
F1000Research

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

, University ofAntongiulio Faggiano

Naples Federico II Italy, Annamaria Colao

, University of Naples Federico II Italy

, Susanne Levy GertnerEitan Friedman

Oncogenetics Unit, Institute of Human
Genetics, Sheba Medical Center Israel,
Sackler School of Medicine, Tel-Aviv
University Israel

, All India Institute ofArundhati Sharma

Medical Sciences, New Delhi India

Discuss this article

 (0)Comments

3

2

1

REVIEW

Genetics of multiple endocrine neoplasia type 1 syndrome:
 what's new and what's old [version 1; referees: 3 approved]

Alberto Falchetti1,2

EndOsMet Unit, Villa Donatello, Piazzale Donatello 2, Florence 50100, Italy
Hercolani Clinical Center, Via D’Azeglio 46, Bologna 40136, Italy

Abstract
Despite its identification in 1997, the functions of the  gene—the mainMEN1
gene underlying multiple endocrine neoplasia type 1 syndrome—are not yet
fully understood. In addition, unlike the —MEN2 causative gene—noRET
hot-spot mutational areas or genotype–phenotype correlations have been
identified. More than 1,300  gene mutations have been reported and areMEN1
mostly "private” (family specific). Even when mutations are shared at an intra-
or inter-familial level, the spectrum of clinical presentation is highly variable,
even in identical twins. Despite these inherent limitations for genetic
counseling, identifying  mutations in individual carriers offers them theMEN1
opportunity to have lifelong clinical surveillance schemes aimed at revealing
MEN1-associated tumors and lesions, dictates the timing and scope of surgical
procedures, and facilitates specific mutation analysis of relatives to define
presymptomatic carriers.
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Introduction
Multiple endocrine neoplasia type 1 syndrome (MEN1, 
MIM*131100) is an autosomal dominant disorder in which vary-
ing combinations of either endocrine or non-endocrine tumors may 
present extremely varied phenotypic clinical patterns. Considerable  
phenotypic variability of tumor type manifestations and age at 
diagnosis has been reported, even within the same family, whose 
affected members share the same, inherited, MEN1 gene mutation1.

The original description of the classical “P-triad” corresponds to 
parathyroid, pituitary, and pancreatic (neuro)endocrine tumors2. 
Other MEN1-associated endocrine (adrenocortical tumors and 
carcinoids) and non-endocrine, mostly benign, neoplasms (facial 
angiofibromas, collagenomas, and others) may also occur3,4, and 
other types of tumors (e.g. adrenal) are occasionally reported in the 
literature. Despite the frequent occurrence of endocrine neoplasm 
combinations, findings so far suggest that a genetically predisposed 
abnormal proliferative control may exist in practically all of the 
mutant cells of a MEN1-affected individual.

Much of the well-established knowledge on MEN1 has been already 
described in my previous F1000 Faculty review5; however, infor-
mation on new aspects is lacking. In this short review, attention to 
the role of genetics in the clinical management of MEN1-affected 
subjects will be presented, including also some new technical and 
practical aspects.

Mendelian genetics of MEN1 syndrome
The estimated worldwide prevalence of MEN1 is expected to be 
between 1 in 30,000 and 1 in 500,0003,6, but some geographical 
clustering due to founder effects has also been reported7,8. MEN1 
syndrome may occur in either familial or sporadic forms. The 
sporadic form of MEN1, where only one affected person is iden-
tified in a previously unaffected family, is observed much less 
frequently (10% of cases) than the familial form (90% of cases).

MEN1 is clinically defined when at least two first-degree rela-
tives have a combination of either one of the three main endocrine 
tumors. Alternatively, it involves only one of the main target organs 
and a MEN1 disease-causing germline mutation. As MEN1 syn-
drome follows an autosomal dominant inheritance pattern, the 
offspring of an affected mutation carrier has a 50% chance of 
inheriting the pathogenic mutation9. As already mentioned, it is not 
only members of the same family who may have diverse clinical 
features but also MEN1 monozygotic twins who have been 
reported to exhibit differing symptoms10. However, the distinction 
between sporadic and familial cases is not always easy. In some 
sporadic cases, where family history cannot be ascertained, this 
may be attributed to non-paternity, early parental death, lack of 
careful family assessment, and adoption11.

