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. Longitudinal monitoring of BCR-ABL transcript levels in peripheral blood of CML patients treated with

. tyrosine kinase inhibitors (TKI) revealed a typical biphasic response. Although second generation TKls

. like dasatinib proved more efficient in achieving molecular remission compared to first generation TKI
imatinib, it is unclear how individual responses differ between the drugs and whether mechanisms

. of drug action can be deduced from the dynamic data. We use time courses from the DASISION trial

© to address statistical differences in the dynamic response between first line imatinib vs. dasatinib

. treatment cohorts and we analyze differences between the cohorts by fitting an established

. mathematical model of functional CML treatment to individual time courses. On average, dasatinib-

. treated patients show a steeper initial response, while the long-term response only marginally differed
between the treatments. Supplementing each patient time course with a corresponding confidence
region, we illustrate the consequences of the uncertainty estimate for the underlying mechanisms of
CML remission. Our model suggests that the observed BCR-ABL dynamics may result from different,

. underlying stem cell dynamics. These results illustrate that the perception and description of CML

. treatment response as a dynamic process on the level of individual patients is a prerequisite for reliable

: patient-specific response predictions and treatment optimizations.

. Chronic myeloid leukemia (CML) is a disease characterized by the expression of the BCR-ABL fusion protein in
© virtually all malignant cells in the vast majority of patients'. The affected leukemic stem cells have a competitive
advantage over normal cells, leading to an initially slow but sustained expansion of the leukemic cell population.
. Untreated, the primary chronic phase (CP) of the disease eventually transforms into an accelerated phase fol-
. lowed by an acute blast crisis (BC), in which differentiation of functional blood cells is impaired and, therefore,
. physiological blood function is severely constrained, leading to the patient’s death if left untreated.
: It is the molecular specificity of the BCR-ABL fusion gene that forms the basis of a highly efficient, targeted
- therapy by tyrosine kinase inhibitors (TKI). Already the introduction of the first-generation TKI imatinib signif-
- icantly improved the treatment prognosis and increased five-year survival levels above 95%?. The availability of
: second-generation (dasatinib, nilotinib) and third-generation TKIs (e.g. bosutinib, ponatinib) further increased
. therapeutic options, including the treatment of a broad spectrum of secondary TKI resistant mutations®. Based on
. the success of TKIs, CML has developed into a showcase example for an efficient, targeted tumor therapy.
Although eflicient treatment options are available, predicting the treatment success for a particular patient is
still a challenge. In clinical practice, prognostic scores like the EUTOS, Sokal or Euro scores are commonly used
to estimate a patient’s early response (e.g. achieving complete cytogenetic remission at 18 months) to front line
TKI therapy*. Similarly, the molecular response at specific landmarks, such as three or six months of therapy, is
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measured in the peripheral blood using quantitative reverse transcriptase polymerase chain reaction (QRT-PCR)
and used to distinguish treatment responders from non-responders>®. Alternatively, a more dynamic perspective
on therapy responses is taken by scores that address the “velocity of leukemia eradication’, such as ratios in the
levels at two time points” or the halving time of the tumor load-!°. Although these measures can be used to pre-
dict the average response probability of the particular treatment, none of them addresses the individual molecular
long-term response in terms of its dynamic appearance or the individual risk of a late molecular relapse.

Considering BCR-ABL dynamics instead of using fixed time points for molecular response evaluation is a fur-
ther alternative to describe treatment efficiency. Longitudinal qRT-PCR based monitoring of molecular response
revealed that in most patients TKI treatment induces a biphasic decline of BCR-ABL transcript levels, which can
be characterized by an initially steep decline, followed by a secondary moderate decline. While the first decline
may result from the rapid depletion of actively cycling BCR-ABL positive leukemic cells, the second decline most
likely represents the slow elimination of quiescent residual leukemic stem cells (LSC), which are less susceptible
to cell kill due to their comparatively low cell cycle activity!"'2. Following this line of argument, we support
a dynamic description of the BCR-ABL response to characterize and predict long-term disease and treatment
dynamics in individual patient, as previously suggested'!~*.

Although the use of BCR-ABL dynamics in principle allows for a detailed characterization of the molecular
response of individual patients, it is based on measurements obtained from the peripheral blood. Therefore, it
has at least no direct implication for residual disease levels in the stem cell compartment within the bone mar-
row, which is clinically hard to assess. For that reason, we combine the statistical with a mechanistic model. This
strategy allows us to statistically estimate patient-specific residual disease levels in the peripheral blood, even
after the PCR monitoring has fallen below its quantification limit. At the same time, it enables us to estimate the
treatment dynamics at the level of stem cells within the bone marrow, by describing the mechanisms of (stem)
cell proliferation, differentiation and TKI effects. Specifically, our mechanistic modeling approach!>'*!> assumes
two effects of the TKI therapy. First, it induces a BCR-ABL specific cytotoxic effect, while, secondly, it reduces
the proliferative activity of leukemic stem cells. These assumptions are supported by clinical and experimental
findings'¢"". Obviously, the long-term follow-up of TKI treatment®® and clinical stop trials?'~?* support the notion
of a persisting pool of residual stem cells that rarely proliferate and only occasionally contribute to the peripheral
blood at a minor or even undetectable level. We argue that under TKI treatment the pool of residual leukemic
stem cells still undergoes a steady, albeit slow reduction in size. However, even after a long treatment time, a
(dormant) reservoir may remain, which could lead to molecular relapses.

