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Rationale and Objective: To perform a meta-analysis to compare the diagnostic test accuracy (DTA) of deep learning (DL) in detecting
coronavirus disease 2019 (COVID-19), and to investigate how network architecture and type of datasets affect DL performance.

Materials and Methods:We searched PubMed, Web of Science and Inspec from January 1, 2020, to December 3, 2020, for retrospective
and prospective studies on deep learning detection with at least reported sensitivity and specificity. Pooled DTA was obtained using ran-
dom-effect models. Sub-group analysis between studies was also carried out for data source and network architectures.

Results: The pooled sensitivity and specificity were 91% (95% confidence interval [CI]: 88%, 93%; I2 = 69%) and 92% (95% CI: 88%,
94%; I2 = 88%), respectively for 19 studies. The pooled AUC and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.88, 0.92) and 112.5
(95% CI: 57.7, 219.3; I2 = 90%) respectively. The overall accuracy, recall, F1-score, LR+ and LR� are 89.5%, 89.5%, 89.7%, 23.13 and
0.13. Sub-group analysis shows that the sensitivity and DOR significantly vary with the type of network architectures and sources of data
with low heterogeneity are (I2 = 0%) and (I2 = 18%) for ResNet architecture and single-source datasets, respectively.

Conclusion: The diagnosis of COVID-19 via deep learning has achieved incredible performance, and the source of datasets, as well as
network architectures, strongly affect DL performance.
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INTRODUCTION
C oronavirus disease 2019 (COVID-19) outbreak
which was officially reported in the Wuhan city of
China in December 2019 (1), is now found in all

countries of the world. The disease exponentially grew into a
global pandemic by March 11, 2020 as declared by the World
Health Organization (WHO) (2). Although China, where the
first cases of the disease were reported, is gradually recovering
from this global pandemic, most countries are still being ravaged
by this lethal virus pneumonia. The report on the WHO global
pandemic website on 2nd June 2021, shows the total confirmed
cases, deaths, new cases and vaccinated as 170,812,850,
3,557,586, 371,489 and 1,581,509,628 respectively (3).

Despite the rollout of vaccines across the world, there are
still new cases and new deaths recorded daily in some
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countries of the world. Most new cases reported are due to
the second wave necessitating immediate and long-term solu-
tions for early detection. This is crucial to the management of
the disease to prevent the third wave due to the highly conta-
gious nature of the disease. The gold standard diagnostic test
for COVID-19 is the reverse transcriptase-polymerase chain
reaction (RT-PCR) (4) but the time required for the result
to be available is considerably long. This perceived shortcom-
ing led to the development of a non-invasive assessment of
COVID-19 patients. Radiologic assessment of the chest via
plain chest radiography and chest computed tomography
have been found useful in the management of COVID-19.
Chest CT is capable of revealing some image features in
patients with COVID-19 that do not show any detectable
abnormalities on a plain radiograph (5). Radiologists' studies
revealed that the imaging features of patients with the
COVID-19 are bilateral, peripheral, multifocal ground-glass
opacity, and consolidation, predominantly located at sub-
pleural and peri-bronchovascular regions, were the typical
features (1,5). However, other kinds of viral pneumonia can
also mimic COVID-19 pneumonia thus making it difficult to
differentiate (6).

The field of machine learning (ML) cuts across multiple
statistics-based techniques useful for radiologists in disease
diagnosis which complements the currently adopted deep
learning (DL) approach (7). The incorporation of ML into
deep learning and artificial intelligence (AI) has shown great
potentials in assisting decision-making for assessing severity
and prediction of clinical outcomes of disease in COVID-19
patients (8,9). Li et al. (10) conducted a systematic and meta-
analysis review on machine learning diagnosis of COVID-19
on 151 published studies and reported the sensitivity and
specificity of 92.5% and 97.9% respectively on the XGBoost
model. Recently, Li et al (11) carried out a multi-reader study
for the grading of COVID-19 in chest radiography and
observed that the AI system improved radiologist perfor-
mance. Since the deep learning technique has been found
useful in the diagnosis of COVID-19 (12,13), combining
radiologist interpretation with the DL approach gives a prom-
ising result for the detection of COVID-19 (13). To this
effect, the potential use of deep learning suggests a better
future in the clinical diagnosis of COVID-19 as supported by
Islam et al. (14). Li et al. (13) performed a multi-center retro-
spective study using a deep learning COVID-19 detection
neural network (COVNet) to extract visual features from
volumetric CT scans for detection of COVID-19. Accurate
detection of distinct features of COVID-19, other than those
of community-acquired pneumonia (CAP) and other lung
infections, was achieved (13). A study by Javo et al. (15) to
test the diagnostic accuracy of convolutional neural network
(ResNet-50) on public chest CT datasets revealed that while
the diagnostic accuracy achieved by a deep learning model
showed no significant difference with that of radiologists at
rule-in thresholds, differences were significant at rule-out
suggestive of better results of deep learning with public data-
sets (9). Moezzi et al. (16) summarized the evidence evaluated
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using the meta-analysis approach on prediction of the accu-
racy of AI assisted CT scanning for COVID-19 using 36 stud-
ies. The study compared DL, ML, and AI systems. The result
shows that AI systems performed slightly better than their
corresponding DL and ML counterparts which implies that
the AI systems will be useful in identifying COVID-19 symp-
toms. This study did not consider the effect of training data or
how the network architectures affect DL detection ability. A
systematic analysis with meta-analysis of the effect of deep
learning network architectures and data types will provide a
means to bridge this evidence gap which is the aim of this sys-
tematic review. This systematic review and meta-analysis
aimed to summarize, all the available evidence to quantita-
tively evaluate the diagnostic test accuracy (DTA) of a deep
learning algorithm for detection of COVID-19 in chest CT.
In doing so, the review provides crucial new information on
how network architecture and data types affect the perfor-
mance of the DL algorithm in COVID-19 diagnosis.
MATERIALS ANDMETHODS

