyst Name Degradation Rate (%) Photocatalyst Name Degradation Rate (%)

3-ALG 92 FeVO4/Fe2TiO5 92
CeO2/g-C3N4 88.6 CoWO4/g-C3N4 97

ZnS 75 BiWO4/WO3 67

2.5. Photocatalytic Mechanism

In order to analyze the significantly reinforced photocatalytic performance for NOR degradation
over photocatalyst 3-ALG, the radical quenching experiments were conducted. Benzoquinone (BQ) as
the scavenger for O2

−, AgNO3 for e−, ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) for
h+, and isopropanol (IPA) for ·OH, were added to 3-ALG reaction system respectively. It is noteworthy
that, although IPA can also react with h+ and O2

−, according to many previous literatures [40,41],
the main trapping radical of IPA in the radical quenching experiment is OH. The experiment results
were illustrated in Figure 11, the photocatalytic degradation efficiency of NOR was noticeably reduced
when BQ, EDTA-2Na and IPA involved in the reaction system. There were only small changes in
the reaction upon the introduction of AgNO3, which was because the activity of photogenerated
electrons in the reaction is limited by addition of AgNO3, some of electrons in the CB were also
limited to produce O2

−, the same phenomenon appeared in the photocatalytic reaction system of
BiFeO3/ZrO2 [42]. From the above phenomena, O2

−, h+ and OH can be identified as the main active
species during the photodegradation process of NOR. Thus, the enhanced photocatalytic performance
for NOR over ternary component dual Z-scheme heterojunction photocatalyst can be interpreted in
terms of migration of photo-aroused charge pairs, the generation of h+ and the corresponding radicals
in aqueous solution.
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The powerful photocatalytic ability for NOR over 3-ALG under visible light was demonstrated by
the photocatalytic experiments, and the main reactive species within the degradation system were
clarified by the analysis of the radical quenching experiments. Therefore, a possible dual Z-scheme
photocatalytic mechanism is proposed in Figure 12.
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Figure 12. Proposed mechanism of as-prepared 3-ALG for the photocatalytic degradation of NOR
under visible light irradiation (pH = 7).

As shown in Figure 12, in the phototcatalytic degradation process, Ag+ in AgBr is reduced to
metallic Ag, moreover, metallic Ag can act as the photocatalytic charge pair transfer center of the
dual Z-scheme. The e− generated in the CB of AgBr can recombine with h+ migrating from the VB of
g-C3N4 on metallic Ag. Similarly, the e− in the CB of LaNiO3 can recombine with the h+ in the VB of
g-C3N4. By this means, a large number of photo-generated electrons are accumulated in the CB of
g-C3N4, while plenty of positive holes (h+) are retained in the VB of LaNiO3 and AgBr, which resulted
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in the efficacious separation of h+ and e−. Due to the CB potential of g-C3N4 is more negative than
the potential O2/O2

− (−0.33 V vs. NHE at pH = 7), the e− in the CB of g-C3N4 would reduce the O2

dissolved in water into O2
−. Meanwhile, the h+ retained in the VB of LaNiO3 and AgBr could oxidize

H2O and OH− to produce OH, because the VB potential of AgBr was more positive than the reduction
potential for OH/OH− (+2.40 V vs. NHE) [12] and the VB potential of LaNiO3 was more positive than
the reduction potential for OH/OH− (+2.40 V vs. NHE) and H2O/OH (+2.72 V vs. NHE) [12]. The h+

can also be involved in degradation reactions due to its own strong oxidizability. As a result, O2
− and

OH produced and h+ can decompose NOR into small molecules and eventually into CO2, H2O and
NH3. The analysis above could be validated by radical quenching experiments. Consequently, it can be
ascertained that 3-ALG ternary component photocatalyst adheres to a dual Z-scheme photogenerated
charge transfer system. In this system, photogenerated holes and electrons are separated and migrated
efficiently, while the photocatalyst retains a high oxidation-reduction capacity for contaminants.

3. Materials and Methods

3.1. Synthesis of g-C3N4 Nanosheets

We synthesized g-C3N4 nanosheets based on the method described in the previous report [21].
Firstly, 10 g of melamine was placed in a covered crucible and heated at 550 ◦C for 4 h with a heating
rate of 2 ◦C per minute in air. The bulk g-C3N4 achieved was ground into powder, subsequently put
into a crucible without a lid and heated at 520 ◦C for another 2 h in air with a heating rate of 2 ◦C per
minute to get g-C3N4 nanosheets.

3.2. Synthesis of LaNiO3 Nanospheres

Typically, 1 mmol La(NO3)3·6H2O, 1 mmol Ni(NO3)2·6H2O and 5 mmol citric acid were dissolved
in 200 mL deionized water with magnetic stirring for 2 h to achieve light green solution. The solution
was poured into a 250 mol Teflon-lined stainless autoclave, heated at 180 ◦C for 12 h. The precipitate
collected was washed with deionized water and ethanol for several times after cooling to room
temperature and dried at 80 ◦C for 24 h and calcinated at 800 ◦C for 2h in air to achieve pure
LaNiO3 nanospheres.