MEN1 penetrance is high, with more than 95% of MEN1 muta-
tion carriers having biochemical evidence of MEN1—generally 
represented by mono- or pluri-hormones over secretion—with 
100% presenting with hyperparathyroidism by 50 years of age and 
approximately 80% of patients presenting clinical signs by the fifth 
decade of life12 (Table 1). In fact, patients with MEN1-related pri-
mary hyperparathyroidism (PHPT) exhibit a higher susceptibility 

to nephrolithiasis than do non-MEN1-PHPT patients13–15, as there 
is also a higher frequency of renal calculi in MEN1 patients before 
30 years of age16.

The MEN1 gene and its encoded product, menin
The MEN1 gene localizes to chromosome 11q1317–19 and consists  
of 10 exons encoding a 610-amino-acid protein called menin. 
Menin is ubiquitously expressed and is predominantly located in 
the nucleus in non-dividing cells20–24.

Menin is extremely functionally versatile. It shows no homology 
with other known proteins and the mechanism by which its loss 
of function leads to MEN1 is still unclear20–22. Menin primarily 
localizes to the nucleus; it contains two classical nuclear localiza-
tion signals (NLSs) and at least one further non-classical NLS in 
its C-terminus23,24. At the nuclear level, menin can associate with 
chromatin25, double-stranded DNA26, the lysine-specific histone 
methyltransferases KMT2A and KMT2B27,28, and components of 
a transcriptional repressor complex, including histone deacetylases 
(HDACs)29.

Menin interacts with transcription factors, such as activating 
protein-1 (AP-1), JunD, nuclear factor-κB (NF-κB), β-catenin, 
mothers against decapentaplegic (SMAD) family members, and 
estrogen receptor α (ERα)27,30–36. It is also able to bind to cytoskel-
etal proteins, such as vimentin37, and cytoplasmic cell signaling 
mediators, including Akt1/protein kinase B (PKB) and Forkhead 
box protein O1 (FoxO1)38,39. In addition, it has been shown that 
menin plays a role in cell proliferation40–42, apoptosis43,44, and 
genome integrity45.

The menin/KMT2A complex also regulates the expression of 
several Hox genes as well as CDKN1B, a gene that harbors inacti-
vating mutations accounting for multiple endocrine neoplasia type 4  
(MEN4) syndrome (MIM #610755). The same protein complex inter-
acts with ERα and co-activates ERα-mediated transcription27,36,46,47.  
KMT2A, located at 11q23.3 chromosome, harboring recurrent 
chromosomal breakpoints, is disrupted in distinct 11q23 recurrent 

Table 1. Age-related penetrance by 50 years of age for 
“classical” MEN1-associated tumors60,63.

MEN1-associated endocrine 
disorder

Age-related penetrance 
by 50 years of age

Primary hyperparathyroidism 
(multiglandular disease)

73–75%

Pituitary adenomas 31–48%

Islet cell tumors* 45–49%

*This classification considers only the “old, classical” functioning 
pancreatic endocrine tumors, as originally described in the 
literature, but currently with the widespread use of endoscopic 
ultrasound in the work up of MEN1, duodenal-pancreatic 
neuroendocrine tumors, mostly nonfunctioning, are found in more 
than 80% of patients and their early occurrence has also been 
demonstrated13–15. However, the age of presentation of specific 
tumor types is highly variable, ranging from 9–25 years of age for 
the youngest diagnosed case to 68–77 years for the oldest case 
with a tumor manifestation60.
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chromosomal translocations48. Its rearrangement alleles encode 
mixed-lineage leukemia (MLL) fusion proteins (MLL-FPs) or 
internal gene rearrangement products. Interestingly, chromosomal 
rearrangements involving KMT2A lead to MLL, and, in this con-
text, menin was shown to be required for KMT2A-dependent onco-
genic transformation49. Some authors have produced robust data 
showing that combining two targeted treatments, DOT1L (H3K79 
methyltransferase) and menin inhibition, may result in a promising 
therapeutic strategy for MLL-rearranged leukemia50,51.