This systematic review and meta-analysis was prospectively
registered at PROSPERO with the registration number
CRD: 42020223202 (17) The systematic review was per-
formed by two independent reviewers (TEK and YC or PM
and EOO using a well-established review protocol known as
Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines (18). The discrepancies
between the two results were discussed by the two reviewers,
and a more experienced third reviewer (XY or JZ) was con-
sulted in case consensus was not reached.

We conducted a meticulous search that focused on deep
learning diagnosis of COVID-19 using chest CT images
patients who reported well-documented information on
diagnosis accuracy test or at least 2 £ 2 confusion matrix that
is the sensitivity and specificity. Our search includes clinical
trials, cohort, prospective, and retrospective studies based on
deep learning detection of COVID-19. It is important to
note that most studies fall in the retrospective studies because
the nature of deep learning requires a large number of data-
sets, and all literature reviews were excluded.
Data Sources and Searches

PubMed, Inspec, Web of Science, and other biomedical data-
bases were searched from inception with additional hand
searched to unravel relevant literature from 1st January 2020
to 3rd December 2020. The same keywords were used for
PubMed, Inspec, and Web of Science databases, which
includes the following search terms: “computed tomogra-
phy”, “COVID-1900, “2019-novel corona-virus”, “SARS-
COV2”, or “Diagnosis of COVID-19 based on Deep Learn-
ing or Artificial Intelligence (AI)”. The complete search path
algorithm which follows Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA) is shown in
Figure 1.



Figure 1. Study of inclusion and exclusion flowcharts adapted from the Preferred Reporting Items for PRISMA. n: number of literature and
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses, CT: Computed tomography, DTA: diagnostic test accuracy.
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Eligibility Criteria

Literature was included in the study if it was based on deep
learning diagnosis of COVID-19 using chest CT images both
in screening and diagnostic protocol; well-documented infor-
mation on diagnosis accuracy test at least sensitivity and speci-
ficity or 2 £ 2 confusion matrix to compute other diagnostic
test accuracy parameters. The included studies are composed
majorly of retrospective with few prospective studies, an
observer performance study, clinical trial, and comparative
studies. The exclusion criteria comprised studies that involved
literature reviews, studies on RT-PCR, other machine learn-
ing detection-based algorithms; detection using chest X-ray
datasets or a combination of both chest CT and chest X-ray.
Besides, studies devoid of useful information to compute the
DTA and multiple publications were also excluded. For stud-
ies that reported the same study cohort or sub-set of the
study, the most detailed one in terms of data availability was
used.
Study Selection

Articles retrieved were manually sorted and duplicates were
removed using titles/abstracts, then followed by full text
according to the predefined search criteria and final eligible
studies were selected.
Data Collection Process

We developed a standard extraction sheet which was consen-
sually agreed upon by two independent reviewers team
(TEK and YC or BAN and HS), to extract the information
needed and resolve the conflict by consensus from eligible
studies which includes: Nationality, data source, data parti-
tioning, training model, deep learning techniques, training
parameters, the total number of positive (cohort) vs control
(negative) and other valuable information. Also, we extracted
quantitative data for the meta-analysis which include (2 £ 2)
confusion matrix (True Positive (TP), False Negative (FN),
True Negative (TN), and False Positive (FP)) needed to com-
pute the required DTA like sensitivity, specificity, diagnostic
odds ratios (DOR), recall, accuracy, precision, F1- Score, the
positive and negative likelihood ratios and the AUC (19,20).
The expressions of these assessment measures are given
below:

Positive likelihood ratio LRþð Þ ¼ Sensitivity
1� Specificity

ð1Þ

Negative likelihood ratio LR
_ð Þ ¼ 1� Sensitivity

Specificity
ð2Þ

Precision ¼ True Positive
True Positiveþ False Positive

ð3Þ
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Recall ¼ True Positive
True Positiveþ False Negative

ð4Þ

Accuracy ¼ True Positiveþ True Negative
True Positiveþ False Positiveþ False Negativeþ False Negative

ð5Þ

F1� Score ¼ 2 � Precision �Recallð Þ
PrecisionþRecallð Þ ð6Þ
Risk of Bias and Quality Appraisal

The quality of included studies was assessed using a modified
QUADAS-2 to ensure appropriateness for COVID-19
screening (21). The domains assessed were Patient Selection,
Index Tests, Reference Standard, Flow and Timing, and
Applicability. Two reviewers (TEK and YC) performed an
independent quality assessment and the final result was based
on consensus. The overall study quality pipeline is shown
in Fig. 2
Statistical Data Analysis