Here, we analyze response dynamics of 519 CML patients in chronic phase (CP) treated within the DASISION
study, a randomized controlled clinical trial comparing first-line imatinib with dasatinib treatment?. Beside a
rigorous statistical comparison of the molecular response dynamics, we describe an efficient method for apply-
ing our mechanistic mathematical model of TKI-treated CML to describe individual patient dynamics includ-
ing appropriate confidence regions. Consequently, robust predictions for the molecular long-term response of
imatinib- and dasatinib-treated patients are derived.

Methods

Clinical Data. The DASISION study (CA180-056, NCT00481247) is a multi-center, randomized trial to
investigate the response of treatment-naive CP-CML patients (N =519) medicated daily with either imatinib
(median dose was 400 mg with a range of 125 to 741 mg) or dasatinib (median dose was 99 mg with a range of 21
to 139 mg)®. The primary endpoint was the confirmed complete cytogenetic remission (cCCyR) by 12 months.
Secondary endpoints included rates of CCyR and MMR, times to CCyR and MMR, as well as progression free and
overall survival. The data set available for statistical analysis and modeling is based on the minimum follow-up
of 5 years, analyzed for 259 dasatinib- and 260 imatinib-treated patients. The molecular response was assessed by
reporting BCR-ABL transcript levels obtained from real-time quantitative polymerase chain reaction (RQ-PCR).
The assay was performed in a centralized lab and data is normalized to the international scale (IS) with ABL
being the reference gene. Molecular analysis was performed at baseline (month 0) and then every three months
after treatment was initiated until month 24. Thereafter, the molecular assessment was conducted at least every 6
months until the end of study or disease progression.

In order to reliably estimate dynamic parameters of the treatment response (i.e. BCR-ABL decline slopes),
we restricted our analysis to those patients that conform to the following criteria, denoted as “statistics filter”:
(1) minimum of 5 time points evaluated, (2) at least two BCR-ABL/ABL measurements within first 4.5 months
(to ensure estimation of the initial slope), (3) first BCR-ABL/ABL measurements prior or within first 15 days
after treatment start (to ensure an estimate of the initial tumor load), (4) minimal follow up at least 18 months
(to ensure a reliable estimation of the secondary slope), (5) no periods larger than 24 months without availa-
ble BCR-ABL/ABL measurements (to exclude rarely monitored patients). Applying this selection, a total of 383
patients (193 in dasatinib arm (75% of allocated), 190 in imatinib arm (73% of allocated)) were retained and used
in the statistical analysis. As our mechanistic mathematical model (see below) is only able to describe dynamic
responses with a bi-phasic decline, i.e. the initial BCR-ABL decline « is steeper compared to the second decline 3,
we applied a further selection strategy (“model filter”): (6) initial slope () > secondary slope (/3) > 0 (a detailed
explanation of the slopes is provided below). Finally, the quantification of the prediction accuracy is only realized
for patients, which fulfill criterion (7) a complete 5 year follow up (“prediction filter”). A summary of the data
analysis/modelling inclusion criteria along with the actually used patient numbers is provided in Fig. 1.

Statistical analysis. To quantify a patient’s treatment response, we use the corresponding BCR-ABL tran-
script levels, described by the logarithm of the relative abundance (in %) of the BCR-ABL transcript, i.e.
LRATIO =log,,(BCR-ABL/ABL * 100). The nonlinear relationship between the time under treatment (t) and the
LRATIO per patient are modelled by the logarithm of a bi-exponential function, i.e.: LRATIO(t) =log,,
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Statistical analysis for dasatinib Statistical analysis for imatinib
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Model analysis for dasatinib Model analysis for imatinib
n =141 (54 %) n=113 (43 %)
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Model analysis for dasatinib Model analysis for imatinib
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Figure 1. Data flowchart. The flowchart illustrates the selection process of patient data for statistical and model
analyses.

(A~°t4+ B~%), with parameters A, B, a, and 3 and the convention that A > B > 0 to make the parameters unam-
biguous. The bi-exponential function on the log-scale resembles a smoothed version of a piecewise linear func-
tion with a single break point (cf.'*). The parameters A and B can be interpreted as the intercepts of the two
approximating line segments, while o and 3 represents the slopes of these lines (Fig. 2A). We constrain o > 0 to
reflect the expected initial decline. The parameter 3 was not restricted (i.e. 3 € R), allowing for either a decrease
or an increase in BCR-ABL levels in the second phase (cf.!?).