The functional versatility of menin in different tissues may be key 
in unraveling the as-yet-unexplained tissue selectivity of MEN1-
associated tumors as well as the variable phenotypic expression of 
an identical mutant allele.

Genetic testing and screening in MEN1
Although MEN1 is a rare disorder, the autosomal dominant inher-
itance form implies that detecting a germline MEN1 mutation in 
a single familial member has important implications for other  
family members. In particular, first-degree relatives have a 50% 
risk of possessing the familial mutation with the consequent high 
risk for developing MEN1-associated tumors1. Thus, screening for 
MEN1 involves both clinical and imaging detection of associated 
tumors and ascertainment of their germline genetic state: normal or 
mutant gene carrier52. Cloning of the MEN1 gene20 facilitated the 
identification of asymptomatic mutation carriers, who are genotypi-
cally assigned a high-risk status for developing MEN1-associated 
tumors and are offered an early detection scheme5.

Moreover, a potentially “new” MEN1 family could also be iden-
tified when it first appears in a subject lacking a clear familial 
history. Thus, affected relatives have the opportunity to be included 
in a specific surveillance schedule and receive therapy as soon as 
possible53.

Linkage analysis approach: it cannot be considered 
totally obsolete
In the past, before cloning the MEN1 gene in 199720,21, linkage 
analysis was the only clinically useful approach for genetic diagno-
sis; it uses highly polymorphic DNA markers located upstream and 
downstream of 11q13, the chromosomal region to which the MEN1 
gene was mapped17–19. Since some of these DNA markers show no 
recombination with the MEN1 gene (i.e. PYGM, D11S463, and 
D11S427), an accuracy of up to 99.5% could be reached in the 
test for carriers, with incorrect results due to meiotic crossing over 
being omitted5,21. However, for such analysis, there needs to be a 
MEN1 family with two or more living, clinically affected members, 
bridging two or more generations, allowing for the detection of the 
family-specific 11q13 risk haplotype in affected people53.

One obvious limitation is genetic heterogeneity with an overlap 
between MEN1 and MEN4. Another important limitation of this 
screening technology is that it cannot be applied to a single index 
case. However, the linkage approach should be considered when 
mutational analysis fails to detect any germline MEN1 mutation in 
a proband and the pedigree is informative (more affected members 
from different generations).

Finally, it has been also reported that applying forensic techniques 
to analyze ancient DNA enables the identification of the familial 
disease-associated haplotype, demonstrating that even when one or 
more relatives are no longer living, the family history relating to 
MEN1 can still be assembled54.

Mutations of the MEN1 gene
In the 10 years following the identification of the MEN1 gene, 
a total of more than 1,300 mutations (approximately 85% germ-
line and 15% somatic) were characterized55, with the current total 
number of mutations at over 1,800 (http://www.umd.be/MEN1/56). 
The germline MEN1 mutations consist of 459 different mutations, 
which are distributed throughout the whole 1830 bp coding region 
and splice sites of the MEN1 gene20,21,57–59 (Table 2).

However, around 5–10% of MEN1-affected individuals may not 
harbor mutations in the MEN1 gene coding region20,21,57–60; they 
may have whole gene deletions or mutations in the promoter or 
untranslated regions that have not been reported to date. Large 
deletions will not be easy to detect by conventional Sanger 
sequencing, but next-generation sequencing (NGS) technology 
enables us to extrapolate the large gene rearrangements. No studies 
that have employed these novel techniques in MEN1 gene analysis 
have been published yet.