A univariate meta-analysis was performed separately for sensi-
tivity, and specificity to estimate the diagnostic accuracy of
each modality using the DerSimonian-Laird method of ran-
dom effects model (RE) (22). We chose the RE model due
to suspicion of high rates of heterogeneity that might be
occasioned by differences in the network architecture used
for the training, differences in training data across age, sex,
Figure 2. Assessment of quality of all included studies using the QUADA
risk of bias for all domains (c) Proportion of applicability concerns in three
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and so on. The primary outcomes were sensitivity, specificity,
summary receiver operating characteristic (SROC) curve, and
diagnostic odds ratios (DOR). We calculated point estimates
and 95% confidence intervals (CI) for each study to ensure
consistency in sensitivity and specificity. To obtain a SROC
curve, we used a bivariate meta-analysis of sensitivity and
specificity using R version 3.6.2 with RStudio version
1.2.5042 implementing R-packages “mada” and “meta”, fol-
lowing which mean AUC of SROC was estimated (23). Sec-
ondary outcomes included positive likelihood and negative
likelihood ratios, accuracy, precision and F1-score.

Statistical heterogeneity between studies was evaluated with
Cochran’s Q test and the I2 statistic (19). For the Q statistic, values
range 0%�40% imply insignificant heterogeneity, 30%�60%
connote moderate heterogeneity, 75%�100% mean considerable
heterogeneity. Publication bias was evaluated and visualized by
constructing a funnel plot (25). All p-values were based on two-
sided tests and p-value <0.05 was considered to represent statisti-
cal significance. We conducted sub-group analysis by screening
based on the deep learning techniques and training model (trans-
fer learning and customized method).
Quality Assessment

Quality assessment studies were rated as being of the moderate
overall assessment of quality according to QUADAS2 (Fig. 2).
About 5% of the included studies did not give details about
patient selection, 5% provided unclear information about patient
selection leading to high and unclear biases in patient selection as
others are considered as having a low risk of bias. Also, three
S-2 tool (a) Summary of risk of bias for each studies (b) Proportion of
domains. (Color print). (Color version of figure is available online.)
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studies (16%) gave unclear information about how the index test
was performed thus leading to an unclear risk of bias in the index
test. Four studies (21%) focused on detection of COVID-19 from
other pneumonia thus making the review question not match
exactly the index test and about 5% of the studies did not give
clear information on whether the review question matched the
targeted condition thus proving high and unclear applicability
concerns for the index test respectively. Eight studies (42%) pro-
vided no clear information about the interval between index test
and reference standard test and how they were performed leading
to unclear bias in flow and timing as others are considered as hav-
ing a low risk of bias. A funnel plot was used to also assess the
publication bias for the 19 studies that met the inclusion criteria.
There is low publication bias in the study according to Liu (25)
the points will be symmetrically distributed around the true effect
in the shape of an inverted funnel when publication bias is very
low as shown in Figure 3. This was also supported by the QUA-
DASS-2 assessment in Figure 2.
RESULTS

Overview of the Included Studies

The database search retrieved 283 publications. After the dupli-
cates were removed, and the publications screened using title and
abstracts, a total of 255 publications were screened out (Fig. 1).
Twenty-eight full-text articles were assessed for eligibility. Nine-
teen articles were found worthy to meet inclusion criteria
(12,13,26�41). Three articles applied the machine learning
approach, three articles combined datasets of chest X-ray and
Figure 3. Funnel plot showing the low likelihood of publication bias in al
chest CT and three studies did not provide useful information on
parameters to estimate the diagnostic test accuracy (DTA), hence
these nine studies were exempted as shown in Figure 1. The
included studies are from eight different countries: Austria (5.3%),
China (63.2%), Iran (5.3%), Korea (%5.3%), Egypt (5.3%), China,
and U.SA. (10.5%), China, U.S.A., Japan, and Italy (5.3%). In
these studies, two data sources were identified, namely, single
source (26,27,38,41) and multiple sources
(12,13,28�30,33,34,36,37,40). The deep learning networks were
classified into three categories ResNet models (15,31,33,39),
Hybrid of ResNet architectures like Alex, GoogleNet, FCoNet,
UNet++, Ensembed deep learning; 3D DensNet-121, Con-
vNet, UNet (13,26,32,34,36,40) and finally other models that do
not fall into the above two categories (7,22�25,30,32,33,36).
Some of the studies included in the quantitative synthesis (meta-
analysis) have reported a higher DTA performance for deep learn-
ing algorithms compared with radiologist interpretation
(31,37,41), while others have shown that deep learning algorithm
did aid DTA performance (12,30,33,39). Other studies reported
higher sensitivity over specificity (26�29,33,35,39,41), while
some reported higher specificity (13,15,30,31,32,34,36,37,40).
Diagnostic Test Accuracy of all Included Studies

This is overall of all diagnostic test accuracy (DTA), the
pooled sensitivity of univariate analysis of nineteen studies
was 0.908 (95% CI:0.879 to 0.931, I2 = 81.6% for 19 studies)
as shown in Figure 4. The pooled specificity of univariate
analysis was 0.916 (95% CI:0.877 to 0.944, I2 = 82.2% for 19
studies) as shown in Figure 5. The pooled diagnostic odd
l included studies.
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Figure 4. Univariate sub-group analysis of sensitivity with random model based on data source. g represents sub-group analysis of data,
when g = 1(single-source datasets) and g = 0 (multi-source datasets).