For the assessment of treatment differences between imatinib and dasatinib therapy, we apply a
population-based non-linear mixed effect (NLME) model using a maximum likelihood (ML) estimation. The
model selection, i.e. the decision which terms to include in the final NLME-model, is guided by Akaike informa-
tion criterion (AIC). We apply Wald tests to assess statistical significance of model parameters. To fit the
bi-exponential function to the measurements for each individual patient i, we used the non-linear least squares
method instead of the patient-level predictions of the NLME model, obtaining a fit that minimizes the residual
squared errors for each patient. In both routines (population- and patient-based), BCR-ABL values below the
quantification limit (QL) of the RQ-PCR, are treated as (left-)censored values. Le., we assume that the true
BCR-ABL level is at least as low as the QL, but it could also be lower. We refer to the estimated parameter tuple as
/’)\I,T = (A, a, B, 3)and to the residual variance as &}2 . Confidence intervals for the mean LRATIO-value at a given
time point are calculated via parametric bootstrap. For technical details see Supplementary Methods.

To fit and evaluate the NLME model, we applied the software “Monolix” (version 2018R1)¢. All other statis-
tical evaluations were done using the statistical programming environment R?. For further technical details, we
refer to the Supplementary Methods.

Mechanistic model. Model structure and implementation. CML is modeled as a clonal competition phe-
nomenon between normal hematopoietic and leukemic (stem) cells (Fig. 2B). This concept is implemented as a
single cell-based model that was originally developed to describe murine hematopoiesis*>*°. By upscaling the
stem cell number and adapting cell turnover rates (see'! for details), the model has been successfully applied to
the human situation, in particular to CML pathogenesis and treatment!141>, In order to explain the competitive
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Figure 2. Statistical und mechanistic model. (A) Bi-exponential model for the description of time course data,
parameterized by the intercepts A, B, and the initial slope o and the secondary slope (3. (B) Model setup of the
mechanistic, single-cell based clonal competition model of CML pathogenesis and treatment. Leukemic cells
are shown in blue, normal cells in grey. Both cell types change between a state of proliferative inactivity (A) and
a proliferative state (Q) before cells differentiate into peripheral blood. TKI activity is indicated by the cytotoxic
effect and the prolonged quiescence of leukemic stem cell in state A. The five parameters modified for the
simulation screen are identified by roman numerals (i)-(v).

advantage of untreated leukemic cells compared to normal HSCs, we assume an increased, unregulated prolifer-
ative activity of leukemic cells. The treatment of CML patients with TKI is assumed to induce a specific cytotoxic
effect and an inhibition of the proliferative activity of leukemic stem cells (Fig. 2B, indicated in red). Technically,
the cytotoxic effect is modeled by a selective kill of a fixed percentage of TKI affected leukemic cells per time step
(degradation rate ry,,), while the proliferation inhibition is modeled by a reduction of the activation of leukemic
cells into cycle (reduced activation function f™). In order to adapt our model to the initial patient’s response
during the first six months of treatment we assume a gradual onset of the effect of TKI activity. Technically, this is
implemented as a rate (ry.;,,) describing how fast LSCs are affected by the TKI (i.e, transition rate from a naive to
a TKI-affected state). We do not assume a mechanistic difference between the effect of imatinib and dasatinib in
the model, but we consider the patient-specific treatment response as the result of an individual tumor growth
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rate and an individual TKI response, which might quantitatively differ between patients and/or their treatment
scenario. The tumor load in the peripheral blood, which is clinically measured in terms of BCR-ABL transcript
levels, is approximated in the mathematical model by the proportion of leukemic (i.e. BCR-ABL positive) cells in
the population of fully differentiated cells according to the following equation:

BCR-ABL/ABL ~ (n,/(n, + 2n,)) - 100%.

Herein, n, denotes the number of leukemic cells and 1, the number of normal cells®'. Further details of the model
implementation are provided in the Supplementary Methods.

Parameter estimation. To derive a consistent model fit for an individual patient, we previously used the same
mechanistic model'*. However, the optimization procedure comprised the variation of two parameters only,
namely (i) the patient specific degradation rate rg, and (ii) the activation function f CML Meanwhile, it became
evident that also the influence of further treatment- and patient-specific parameters cannot be neglected. Beyond
(iii) the rate of gradual TKI onset (ry,,,), we identified (iv) the initial tumor load at therapy start (described by the
LRATIO at time point t =0, LRATIO,,) and (v) the rate by which leukemic stem cells re-enter into quiescence
(deactivation, f gML) to be additional sensitive determinants of the response dynamics (illustrated in Fig. 2B). For
reasons of efficiency, we realized a systematic, large-scale screen of a defined parameter space and deposited the
results in a look up table. In brief, for each of the five parameters (i-v), we determined a plausible range, subdi-
vided the corresponding intervals and assigned 10 (LRATIO,;), 16 (rdegrye,), 13 (ran,), 10 (f SML) and 13 (f SML)
values at which we evaluated the model in all combinations. This resulted in the set © of 270,400 different param-
eter configurations ¥ = (f<M*, faCML, Iyeg>» LRATIO