Approximately 75% of MEN1 mutations are inactivating55, as 
expected for a tumor suppressor gene. There are many different 
types of mutations, and they are dispersed throughout the coding 
region of the gene rather than being clustered, as predicted from 
pathogenic mutations in a tumor suppressor gene. A few of the 
mutations have occurred a number of times in unrelated families, 
and mutations at nine sites in the MEN1 gene account for over 20% 
of all of the germline mutations (Table 3).

These recurring mutations could signify possible “hot spots”, and 
the deletional and insertional hot spots may correlate with DNA 
sequence repeats, DNA stretches of long strips of either single 
nucleotides or shorter repeat elements, ranging from dinucleotides 
to octanucleotides59. Thus, a replication-slippage model could be 
in place at different codons, meaning that the MEN1 gene seems 
to include DNA sequences that may make it prone to deletional 

Table 2. Different types of MEN1 gene 
mutations reported in the literature and their 
frequencies57.

Types of MEN1 gene mutations Percentage

Nonsense 23%

Frameshift deletions or insertions 41%

In-frame deletions or insertions 6%

Splice site 9%

Missense 20%

Whole gene or particular gene 
deletions 1%
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and insertional mutations59. There is no evidence that the promoter 
region of the MEN1 gene contains any mutations, but this intrigu-
ing, albeit theoretical, possibility remains61.

What to do when a MEN1 gene mutation is not 
detected at DNA sequencing: alternative approaches
In a relatively small percentage of patients with MEN1 (5–10%), 
gene mutations in either the coding region or the splice sites of 
the MEN1 gene are not identified55. Consequently, it cannot be 
excluded that pathogenic sequence variants in the promoter, deep 
in the introns, or in the untranslated regions (gene regions normally 
not analyzed in “routine” genetic tests) may exist. In addition, gross 
deletion/insertion of parts of the gene or even the entire gene cannot 
be detected with classical MEN1 Sanger sequencing analysis.

Southern blot analysis or other gene dosage procedures (e.g. array 
comparative genomic hybridization [CGH]) or NGS could be  
useful to detect “gross” alterations at the MEN1 gene, such as 
large deletions, insertions, or other large genomic rearrangements 
involving the MEN1 gene. Multiplex ligation-dependent probe 
amplification (MLPA) is a quantitative and very sensitive and 
accurate multiplex polymerase chain reaction-based approach that 
enables the detection of copy number changes within a specific 
gene. Therefore, it is also possible to reveal whole gene and/or 
entire exon losses as gross modifications at the intra-genic level. 
Diagnostic screening by MLPA should be considered in MEN1 
index cases in which we have a negative sequencing MEN1 gene 
test result and large deletions/duplications of the MEN1-coding 
region which need to be assessed/excluded. As mentioned above, 
familial haplotype analysis should still be considered when either 
sequencing or MPLA screenings are negative62.

Attention to MEN1 gene polymorphisms
Since 24 polymorphisms (12 in the coding region [10 synonymous 
and two non-synonymous], nine in the introns, and three in the 
untranslated regions) of the MEN1 gene have been described55, 
it is important to consider their occurrence, as they need to be 

differentiated from mutations when mutational analysis for genetic 
diagnosis is performed.

MEN1 phenocopies
Finally, since less than 2% of clinical MEN1 patients lack evidence 
of MEN1 mutation, in cases where patients present with classic 
MEN1 symptoms but negative results for MEN1 and CDKN1B 
mutations, further investigation of genes encoding members of 
the cyclin-dependent kinase inhibitor (CDKN) family—such 
as CDKN1A (p21cip1), CDKN2B (p15Ink4b), or CDKN2C 
(p15Ink4c), which all negatively regulate cell cycle progression and 
cell growth55—should be considered53.