KOMOLAFE ET AL Academic Radiology, Vol 28, No 11, November 2021
ratios (DOR) was 112.5 (95% CI:57.7 to 219.3, I2 = 90.7%
for 19 studies) as shown in Figure 6. The positive likelihood
ratio (LRþ) ranges from 2.11 to 177.60 with pooled mean of
23.13 (Table 2), likewise the negative likelihood ratio (LR�)
spans from 0.021 to 0.31 with pooled mean of 0.13. The
SROC of the bivariate model has an AUC of 0.95 (Fig. 7).
The accuracy of all included studies ranges from 0.7600 to
0.9879 with a mean of 0.8948 (Table 2), while the precision
ranges from 0.7059 to 0.9703 with the mean of 0.8966
(Table 2), the F1-score has a mean of 0.8966 and ranges from
0.7500 to 0.9787 and finally, the recall ranges from 0.7935 to
0.9804 with mean of 0.8949 (Table 2).
DTA for the Sub-Group Analysis Based on Training Data

We decided to check the effect of different training datasets
on the diagnostic performance. The analysis with multi-data-
sets has a sensitivity of 0.889 (95% CI:0.857 to 0.914,
I2 = 75.6% for 15 studies) while that of single-source datasets
was 0.956 (95% CI:0.935 to 0.970, I2 = 0.0% for four stud-
ies), indicating no significant heterogeneity between the sen-
sitivity. The random effect model shows a slightly significant
difference in the sensitivity of studies with single-source and
multiple source datasets with (p-value <0.001) (Fig. 4). In
addition, the specificity is 0.917(95% CI:0.866 to 0.949,
I2 = 90.2% for 15 studies) for multi-source datasets, while the
1512
specificity of single-source datasets is 0.923(95% CI:0.894 to
0.945, I2 = 18.0% for 15 studies). The result indicates that
there was a slightly significant difference in the specificity of
single-source and multi-source datasets (Fig. 5). Furthermore,
the single-source dataset has a pooled DOR of 282.7 (95%
CI:168.9 to 473.1, I2 = 0.0% for four studies), while the
multi-source datasets has DOR of 88.8 (95% CI:41.9 to
188.2, I2 = 91.3% for 15 studies). The result of DOR indi-
cates that there is a significant difference between DOR of
single and multi-source datasets during training as shown in
Figure 6.
DTA for the Sub-Group Analysis Based on Network
Training Model

The whole process was subdivided into two models namely
pre-trained or customized network based on the way the net-
work was trained. For the pre-trained model, the pooled sensi-
tivity is 0.905 (95% CI:0.875 to 0.929, I2 = 81.6% for 15
studies), while the sensitivity of customized network is 0.931
(95% CI:0.795 to 0.979, I2 = 67.7% for four studies). There
was no significant difference between the customized training
datasets and pre-trained data for analysis with p-value = 0.6008
as shown in Fig. 8. Likewise, the specificity for pre-trained
datasets is 0.925(95% CI:0.887 to 0.952, I2 = 89.7% for 15
studies), while that of customized datsets is 0.862 (95%
CI:0.639 to 0.956, I2 = 77.0% for four studies) as shown in



Figure 5. Univariate sub-group analysis of specificity with random model based on data source. g represents sub-group analysis of data
when g = 1(single-source datasets) and g = 0 (multi-source datasets).

Figure 6. Univariate sub-group analysis of DOR based on data source. DOR: diagnostic odds ratio, g represents sub-group analysis of data
when g = 1(single-source datasets) and g = 0 (multi-source datasets).
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Figure 7. The SROC bivariate model curve for diagnostic test
accuracy. SROC: summary receiver operating characteristic curve
(bivariate model) for diagnostic test accuracy. CI: Confidence inter-
val; AUC: area under the curve.
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Figure 9. These results indicate that there was no significant
difference in the sub-group analysis between the pre-
trained and customized models with p-value of 0.3134.
The pooled DOR of the pre-trained model is 125.3 (95%
CI:61.6 to 254.7, I2 = 91.7% for 15 studies), while that of
customized model is 83.8 (95% CI:55.7 to 219.3,
I2 = 86.2% for four studies) as shown in Figure 10. There is
no statistical difference between the DOR of the pre-
trained and customized models.
Figure 8. Univariate sub-group analysis of sensitivity with random mode
network model when g = 1(pre-trained model) and g = 0 (customized mod
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DTA for the Sub-Group Analysis Based on Network
Architecture

We sub-divided the analysis into three categories of network
for convenience and for ease analysis during the meta-analysis
as ResNet, ResNet Hybrid, and other networks as shown in
Table 1. The network with ResNet architectures has a sensi-
tivity of 0.845 (95% CI:0.801 to 0.881, I2 = 0.0% for four
studies), while the Hybrid ResNet has sensitivity of 0.916
(95% CI:0.872 to 0.945, I2 = 77.4% for six studies) and other
network architecture has sensitivity of 0.927(95% CI:0.878 to
0.957, I2 = 77.7% for nine studies). The sensitivity values
indicate that there is a significant difference between the three
sub-groups of the network used for the training of deep
learning with (p-value = 0.0068) as shown in Figure 11.
Looking in-depth into the specificity also, the ResNet model
has 0.868 (95% CI:0.665 to 0.956, I2 = 85.9% for four stud-
ies), the pooled specificity of ResNet Hybrid is 0.957 (95%
CI:0.912 to 0.980, I2 = 89.9% for 6 studies) and the specific-
ity of other network models is 0.896(95% CI:0.825 to 0.940,
I2 = 85.5% for nine studies).