In order to determine the set @j of suitable parameter configurations of the mechanistic model that fit the time
course of BCR-ABL/ABL levels for patient i, we apply the following strategy: (1) We derive the bi-exponential fit 5"
according to an optimization routine (see Supplementary Methods) for the clinically available BCR-ABL levels up
to time 7. Furthermore, we provide corresponding point-wise 95%-confidence intervals for the fit 5. (2) Using the
above described look-up table, we identify all parameter configurations of the mechanistic model, for which the
bi-exponential fit of the model-predicted BCR-ABL time courses are completely contained within the statistically
determined confidence region (mechanistic model fitting). These identified tlTlples constitute the set of suitable
parameter configurations ©, . We order the simulated BCR-ABL dynamics in®; according to their distance (sim-
ilarity) to the bi-exponential fit of the data /" and refer to 9] as the optimal (best-fitting) parameter configuration
in ©, . Further technical details are provided in the Supplementary Methods.

init> rtrans)'

Cross validation for the prediction accuracy. In order to quantify the prediction accuracy of our mechanistic
model, we compare the set of suitable parameter configurations from “reduced” data sets, i.e. for a 2, 3 or 4 year

BCR-ABL monitoring (@fy, @?y, @?y), respectively, with the suitable parameter configurations for the complete
5-year follow-up @fy Specifically, we determine the overlap of 5-year predictions for BCR-ABL levels based on

@fy with predictions based on the reduced observation periods @fsy. Now, we categorize the predictions by eval-
uating the overlap of the predicted confidence intervals at the end of the 5-year period (Supplementary Fig. S2).
We denote 5-year predictions as true positives (TP) that are within the confidence intervals at 5 years determined
by both the reduced as well as the complete data set. True negatives (IN) are defined as predictions being neither
within the confidence interval at 5 years derived from the reduced nor the complete data set. False positives (FP)
are predictions that are within the confidence interval determined by the reduced data set, but not within the
confidence interval at 5 years determined by the complete data set. False negatives (FN) refer to predictions that
are not within the confidence intervals derived from the reduced data set but within the confidence interval deter-
mined by the complete data set.

Availability of data and material. Data are available from the authors upon reasonable request and with
permission of Bristol-Myers Squibb.

Results

Comparing average treatment response of dasatinib vs. imatinib. Individual treatment responses
in both arms of the DASISION trial show a considerable degree of heterogeneity between individual patients
(Fig. 3A, Supplementary Fig. S3). However, the typical bi-phasic BCR-ABL dynamic is observed in the majority of
patients. This also holds true for a mean time course of the patients in the two treatment arms (Fig. 3B). Although
the molecular response dynamics for imatinib and dasatinib are qualitatively similar, there are quantitative dif-
ferences. We demonstrate statistically significant effects in the average response dynamics (Fig. 3B, Table 1).
Specifically, dasatinib treatment yields a faster initial reduction of BCR-ABL levels (i.e. significantly larger slope
parameter o, p <0.0001). Although, we also observed a difference in the average long-term BCR-ABL decline
between the two treatments (p =0.0323), the dasatinib-induced 3-slope is only marginally steeper compared to
imatinib. We did neither detect a statistically significant difference in the initial intercept parameter A, which
approximates the initial BCR-ABL levels (p =0.909) nor in the second intercept parameter B (p=0.361). Our
findings confirm recently reported results®* that, on average, a major molecular response (i.e. BCR-ABL levels
<0.1% =MR3) is achieved earlier in the dasatinib arm (after 22 months) compared to the imatinib arm (after 36
months). These results are robust with respect to uncertainties for BCR-ABL values >10%, potentially induced by
the use of the ABL reference gene (see Supplement material).
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Figure 3. Dynamics of treatment response. (A) Time course data of a random subset of 8 patients per treatment
cohort. BCR-ABL levels below detection threshold are indicated by open triangles. (B) Time-course of mean
BCR-ABL levels (+SD) are shown for intervals of 2 months. The lines correspond to the fixed-effect predictions
of the mean for the imatinib and the dasatinib cohorts. (C) Scatter plot illustrating the missing correlation
between initial slope o, and secondary slope ( for all available, individually fitted patient time courses
(Spearman correlation [95% confidence interval]: imatinib r=0.27 [0.13; 0.40], dasatinib: r =0.17 [0.03; 0.31],
all: r=0.24 [0.14; 0.33]).

A 37.375 n.a.

a 0.674 ‘ 1.168 <0.0001
B 0.196 n.a.

S} 0.039 ‘ 0.048 0.0323

Table 1. Fixed-effect parameter estimates from the selected non-linear mixed effect model (NLME). Treatment
differences are considered for slope parameters o and (3. p-values for the treatment effect on the bi-exponential
parameters are based on Wald tests for equality of the two groups. n.a. =not applicable.