Genotype–phenotype correlations
There is no correlation between MEN1 mutation location along the 
gene or the type of mutation and clinical manifestations. This lack 
of genotype–phenotype correlation, in addition to the sheer number 
of possible mutations in the coding region of the MEN1 gene, 
results in greater difficulty for mutational analysis in the diagnosis 
of MEN1 than in the diagnosis of MEN210.

One noteworthy study found that all patients with MEN1 frameshift 
mutations have PNETs63, while another showed a higher rate of 
malignant tumors for mutations in MEN1 gene exons 2, 9, and 
1064. However, no genotype–phenotype correlation could be 
consistently confirmed in other patient populations by other  
investigators12,55. Moreover, studies of unrelated kindreds exhibit-
ing the same MEN1 mutation showed large variability of differ-
ent associated tumors11,58—as mentioned above, there are reports 
of identical twins who carry an identical MEN1 mutation with  
different MEN1 clinical phenotypes10,65,66. Finally, whereas some 
families with particular MEN1 mutations develop only isolated 
hyperparathyroidism, other families with the same mutations 
develop a full MEN1 spectrum55.

Has the mutational analysis of the MEN1 gene 
improved the life expectancy associated with the 
syndrome?
Although MEN1 patients have been reported to exhibit a decreased 
life expectancy, MEN1-associated mortality (Table 4), mostly due 
to gastroenteropancreatic malignancy12,67–70, has improved since the 
1980s owing to both early detection of asymptomatic/presympto-
matic MEN1 mutation carriers and more intense clinical screening 
programs, with an overall better perioperative survival, especially 
for neuroendocrine tumors (NETs) of the gastrointestinal tract, 
together with appropriate drug treatment, when applicable69.

Table 3. The nine recurring mutations by type55,56.

Type of MEN1 mutations Localization within the gene 
(there is more than one 
mutation in most of each of 
the following codons)

Deletions or insertions

Codon 83

Codon 84

Codon 120

Codons 210–211

Codons 514–516

Novel acceptor site Intron 4

Nonsense

Arg98Stop

Arg415Stop

Arg460Stop

Table 4. Cause of death due to MEN1-associated 
malignancies. Patients affected by these malignancies 
have a threefold higher risk of death69.

MEN1 tumors with high risk of death Percentage

Malignant neuroendocrine 
gastroenteropancreatic tumors 
(mainly gastrinomas) 
Thymic or bronchial carcinoid tumors

30–40%
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Thus, the early genetic diagnosis of MEN1 is strictly recommended 
in order to both identify patients before biochemical/clinical 
manifestations occur and improve long-term outcome. Periodical 
screening and clinical follow-up according to clinical guidelines 
have to be performed for all MEN1 patients in order to offer appro-
priate and early medical/surgical interventions71,72, and, more in 
general, it has also been suggested that early genetic screening for 
those syndromes in which NETs may occur as a hereditary fea-
ture may contribute to related morbidity/mortality reduction in 
asymptomatic subjects through better and more appropriate clinical 
management73.

It seems that we can offer MEN1 patients a better prognosis and a 
reduction in morbidity and mortality if early stage diagnosis of the 
tumor is achieved, along with presymptomatic tumor detection and 
early administration of specific therapy13–15.

MEN1 tumorigenesis: not only loss of heterozygosity
Consistent with Knudson’s two-hit hypothesis17,18,74, the MEN1 
gene is thought to act as a tumor suppressor, since over 90% of 
tumors from MEN1 patients exhibit loss of heterozygosity (LOH). 
However, intra-genic deletions and point mutations can also be 
responsible for inactivating the wild-type allele—the second hit. In 
fact, some MEN1 tumors where no LOH was demonstrated have 
been shown to harbor different somatic and germline-inactivating 
point mutations of the MEN1 gene75, mechanisms still consistent 
with the Knudson two-hit hypothesis76.