These results reveal that there is no significant difference in
the specificity of the three categories of network architecture
with a p-value of 0.1011 as shown in Figure 12. For the
ResNet architecture, the pooled DOR is 35.4 (95% CI:8.8
to 143.3, I2 = 83.9% for four studies) while the ResNet
Hybrid architecture has DOR of 109.7(95% CI:37.4 to
l based on the training model. g represents sub-group analysis of the
el).



Figure 9. Univariate sub-group analysis of specificity with random model based on the training model. g represents sub-group analysis of the
network model when g = 0 (pre-trained model) and g = 1 (customized model).

Figure 10. Univariate sub-group analysis of DOR based on the training model. DOR=diagnostic odds ratio, g represents sub-group analysis
of the network model when g = 0 (pre-trained model) and g = 1 (customized model).
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TABLE 1. Summary of Study Characteristics of all Included Studies

S/N Authors Nationality Data Sources
(Single/Multiple)
or
benchmark or
real-time data

Training model
(Pre-trained
(transfer)
or customized
model)

Data partitioning
Training data
(TD) Validation
data (VD), Test
data (TTD)

Deep learning
Techniques
Eg GAN, CNN,
VGG etc

Number of
training epochs/
Learning rate/
Regularization

Batch
size

Threshold
for the
classifiers

Brief summary
of the study

Total no. of
patients
COVID-19
positive
vs Negative
(Control)

Any other vital
information
about the study

1 Attallah et al.
(26)

Egypt Single/
benchmark

Pre-trained Alex, GoogleNet,
ResNet, ShuffleNet

20/1 £ 10�4/
5 £ 10�4

10 Cubic SVM
classifier

4 pre-trained CNNs
were used individu-
ally to detect
COVID-19 and dis-
tinguish them from
non-COVID-19
cases

347 vs 397 Retrospective, sto-
chastic gradient
descent with
momentum is used
for optimization
with 5-fold cross
validation.

2. Bai et al.(12) China/USA Multiple/
benchmark

Pre-trained TD = 830,
VD = 237,
TTD = 119

ImageNet NA/1 £ 10�4/
1 £ 10�4

64 EfficientNet B4 AI+Radiologist vs
Radiologist vs
Without AI

521 vs 665 Retrospective

3. Chen et al.
(27)

China Single/
benchmark

Customized - UNet++ NA/1 £ 10�4/NA » Prediction box Compare DL detec-
tion in chest CT
using UNet++with
radiologist effi-
ciency

51 vs 55 Retrospective

4. Gifan et al.
(28)

Iran Multiple/
benchmark

Pre-trained TD = 232, VD=58,
TTD = 97

Ensembled deep
transfer
+CNN architecture

50/1 £ 10�4/NA 32 Softmax Performance of
ensemble deep
transfer learning for
COVID-19 detec-
tion

349 vs 397 Retrospective

5. Han et al.(29) China Multiple/
benchmark

Customized TD = 276,
VD = 92,
TTD = 92

3D CNN 100/1 £ 10�5/NA » » Proposed a weakly-
supervised learning
framework for
screening of
COVID-19

230 vs 230 5-fold cross
validation

6. Harmon
et al. (30)

China, Italy,
Japan,
U.S.A.

Multiple/
benchmark

Pre-trained TD = 984,
VD = 296,
TTD = 1337

3D DenseNet-121 » » Grad-CAM
method

Develop and evaluate
a DL algorithm for
the detection of
COVID-19 on chest
CT with hybrid 3D
and full 3D models

922 vs 1695 Lung segmentation
+data
augmentation

7. Javor et al.
(15)

Austria Multicenter/
benchmark

Pre-trained TD = 328, VD = 66 ResNet-50 17/NA/NA 32 » Compare the robust-
ness of DL in clas-
sification of COVID-
19 to experienced
radiologists.

856 vs 254 Data augmentation

8. Jin et al. (31) China Multicenter/
benchmark

TD = 751,
TTD = 751

ResNet-152 » » Grad-CAM
+LASSO

AI vs Radiologist
detection

» Lung segmentation

9. Ko et al.(32) Korea Multicenter/
benchmark

Pre-trained TD = 955,
TTD = 239

FCoNet+ResNet-50 » » Softmax » No lung segmentation
+ data
augmentation

10. Li et al.(13) China Multicenter/
benchmark

Pre-trained TD = 3918,
TTD = 434

CovNet+ResNet-50 » » Softmax
(Grad-Cam)

AI to detect COVID-19
from CAP

468 vs 2854 Lung segmentation

(continued on next page)
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TABLE 1. (Continued)

S/N Authors Nationality Data Sources
(Single/Multiple)
or
benchmark or
real-time data

Training model
(Pre-trained
(transfer)
or customized
model)

Data partitioning
Training data
(TD) Validation
data (VD), Test
data (TTD)

Deep learning
Techniques
Eg GAN, CNN,
VGG etc

Number of
training epochs/
Learning rate/
Regularization

Batch
size

Threshold
for the
classifiers

Brief summary
of the study

Total no. of
patients
COVID-19
positive
vs Negative
(Control)