Quantification and prediction of individual treatment responses.  Our results show an accelerated,
more pronounced average initial molecular response in the dasatinib-treated cohort compared to the imatinib
arm (Fig. 3B). However, on the level of individual patients, there is considerable heterogeneity in the BCR-ABL
decline dynamics (both, initially and long-term) that exceeds the differences in the mean response between
the two cohorts (c.f. Fig. 3A, Supplementary Fig. S3). The patients” heterogeneity is not only reflected in the
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BCR-ABL dynamics, it also applies to other prognostic scores or landmarks, such as MR level at 3 or 6 month>®
or the halving time®-'°. Here, we confirm a close correspondence of halving time and initial BCR-ABL decline
o with respect to their prognostic value in achieving major or deep molecular response, with a steeper a-slope
/shorter halving time being related to a better average response (Supplementary Fig. S1). In fact, one can show
that the halving time is a surrogate measure of the slope of the initial BCR-ABL decline (o) and, thereby, closely
resembles its predictive value. At the level of individual patients, however, neither a short halving time nor a
steeper initial BCR-ABL decline guarantees a favorable long-term outcome. The lacking prognostic power of
the initial treatment response on the individual long-term behavior is also supported by the fact that there is
no relevant correlation between the initial () and the secondary (/3) slope of the BCR-ABL dynamics (Fig. 3C,
Spearman correlation coefficient: r=0.24). With respect to the treatment failure, also neither the halving time
(Supplementary Fig. S1) nor the initial slope « (data not shown), are consistently predictive. In contrast, the sec-
ondary (3 slope allows to identify a subpopulation of patients with a higher rate of progression events both for the
dasatinib and the imatinib arm (Supplementary Fig. S1).

Taken together, these results show, that an individual, patient-specific prognosis of long-term treatment effi-
ciency is not possible on the basis of early treatment characteristics alone. Therefore, we suggest to combine
information from early and late treatment dynamics to estimate the patient’s individual response characteristics.
This strategy, however, would not work in case of incomplete information, e.g. due to short molecular monitor-
ing periods or due to undetectable BCR-ABL levels, which hinder the direct estimation of response dynamics.
Furthermore, although the BCR-ABL levels in the peripheral blood partially reflect the residual disease levels of
stem cells, considerable information is lacking to estimate the patient’s long-term response. To overcome these
insufficiencies, we suggest to combine the statistical description (i.e., the estimation of o and (3 slopes) with a
mechanistic modelling approach, which allows to infer the latent stem cell dynamics from the molecular moni-
toring in the peripheral blood and, therefore, to provide better predictions of the individual molecular long-term
treatment response.

Mechanistic modelling of individual treatment responses.  As motivated above, we complement the
statistical modelling by the application of a mechanistic model of TKI-treated CML patients'"!*. In order to esti-
mate patient-specific parameters of the mechanistic model, we previously suggested to use a nonlinear regression
model that patient-wise relates the estimated initial and long-term slope of the corresponding clinically observed
BCR-ABL dynamic to a particular value of the two most critical mechanistic model parameters, namely the deg-
radation rate rq, and the reduced activation function f CML_Although the model provided suitable approxima-
tions, the adaptation failed in some scenarios'*. This approach has been considerably improved, such that we are
now able to provide a consistent model description for all of the considered patients in the IRIS, CML-IV and
DASISION trials. To achieve this, we systematically varied five key model parameters and simulated BCR-ABL
time courses for more than 270,000 different parameter combinations ¥, i.e., generating a large population of
“virtual patients” (for technical details see Material & Methods and Supplementary Methods). The results of this
systematic, large-scale parameter screen have been stored in a look-up table and can be used to efficiently identify
parameter configurations that optimally represent a given, i.e. clinically observed, patient-specific BCR-ABL
dynamic.

Figure 4A shows the clinically determined BCR-ABL levels of a particular patient i over an observation period
of almost 5 years alongside with the estimated bi-exponential regression model 4, > and point-wise confidence
intervals. Using the above described look-up table, we identified all suitable parameter configurations of the mech-

anistic model Gi , which generate simulated BCR-ABL dynamics that fall within the estimated confidence region
(Fig. 4B). Model fits of other DASISION patients are provided in Supplementary Fig. S5. In general, the number of
parameter configurations within 6 scales with the residual variance &} of the bi-exponential data fit p

In other words, a patient dynamic that closely adheres to a biphasic decline characterlstlc leads to a narrower con—
fidence band, which contains fewer suitable parameter configurations. In contrast, fluctuating and/or few data
points lead to a fit with a broader confidence region. A broader confidence region, consequently, usually leads to
more suitable mechanistic model simulations. This results in greater uncertainty and hampers the identification of
a unique model explanation.