3.3. Synthesis of AgBr Nanoparticles

AgNO3 and KBr (1 mmol) were dissolved in 300 mL deionized water in dark with magnetic
stirring for 30 min, washed by deionized water and ethanol for several times and dried at 60 ◦C for
12 h. AgBr nanoparticles were obtained.

3.4. Synthesis of LG Hybrid

LaNiO3 nanospheres (0.3 g) and 1 g-C3N4 nanosheets were mixed in 30 mL deionized water with
magnetic stirring and ultrasonic vibration for 2 h. The resulting mixture was dried at 80 ◦C for 24 h to
remove the remaining water, and calcinated in the air at 300 ◦C for 2 h. Then LaNiO3 nanospheres were
successfully assembled on the surface of g-C3N4 nanosheets, the sample obtained was marked as LG.

3.5. Synthesis of ALG Photocatalysts

Typically, 0.03 g AgBr, 0.3 g LaNiO3, and 1 g g-C3N4 was poured into 20 mL deionized water
with magnetic stirring for 2 h, and endured for 12 h with ultrasonic vibration at room temperature.
The mixture was dried at 80 ◦C for 24 h. After calcination in air for 3 h at 300 ◦C, we obtained ALG
composites. By controlling the mass ratio of AgBr, the catalysts with a load of 1%, 3% and 5% of AgBr
were accurately prepared and named as 1-ALG, 3-ALG and 5-AlG, respectively.
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3.6. Characterization of Samples

We used XRD (Shimadzu, LabX-6000) to investigate the crystal structures of samples obtained.
The chemical bonds on the surface of photocatalysts were examined by FTIR (Bruker, Vertex70,
Karlsruhe, Germany). SEM (Hitachi, S-4800, Tokyo, Japan) and TEM (Tecnai, G2 F30, Hillsboro,
OR, USA) were employed to detect the morphology of the samples. The element composition
was characterized by XPS (VG-Multilab, 200, Madison, GA, USA). Nitrogen adsorption-desorption
isotherms were conducted at 77 k using an ASAP 2460 surface area and porosity analyzer at liquid
nitrogen temperature. We employed PL (Shimadzu, RF-6000, Kyoto, Japan) and UV-vis DRS (JASCO,
UV-2600, Tokyo, Japan) to examine the photogenerated charge separation efficiency and optical
absorption capacity. The transit photocurrent and electrochemical impedance spectroscopy (EIS) were
conducted on an electrochemical workstation (Chenhua Instrument Corp, CHI 660E, Shanghai, China).

3.7. Photodegradation Measurements

The photocatalytic performance of as-obtained samples was tested by degradation experiments of
NOR in aqueous solution. The visible-light source was provided by a 500 W xenon lamp equipped
with a 420 nm cut filter.

Typically, 20 mg of the sample as-obtained was added into 100 mL 20 mg/L NOR solution with
magnetic stirring in a quartz tube reactor with a water circulation facility. Before light irradiation,
the mixture suspension was remained in the dark for 30 min to reach the adsorption-desorption
equilibrium between photocatalysts and degradation product. During the photodegradation process,
10 mL of the suspension was withdrawn and centrifuged to remove the photocatalyst each 20 min.
The absorbance of the supernatant was examined at a wavelength of 280 nm. The photodegradation
ratio for NOR was tested by the formula below:

η = (1 − Ct/C0) × 100% (1)

where η is the photodegradation ratio for NOR, Ct and C0 represent the initial and remaining NOR in
aqueous solution, t is the light irradiation time, respectively.

4. Conclusions

In conclusion, a novel ternary dual Z-scheme AgBr/LaNiO3/g-C3N4 photocatalyst was prepared
via a facile ultrasound-assisted hydrothermal method. The introduction of AgBr promoted the optical
absorption capacity of the heterojunction and made it possible for the metallic Ag to participate
in degradation. Such a heterojunction possessed a high specific surface area of 65.39 m2/g, which
can absorb more undecomposed molecules and provide photocatalytic reaction with more active
sites. Metallic Ag involved in the reaction acting as the electron-holes transfer media to enhance the
separation of charge pairs. A possible dual Z-scheme reaction mechanism was proposed, in which
the light absorption and charge pairs separation were promoted. This novel ALG exhibited excellent
photocatalytic performance for norfloxacin (NOR), 92% of NOR was degraded over 3-ALG within
120 min. In addition, ALG possessed remarkable stability and reusability. This study provided a
feasible way to establish the ternary component dual Z-scheme g-C3N4-based photocatalyst and a
possible method for photocatalysis in the decomposition of antibiotic-like contaminants in water.
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