Any other vital
information
about the study

11. Mei et al. (33) China/
U.S.A.

Multicenter/
benchmark

Pre-trained TD = 534,
VD = 92,
TTD = 279

ResNet-18 40/1 £ 10�3/NA 16 » AI Vs Radiologist
detection

419 vs 486 Lung segmentation

12. Ouyang et al.
(34)

China Multicenter/
benchmark

Pre-trained TD = 2186,
TTD = 2796

ResNet-34 20/2 £ 10�4/
1 £ 10�4

20 » Diagnosis of COVID-
19 vs CAP

Lung segmentation

13. Song et al.
(35)

China Multi-centre/
benchmar

Customized TD = 161,
VD = 20,
TTD = 20

Big-BIGAN 120/NA/NA 16 » Diagnosis of COVID-
19 vs Other viral
pneumonia

98 vs 103 »

14. Wang et al.
(36)

China Multicenter/
benchmark

Pre-trained 3D UNet +
3D ResNet

300/NA/0.95 » Binary classifier Applied a novel multi-
task prior-attention
residual learning
strategy for COVID-
19 screening

1315 vs 3342 Lung segmentation
+Data
augmentation

15. Wang et al.
(37)

China Multicenter/
benchmark

Pre-trained TD = 709,
TTD = 342

DenseNet-121
+COVID-19 Net

» » » Propose a fully auto-
matic DL system
for COVID-19 diag-
nostic

» Lung Segmentation

16. Wang et al.
(38)

China Single source/
benchmark

Pre-trained TD = 449,
TTD = 131

UNet +DeCovNet 100/1 £ 10�5/
1 £ 10�4

1 Prob threshold of
0.8 using binary
crossentropy

Classify COVID-19
and Non-COVID-19

313 vs 229 »

17. Wu et al.(39) China Multicenter/
benchmark

Customized TD = 294,
TTD = 50

ResNet-50 NA/1 £ 10�5/NA 4 » Classify into 3 COVID-
19, non-COVID-19
and other influenza

» Lung segmentation
+Data
augmentation

18. Xu et al. (40) China Multicenter/
benchmark

Pre-trained TD =
TTD =

VNet + ResNet-18 » » » 219 vs 399 Lung segmentation
+Data
augmentation

19. Yang et al.
(41)

China Single/
benchmark

Pre-trained TD = 135,
VD = 20,
TTD = 140

DenseNet 20/NA/NA 32 » Pilot study on COVID-
19 diagnosis

» »

CAP, community acquired pneumonia; COVID, coronavirus disease 2019; DL, deep learning
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TABLE 2. DTA Estimated From all Included Studies Using the (2 £ 2) Truth Table

Authors Sensitivity TP FN Specificity TN FP LR+ LR� Accuracy Precision F1-Score Recall

Attallah et al. (26) 332 15 372 25 15.1935 0.0461 0.9462 0.9300 0.9432 0.9568
Bai et al. (12) 495 26 638 27 23.4005 0.0520 0.9553 0.9483 0.9492 0.9501
Chen et al. (27) 50 1 51 4 13.4804 0.0211 0.9528 0.9259 0.9524 0.9804
Gifani et al. (28) 90 8 83 22 46.0000 0.1033 0.8522 0.8036 0.8571 0.9184
Han et al. (29) 46 1 46 1 8.5000 0.0217 0.9787 0.9787 0.9787 0.9787
Harmon et al. (30) 85 15 90 10 12.6667 0.1667 0.8750 0.8947 0.8718 0.8500
Javor et al. (15) 38 7 42 3 29.0000 0.1667 0.8889 0.9268 0.8837 0.8444
Jin et al. (31) 87 13 97 3 177.6052 0.1340 0.9200 0.9667 0.9159 0.8700
Ko et al. (35) 98 5 557 3 21.11981 0.0488 0.9879 0.9703 0.9808 0.9515
Li et al. (13) 114 13 294 13 3.4627 0.1069 0.9401 0.8976 0.8976 0.8976
Mei et al. (33) 112 22 110 35 6.5994 0.2164 0.7957 0.7619 0.7972 0.8358
Ouyang et al. (34) 1965 330 436 65 3.2000 0.1652 0.8587 0.9680 0.9087 0.8562
Song et al. (35) 12 3 15 5 22.0000 0.2667 0.7714 0.7059 0.7500 0.8000
Wang et al. (36) 88 12 96 4 4.2115 0.1250 0.9200 0.9565 0.9167 0.8800
Wang et al. (37) 73 19 56 13 13.0000 0.2545 0.8012 0.8488 0.8202 0.7935
Wang et al. (38) 91 7 91 7 2.1081 0.0741 0.9286 0.9286 0.9286 0.9286
Wu et al. (39) 30 7 8 5 26.0000 0.3074 0.7600 0.8571 0.8333 0.8108
Xu et al. (40) 26 2 27 1 26.0000 0.0741 0.9464 0.9630 0.9455 0.9286
Yang et al. (41) 68 2 61 9 7.5556 0.0328 0.9214 0.8831 0.9252 0.9714

Min. 2.1081 0.0211 0.7600 0.7059 0.7500 0.8949
Max. 177.6052 0.3074 0.9879 0.9787 0.9787 0.9804
Avrg. 23.1350 0.1256 0.8948 0.9008 0.8966 0.7935

DTA, diagnostic test accuracy; FN, false negative; FP, false positive; LR+, positive likelihood ratio; LR-, negative likelihood ratio; TP, true pos-
itive; TN, true negative.
The bold values represent the minimum, maximum and average value for the computed DTA.
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321.6, I2 = 89.0% for nine studies). Finally, the category of
other networks has pooled DOR of 363.2 (95% CI:73.6 to
741.7, I2 = 93.3% for six studies) revealing there is no statisti-
cal difference between these types of networks used during
the training process (Fig. 13).
DISCUSSION