Comparing the parameters of the best-fitting mechanistic model ¥ with the corresponding statistical param-
eters );’, we observe a positive correlation between the rate of the gradual TKI-effect onset (ry,,,) and the slope of
the initial decline o (Fig. 4C). Le., the model implies that a faster drug action results in an accelerated reduction
of the initial tumor burden. Furthermore, the cell proliferation activation function (fSML) correlates with the
long-term decline (slope 3). This suggests that the dynamics of the long-term response are predominantly deter-
mined by the rate of residual LSC activation (Fig. 4D). Because the gradual TKI-effect onset (described by ry,,)
is only relevant for early time points, our result can be interpreted as follows: The overall TKI-induced kill of
BCR-ABL positive cells consists of two sub-effects, a background kill rate (described by model parameter rq.,),
which acts over the entire administration period of a TKI, and an additional effect, which is only acting shortly
after onset of treatment (described in the model by the combination of rg;and gradual TKI-effect onset ry,y,)-
Comparing the parameters for the optimal model fits 1‘) for all patients, one observes a tendency towards higher
rates of gradual TKI-effect onset (ry,,,) in the dasatinib cohort, reflecting an accelerated drug response
(Supplementary Fig. S3). Only minor differences of other model parameters are observed for imatinib- vs.
dasatinib-treated patients.

Model prediction for long-term treatment dynamics. ~ Asintroduced above, the set of suitable param-

eter configurations @ consistently describes the observed treatment dynamics of patient i. However, to support
clinical decision- makmg, the model should additionally yield valid predictions for yet unobserved data, e.g.
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Figure 4. Estimation of model parameters and prediction accuracy. (A) The optimal fit of the bi-exponential
regression model /" is shown along with a point-wise confidence interval for one patient i. (B) Identification of
all parameter conﬁguratlons ©;, for which the bi-exponential fit of the resulting model simulation is contained
within the confidence region of the patient’s kinetic. (C) Scatter plot relating the initial slope o of each patient’s
response with the rate of gradual TKI-effect onset (r,,,) obtained for the most suitable model simulation 1‘}

(D) Scatter plot relating the long-term decline 3 of each patient’s response with the specific activation rate of the
residual LSC (f SML) obtained for the most suitable model simulation @,T (E) False positives (FP) and false
negatives (FN) rates for predictions of 5 year outcomes as a function of shorter observation periods (n=234).
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expected BCR-ABL values beyond the current treatment period 7. To test the quality of model-predicted
22y 3y ~d
BCR-ABL dynamics based on available clinical data, we compared the predictions 6/, 6?}’, Giy derived on the

basis of a (reduced) 2, 3 and 4 year data follow-up, with the complete 5 year follow-up @fy for each eligible patient
(Supplementary Fig. S2, see also Material and Methods, Supplementary Methods). Figure 4E illustrates that both,
the false negative rate (FN) and the false positive rate (FP) decline with longer follow up. Consequently, the frac-
tion of correct predictions (i.e. TP + TN) increases. Specifically, our data shows that already predictions derived
on the basis of 2-year BCR-ABL monitoring are compatible with the 5-year follow-up predictions in more than
90%, i.e. FP+FN < 10% (see Fig. 4E). To test for result robustness with respect to uncertainty of BCR-ABL/ABL
ratios >10%, we repeated the analysis for the scenarios in which all these measurements were either
down-weighted by a factor % or omitted from the analysis. No qualitative difference of the results was observed
(Suppl. Figs S6 and S7).

We would like to point out that the number of suitable parameter sets (:): depends on the variability of the
data: the broader the confidence region the more parameter configurations (“virtual patients”) are considered to
be “consistent” with the data. Thus, “consistency” (in the sense used here) and identifiability of the true
patient-specific parameter configuration are anti-correlated. We suggest to interpret the prediction accuracy (i.e.,
1 - error rates) conditionally on the quality of the data. Meaning, for a particular interpretation, error rates should
only be compared with a normalization according to the positive values.

Estimating leukemic stem cell dynamics. Beyond the prediction of BCR-ABL dynamics in the periph-
eral blood, a particular advantage of the mechanistic modelling is the ability to predict the underlying stem cell
dynamics. Thus, the modelling approach in principle allows to derive estimates about the dynamics of leukemic
(i.e. BCR-ABL positive) stem cells (Fig. 5A). In Fig. 4B we visualize the suitable parameter configurations @: for
an individual patient dynamic i. These PB BCR-ABL dynamics may, however, result from very different, underly-
ing stem cell dynamics. As a simple example, a particular, slow decline of BCR-ABL levels in a given patient could
be generated by a lower toxicity of the TKI or, alternatively, by a more pronounced quiescence of the leukemic
stem cells. Our model analysis clearly shows that although the dynamics in the peripheral blood might appear
very similar, the underlying stem cell dynamics can distinctly differ. Figure 5A shows one example of various stem
cell dynamics which according to the mechanistic model all result into similar PB BCR-ABL dynamics (i.e. sim-
ulations within @,.T). Further examples are provided in the Supplement Fig. S4. These results demonstrate that
even detailed information on the BCR-ABL dynamics in the PB is not always a reliable surrogate measure for the
residual disease in terms of the remaining leukemic stem cells.