Any role for epigenetic and/or modifying genetic 
mechanisms in the clinical expression of MEN1?
Since it is known that menin is an essential component of histone 
methyltransferase complexes that contain members from the MLL 
and trithorax protein family27, by acting as a scaffold protein, it may 
epigenetically regulate gene expression via histone methylation or 
acetylation. Consequently, it has also been suggested that epigenetic 
mechanisms triggered by environmental factors may influence the 
disease phenotype in patients carrying the same MEN1 mutation77. 
Moreover, as recently reported, a specific variant of the CDKN1B 
gene whose inactivating mutations account for the MEN4 syn-
drome was demonstrated to be disease modifying in MEN1 patients 
with truncating MEN1 mutations, causing a higher number of 
MEN1-related tumors78.

Could microRNA molecules play a role in MEN1 
tumorigenesis? The miR-24 experience
It has been described that a microRNA molecule, miR-24-1, is able 
to bind to the 3′ untranslated region of MEN1 mRNA. miR-24-1 
expression profiles have been conducted in some MEN1 parathyroid 
adenomas from MEN1 mutant carriers, their sporadic non-MEN1 
counterparts, and in normal parathyroid tissue. The results sug-
gest that MEN1 tumorigenesis may be under “negative feedback 
loop” control between miR-24-1 and menin, thus mimicking the  
Knudson’s second hit and possibly buffering the effect of the stochas-
tic factors hypothesized to contribute to the onset and progression of 
MEN1 disease79. If such findings are confirmed by other studies in 
other MEN1 tumors from subjects with the same or different MEN1 
gene mutations, they could suggest the existence of an alternative 
pathway to MEN1 tumorigenesis and, probably, to the ‘Knudson’s 

two-hits dogma or, maybe, an alternative MEN1 tumorigenesis for 
 specific MEN1-affected endocrine and non-endocrine tissues.

Overall, this could be considered as a new basis for future develop-
ments in RNA antagomir(s)-based strategies to control tumorigen-
esis in MEN1 carriers.

Could variants in genes other than MEN1 be disease 
modifying?
Recently, other genetic mechanisms have been investigated for 
their possible involvement in MEN1-related pleiotropic pheno-
typic expression. It is known that the p27Kip1 protein, encoded by 
the CDNK1B gene, is downstream of MEN1-driven tumorigen-
esis. Genotypic frequencies of the V109G variant of p27 have 
been evaluated in a cohort of MEN1 patients and healthy controls 
and V109G seems to influence the clinical manifestation of adult 
MEN1 patients carrying truncating MEN1 gene mutations78.

Since menin forms a transcriptional complex with MLL2 and RNA 
polymerase II, regulating p27Kip1 expression, inactivation of menin 
reduces p27-mRNA levels and a second hit event, as the occur-
rence of V109G variant, potentially correlated with p27 protein 
degradation by p38JAB1, a protein promoting the degradation of 
this cyclin-dependent kinase inhibitor, may trigger exaggerated 
multiple tumor developments.

More recently, it has been suggested that such a polymorphism may 
be associated with certain MEN1 mutations (c.502G>A, p.G168R 
in exon 3, c.673T>A, p.W225R in exon 4, and c.825 + 1G>A in 
intron 5), and carriers of both the genetic variants, MEN1 mutation 
and V109G, seem to exhibit a more aggressive clinical course of 
the syndrome with a worse prognosis80.

All of the above reported findings need to be replicated in other, 
ethnically diverse MEN1 clinical series.