The systematic review of diagnostic test accuracy (DTA) of deep
learning (DL) detection of COVID-19 in nineteen studies has
been carried out. The pooled DTA for all the 19 studies at a 95%
Confidence Interval (CI) had a sensitivity of 0.908 (0.879 to
0.931, I2 = 81.6%), specificity of 0.916 (0.877 to 0.944,
I2 = 82.2%), DOR of 112.5 (57.7 to 219.3, I2 = 90.7%), LR+ of
23.13(2.11 to 177.60), LR- of 0.13(0.021 to 0.31), accuracy of
0.8948 (0.7600 to 0.9879), recall of 0.8949 (0.7935 to 0.9804),
precision of 0.8966 (0.7059 to 0.9703), F1-score of 0.8966
(0.7500 to 0.9787) and AUC of 0.95. From this high pooled
DTA of the DL algorithm, it is evident that the deep-learning
algorithm can distinguish between patients with and without
COVID-19 successfully. A previous study on DL detection of
COVID-19 by Moezzi et al. (16) on 23 studies had recorded sim-
ilar results with sensitivity of 0.91, specificity of 0.88, AUC of
0.96, and DOR of 99.4, although our pooled specificity and
DOR increased by 4% and 13% respectively. Other meta-analysis
studies on DTA performance of chest CT on COVID-19 detec-
tion were also compared (42�48). Comparing the pooled sensi-
tivity with the work of Mahmoud et al. (42) on DTA of chest
1518
CT for the detection of COVID-19 on 7 studies, it was found
that the pooled sensitivity is 0.89, and the result is similar to the
pooled sensitivity of 0.89 recorded by Komolafe et al.(43) on
DTA of chest CT using 36 studies. It was observed from our
results that deep learning detection achieved higher sensitivity.
This implies that deep learning algorithms has the capacity to
detect more COVID-19 compared to radiologist result of Mah-
moud et al.(42) and Komolafe et al.(43). Also, our pooled sensitiv-
ity achieved a slight increase of about 0.9% when compared to
the pooled result of seven studies by Vafea et al. (44), and this was
also in line with the result of 13 studies done by Bao et al.(45)
with a pooled sensitivity of 0.904. Similarly, Kim et al.(46) per-
formed a meta-analysis on 63 studies with chest CT pooled sensi-
tivity of 0.94 which represents approximately 3.5% increment
above our deep learning result. This is in good agreement with
the conclusive remarks by Duarte et al. (47) that pooled only two
studies with a sensitivity of 0.953. Similarly, Boger et al. (48)
worked on six studies with a pooled sensitivity of 0.92 that shows
a slightly higher sensitivity over our result.

Critically examining the specificity, most studies on meta-
analysis detection of COVID-19 using chest CT seldomly
report specificity, our pooled specificity was 0.916 with a
high proportionate increment over the pooled specificity of
0.37 in 63 studies of Kim et al.(46). Likewise, there was a sig-
nificantly higher increment over that of Duarte et al. (47)
with pooled specificity of 0.44.

Even Boger et al. (48) who previously recorded higher sen-
sitivity had an extremely lower pooled specificity of 0.251.



Figure 11. Sub-group analysis of sensitivity with random model based on deep learning architecture. g represents sub-group analysis of the
network architecture when g = 0 (ResNet), g = 1 (ResNet Hybrid) and g = 2 (Other networks).
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According to this result, it is extremely important to see the
efficacy of the DL algorithm in classifying patients with and
without COVID-19. Good diagnostic equipment must have
significantly high sensitivity and specificity, that is, the ability
to classify disease suspects as disease and non-disease as non-
disease. The AUC of this study was 0.95 which is significantly
high. This is evident that the deep-learning algorithm can dis-
tinguish between patients with and without COVID-19. All
the considered meta-analysis (42�48) on DTA of chest CT
in COVID-19 detection did not report AUC.
One of the major DTA parameters is the likelihood ratios,

since relying only on sensitivity and specificity may lead to
overestimation of the benefits of the test (15). The likelihood
ratios are useful over a range of disease frequencies and could
help to improve clinical judgments. The pooled positive
(LR+) and negative (LR-) likelihood ratios are 23.13 and
0.13, respectively. The LR+ of 23 means that COVID-19
positive using DL algorithm is 23 times more likely to occur
in patients with COVID-19 than without COVID-19, like-
wise the LR� of 0.13 means COVID-19 negative has a
higher likelihood of negative test for DL algorithm than
patients without COVID-19. According to Jaeschke et al.
(49), LR+ greater than 10 produces a greater pretest
probability, and the LR- less than 0.1 produces conclusive
changes in the post-test probability. Juxtaposing the LRþ=
1.194 and LR� = 0.301 recorded by Boger et al. (48), our
deep learning produced a significantly higher likelihood and
thus reveals and detects more COVID-19 cases. Our meta-
analysis had a DOR of 112.5 for 19 studies which means the
odds ratio to positive result among persons with COVID-19
was approximately 113 times higher than the odds ratio for
positive result among patients without COVID-19. Besides,
it is noteworthy that none of the comparison studies of
COVID-19 detection with radiologist perspective docu-
mented DOR for their studies (37-43). The overall accuracy
of the 19 studies is 0.8948, this value is significantly higher
than that reported by Boger et al.(48) on COVID-19 using
chest CT. The overall precision of 0.896 was estimated by
our meta-analysis for all studies, which signifies how accurate
or precise the deep-leaning model was compared to the total
predicted positive value, as this is helpful to determine when
the cost of false positive is high. In the same manner, overall
recall is 0.8949, and this value estimated how many of the
true COVID-19 positives the model was able to classify rela-
tive to the total actual COVID-19 positives. Finally, the
overall F1-score of 0.8966 recorded provides better DTA
1519