Analyzing the full patient cohort of the DASISION trial, we observed that the residual variance 57 of the
model fit (i.e. the “quality” of the data) correlates with the width of the prediction interval for the residual leu-
kemic stem cells (Alsc = log o{IsCinax) — log, (Isc,;,)) at 5 years (Fig. 5B). Furthermore, the width of the predic-

T

tions from the parameter configurations ©, in peripheral blood at 5 years (Abcr-abl =log,, (bcr-abl,,,,) —logy,
(bcr-abl,,;,)) only moderately correlates with the corresponding width of the stem cell level Alsc (Fig. 5C).
Reassuring the validity of our approach, we also observed that the maximal number of residual leukemic cells
inversely correlates with the slope (3 characterizing the second decline (Fig. 5D). Thus, our model suggests that the
steepness of the long-term decline of BCR-ABL levels in PB (i.e., 3 slope) is an indicator of the number of residual
LSC. A steeper (3 decline leads to lower residual leukemic stem cell level (given a certain treatment duration).

Given our suggested approach, we are in principle able to derive prediction intervals for the number of resid-
ual leukemic stem cells at any point during TKI treatment, although the uncertainty of this predication is higher
(larger confidence regions) than for the prediction of residual disease levels in the peripheral blood. To vali-
date the model with respect to its prediction power of residual LSC numbers, it needs to be compared either to
BCR-ABL levels in the stem cell(-enriched) population of bone marrow cells (which is almost impossible to be
determined in patients) or to the relapse behavior of patients for which the TKI treatment has been stopped acting
as a surrogate measure of residual leukemic stem cells. A corresponding model analysis studying the molecular
relapse risk of patients after TKI stop is currently in progress®.

Discussion
Our statistical analysis of the dynamic (long-term) treatment response of CP-CML patients within the DASISION
trial demonstrates differences in the average BCR-ABL dynamics between first-line imatinib and dasatinib treat-
ment. Whereas both TKIs show qualitatively similar response dynamics, we demonstrate that dasatinib leads to
a significantly faster molecular response. On the other hand, the detected difference for the average long-term
BCR-ABL decline dynamics is small. Although the absolute values for the early BCR-ABL decline are expected to
differ quantitatively between the use of ABL and other reference genes (such as GUS)***, the presented relative
comparison in the context of a randomized trial does not depend the particular choice of the reference gene.
Our results suggest that although there is also a slight effect on the long-term BCR-ABL decline, the major
advantage of dasatinib treatment is evident in the early phase of treatment. Here, the second generation TKI is, on
average, more efficient in reducing the tumor load compared to imatinib. Similar results were also obtained from
analyzing the primary endpoint of the DASISION trial, which was CCyR after 12 months of therapy®*: signifi-
cantly more patients achieved CCyR in the dasatinib arm compared to the imatinib arm (77% vs. 66%, p=0,007).
Additionally, the final analysis with the 5-year follow-up data of the DASISION trial showed a constant efficacy
benefit over time for dasatinib®. This conforms with our second finding, that once the first phase of the typically
bi-phasic BCR-ABL decline has been completed, the average velocity of further tumor load reduction does only
marginally differ between the two TKIs. Although dasatinib patients on average more quickly gain deep remis-
sions (such as MR4 or MR4.5), the dynamics of response for treating residual disease differs only slightly between
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Figure 5. Estimating residual stem cell numeers (A) Variability for predictions of residual leukemic stem cell
(LSC) numbers for the model simulations ©; in Fig. 4A,B. Every green line corresponds to one suitable
parameter configuration within ©; indicated in blue in Fig. 4B. The green coloring scheme indicates the
distance of the simulation results to the bi-exponential approximation p,
the maximal and minimal number of predicted LSCs at 5 years. (B) Correlatlon of the residual variance 5; 2 of
the model fit (as a measure of data quality) to the variability of the number of predicted LSCs. (C) Correlation of
the width of the prediction interval in the peripheral blood and the variability of the number of predicted LSCs.

(D) Correlation of the second slope § of the patient fit

T of patient i. Isc,,, and Isc, refer to

p; with the maximal number of predicted LSCs.

imatinib and dasatinib. Therefore, other criteria, such as side effects, resistance occurrence, or patient compliance
should be considered as important criteria for a decision on long-term treatment options.

Beyond the statistical results on the quantitative differences in the treatment effects, we also analyzed the
BCR-ABL dynamics in the context of a mechanistic mathematical model. Our simulation results suggest that the
above described differences between dasatinib and imatinib treatment are most likely induced by quantitative
differences in the TKI effects, especially with regard to the initial treatment efficacy. In particular, the higher rates
of gradual TKI-effect onset (r.,,) in the dasatinib cohort support the notion of a more effective initial therapy.