Future perspectives in MEN1 genetic analysis
Recent developments have seen a new era for sequencing in sev-
eral Mendelian diseases in the form of NGS technology, which 
could be helpful for bypassing the limitations of “classical” genetic 
analysis, as described above. The NGS approach as a genetic 
diagnostic tool could permit simultaneous sequencing of the fol-
lowing extra-/intra-genic regions: a) regulating and untranslated, 
b) coding sequences, and c) introns. Thus, such an approach 
may allow the identification of either causative large intra-genic  
deletions/duplications or novel mutations81. Specifically, clinically 
relevant chromosomal rearrangements, such as the ones occurring 
at KMT2A (MLL), can be detected by targeted gene panel-based 
NGS that has a sensitivity and specificity equivalent to fluorescence 
in situ hybridization protocols, and reverse transcription polymer-
ase chain reaction approaches, as well as more detailed information 
and better efficiency for molecular testing. Furthermore, transloca-
tion detection by NGS offers more advantages than the “conven-
tional” laboratory methods, such as the more precise definition of 
the breakpoint region and the detection of both cryptic rearrange-
ments and unknown molecular partner genes while it runs parallel 
with gene mutation detection82. Moreover, NGS could extend the 
sequencing of nucleotides from a single gene up to the multigene 
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level by specifically setting up targeted panels, up to the whole 
genome, producing huge amounts of genetic data on a gigabyte 
scale in a single step. NGS may represent a higher-throughput 
alternative to classical DNA sequencing as well as being less 
expensive when compared to the traditional method.

In addition, NGS is very flexible, reaching an adequate resolu-
tion level for any single genetic analysis, also considering that a 
sequencing run can be specifically tailored to obtain genetic data 
and/or to screen one or more predetermined genomic regions or a 
specifically desired gene set.

Laboratory protocols such as whole-exome sequencing (WES) and 
whole-genome sequencing (WGS) enable us to analyze an untar-
geted exome- or genome-wide section of an individual’s DNA 
and, at least theoretically, detect every genetic variant in a subject. 
Such approaches in parent–offspring trio models may be helpful in 
determining inherited variants as well as de novo mutations in the 
offspring and will enhance our ability to identify most disease- 
causing genes contributing to sporadic monogenic disorders, such 
as MEN1 syndrome83.

In summary, overall, two alternative protocols are currently avail-
able to detect gene mutations: (1) WES and WGS, facilitating the 
identification of disease-associated genes and/or regulatory ele-
ments, even those not previously known––this approach tends to 
be useful for genetically determined diseases whose responsible 
gene/genes are still unknown; and (2) NGS-targeted multi-gene 
sequencing by selecting a platform with specific genes comprising 
coding, non-coding, and regulatory gene regions.

Implementation of all of these procedures will facilitate, in the next 
few years, the genetic diagnosis of diseases or groups of related 
disorders, such as multiple endocrine neoplasia syndromes, mak-
ing their differential genetic diagnosis possible by creating an 
up-to-date specific platform that includes all specifically relevant 
genes84,85. In such a way, it will soon be possible to classify different 
human oncological disorders, including MEN1 syndrome, accord-
ing to the underlying genotype rather than solely the biochemical/
clinical phenotype. Thus, in the near future, it will be possible for 

MEN1-affected subjects to have targeted medical consultations and 
interventions and engagement in gene-specific patient groups, as 
well as more appropriate treatments83.

Current limitations and advantages in MEN1 genetic 
diagnosis
Limitations
Lack of genotype/phenotype correlation. As stressed here and in 
my previous F1000 Faculty review, we do not have any genotype–
phenotype correlation. Thus, whether a specific MEN1 mutation 
is detected and/or it localizes to a specific functional domain of 
menin still does not improve specific clinical predictions of disease 
occurrence, symptoms, or progression. Consequently, genetic 
information currently has limited importance in the individual 
clinical management of mutation carriers whether or not they are 
displaying symptoms.

Advantages
Identification of germline MEN1 gene mutation. Clearly, the 
identification of a pathogenic MEN1 mutation is useful for ensuring 
an individual’s inclusion in clinical surveillance routines for 
MEN1-associated tumors and lesions5, suggesting specific surgical 
procedures, and identifying the need for specific mutation analysis of 
first-degree relatives to identify presymptomatic mutation carriers. 
In the presence of a germline MEN1 mutation, lifelong specific 
clinical surveillance is suggested, as reported in the literature86.
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