Figure 12. Sub-group analysis of specificity with random model based on deep learning architecture. g represents sub-group analysis of the
network architecture when g = 0 (ResNet), g = 1 (ResNet Hybrid) and g = 2 (Other networks).
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than the overall accuracy explained above because it seeks a
balance between precision and recall rate of the diagnostic
model which is typically applied with a large number of
actual negatives. Therefore, taking a clue from the general
result of the meta-analysis of DTA, it can be deduced that the
deep learning algorithm has a significantly higher DTA com-
pared to the radiologist performance and is more likely to
reduce the number of false negatives and false positives since
that is the main goal of good diagnostic equipment.

To effectively understand how a different deep learning
model, deep learning architectures, and nature of datasets will
influence the performance of the algorithm for COVID-19
detection, we did a sub-group analysis based on the type of
data source, deep learning model, and type of network archi-
tecture. In terms of data type, the sensitivity of 0.889 and
0.956 was recorded for multi-source and single-source data-
sets respectively. This indicates that a single-source had both
slightly higher non-significant differences over that of overall
sensitivity and that of multi-source datasets. For the specific-
ity, both multi-source and single-source datasets showed
higher results over the overall specificity, but single-source
datasets exhibited higher non-significant over multi-source
data. In the pooled estimate of DOR, the value of 282.7 and
1520
88.8 was recorded for single-source and multi-source, respec-
tively. This implies that single-source had slightly higher
non-significant differences over that of overall DOR but sig-
nificant difference from that of multi-source datasets with a
p-value of 0.013. For the sub-group analysis based on the
training model, the sensitivity of the customized model shows
a slightly statistically non-significant difference over that of
pre-trained and overall, while the specificity of the pre-
trained model shows a statistically non-significantly higher
value than the customized and pre-trained models. This
means there is no significant difference in terms of the train-
ing model. We also did a sub-group analysis based on the
type of network architecture. The algorithm trained on
ResNet alone had the least sensitivity with no heterogeneity
compared to the overall, which had higher sensitivity than
the rest. The significantly low heterogeneity indicates the
consistency of ResNet for detection. The highest sensitivity
was discovered in other variants of network architecture apart
from ResNet and its hybrid. The sensitivity of this sub-group
shows a slightly significant difference between ResNet,
ResNet Hybrid, and other network variants with (p-
value = 0.007). For the specificity, there is a slight non-signif-
icant difference among the three categories of network used.



Figure 13. Sub-group analysis of DOR based on deep learning architecture. DOR=diagnostic odds ratio, g represents sub-group analysis of
the network architecture when g = 0 (ResNet),g = 1 (ResNet Hybrid) and g = 2 (Other networks).
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Similarly, there is a visible non-significant difference in DOR
using ResNet, ResNet Hybrid, and other network variants.
This result showed that there is a correlation between diag-
nostic accuracy, which is a function of sensitivity, and net-
work architecture.
There was substantial heterogeneity in all the studies

because different Countries were included in the meta-analy-
sis (Austria, Iran, Korea, Egypt, China, U.S.A, Japan, and
Italy). These differences in data collected could be a source of
potential heterogeneity. One of the potential sources of het-
erogeneity is the different DL architectures used ranging from
ResNet and its variant, ResNet Hybrid and other architec-
tures like AlexNet, GoogleNet, UNet++ and other
ensembled DL networks. This can be ascertained by the sen-
sitivity of the sub-group analysis when considering only
ResNet architecture for detection with the heterogeneity of
(I2 = 0%). In terms of data source, the result of single-source
sub-group analysis shows extremely low heterogeneity in
sensitivity and DOR with (I2 = 18%) and (I2 = 0%) respec-
tively. This simply means that multi-source datasets serve as a
potential source of heterogeneity in DL detection.
Apart from heterogeneity in data type and DL architecture,

most of the model's function is based on radiologist perfor-
mance to serve as the reference standard. It would therefore
be very difficult to conclude that DL outperforms its corre-
spondence radiologist interpretation but rather aid and speed
up the detection since a good quality image is needed to esti-
mate accurately the DTA of any equipment. Also, most of
the DL detection on chest CT only documented sensitivity
and specificity, which may lead to overestimation of the ben-
efits of DTA, hence it is recommended that other DTA like-
lihood ratios and DOR be estimated alongside sensitivity and
specificity. The DL algorithm is regarded as a black box
because there is no established mathematical formulation to
support its performance making it difficult to replicate, and
this might also be another source of concern for a wide range
of acceptance. Advances in computing hardware and software
will lead to better data acquisition and storage with increase
quality, enabling further research into how this model
behaves and allowing for complete automation of the detec-
tion of diseases like COVID-19.

In conclusion, the meta-analysis on DTA of DL detection
of COVID-19 was carried out. The results show the high
performance of the DL model to detect COVID-19 while
establishing that factors such as the source of datasets and DL
architectures strongly affect the detection performance of DL
algorithms.
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