Our results outline the importance of considering dynamic parameters, such as the velocity of BCR-ABL
reduction, for predicting the long-term success of the TKI treatment. Whereas response levels at given landmarks
(e.g. the BCR-ABL level at three or six months after treatment induction) are clinically relevant for the prediction
of treatment failure and the achievement of major/complete cytogenetic or molecular remission, the importance
of considering the disease dynamics is becoming more and more evident, in particular, as this reflects the under-

lying mechanisms of disease progression or regression. We and others

7,

$11-14 promote the idea to also clinically

describe CML treatment response as a continuous, patient-specific process, and thereby building the foundation
of an individualised therapy approach.
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This perception is further substantiated by our analyses to quantify the heterogeneity in the response charac-
teristics of different patients, which exceeds the level of drug induced variability (see Fig. 3). Moreover, we could
demonstrate that there is no correlation of early and late BCR-ABL dynamics (Fig. 3C) on the level of individual
patients. This implies that a prediction about the long-term response of a patient cannot be made based on its
initial response alone. In fact, long-term dynamics can only be approximated if at least a part of the secondary,
slower slope has been quantified.

By using an established mechanistic model of TKI-treated CML we could demonstrate that optimal param-
eter configurations for describing the treatment response of individual patients can be identified. Furthermore,
by defining confidence regions for the time courses of BCR-ABL levels, we do not only identify an optimal set
of parameters, but also a range of scenarios that all adhere with the observed outcome. Using the suggested
mapping of measured BCR-ABL values onto in silico simulations of the treatment dynamics allows us to provide
model-based predictions not only of the expected BCR-ABL values in the peripheral blood, but also for the level
of residual leukemic stem cells in the bone marrow. However, our results also indicate that the peripheral blood
BCR-ABL levels do not allow to uniquely estimate and, therefore, predict the underlying dynamics at the level of
leukemic stem cells. We show that similar response dynamics in the peripheral blood can in principle result from
rather different stem cell dynamics. Although this result (partially) relates to the technical problem of incomplete
model identifiability, it also points to a more general problem: It theoretically demonstrates that there might be
biological processes at the stem cell level that cannot be quantified based on BCR-ABL levels in the peripheral
blood alone, thus calling for the identification of additional biomarkers. Nevertheless, because the number of
residual leukemic stem cells is most likely the decisive parameter which determines the cure status, our model
allows in principle to predict the expected time to “real” cure (i.e. elimination of all leukemic stem cells) on the
basis of a (conservative) confidence interval estimation of residual leukemic stem cells. However, in the context
of treatment cessation trials it appears that secondary effects like immunological components strongly influence
long-term disease control. Including those aspects into a quantitative modelling environment requires both a bet-
ter understanding of the mechanistic immune interactions as well as their quantification. Corresponding efforts
in experimental and conceptual studies are ongoing®**".

As described above, our approach allows for a robust prediction of the long-term molecular response in
TKI-treated CML patients. Herein, the quality of the predictions depends considerably on the amount and quality
of clinically determined BCR-ABL levels. Further limitations of the approach are related to the appearance of TKI
resistance or disease acceleration. Currently, the model assumes constant treatment effects. Along these lines, also
effects of non-compliance (i.e., unknown treatment interruptions) are problematic. These are obviously inducing
altered treatment effects, which cannot be captured by the model, if time point and durations are not known.
Another problem appears if patients respond “too well’, i.e. if BCR-ABL levels quickly approach the PCR quan-
tification limit and stay negative. Although such patients can be considered as good responders, the long-term
dynamics can hardly be estimated in these cases. Thus, BCR-ABL negative patients with a persisting BCR-ABL
decline (below the quantification limit) cannot be distinguished from those that would show a constant albeit
non-detectable residual disease level. While our approach, on the one hand, can partially account for missing
information by a compensation from the entire population of similar patients (i.e. mixed-effect modelling), this,
on the other hand, bears the danger that the specificity of a particular patient is underestimated.

The availability of high quality time course data of tumor load made CML a primary example for many mathe-
matical modeling approaches. Beyond the statistical description of time courses, several models fostered a strong
discussion about underlying mechanisms of disease and treatment progression such as the role of TKI activity in
the stem cell compartment!**-4, the role of cellular quiescence*!, combination therapies*>*, resistance occur-
rence* or the role of the immune system?*4>4. All those models are bound to their underlying set of assumptions,
which are in many instances motivated by experimental or clinical observations, but need to be understood to
appreciate the potential and limitations of each model approach. As for our particular model it is the perception
of CML as a competition process of normal and leukemic cells that simplifies a complex set of regulations and
escape mechanisms. However, sensitivity analysis and the success of different modeling approaches with slightly
diverging assumptions ensures us about the validity of our approach and its generalizability.

Our current work illustrates the role for statistical and dynamical modeling of CML to delineate the potential
and the limitations of systems biological approaches for disease management and treatment optimization. While
on one side we inherently perceive and describe treatment response as the feature of an individual patient, we, on
the other side, use the statistical characterization to adapt a mechanistic model of the underlying treatment. This
step allows to derive predictions about unobserved quantities such as the residual leukemic burden in the bone
marrow, and thereby builds the basis for patient-specific treatment approaches.
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