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Abstract: Respiratory activity is an important vital sign of life that can indicate health status. Diseases
such as bronchitis, emphysema, pneumonia and coronavirus cause respiratory disorders that affect
the respiratory systems. Typically, the diagnosis of these diseases is facilitated by pulmonary
auscultation using a stethoscope. We present a new attempt to develop a lightweight, comprehensive
wearable sensor system to monitor respiration using a multi-sensor approach. We employed new
wearable sensor technology using a novel integration of acoustics and biopotentials to monitor
various vital signs on two volunteers. In this study, a new method to monitor lung function, such as
respiration rate and tidal volume, is presented using the multi-sensor approach. Using the new sensor,
we obtained lung sound, electrocardiogram (ECG), and electromyogram (EMG) measurements at
the external intercostal muscles (EIM) and at the diaphragm during breathing cycles with 500 mL,
625 mL, 750 mL, 875 mL, and 1000 mL tidal volume. The tidal volumes were controlled with a
spirometer. The duration of each breathing cycle was 8 s and was timed using a metronome. For
each of the different tidal volumes, the EMG data was plotted against time and the area under the
curve (AUC) was calculated. The AUC calculated from EMG data obtained at the diaphragm and
EIM represent the expansion of the diaphragm and EIM respectively. AUC obtained from EMG data
collected at the diaphragm had a lower variance between samples per tidal volume compared to
those monitored at the EIM. Using cubic spline interpolation, we built a model for computing tidal
volume from EMG data at the diaphragm. Our findings show that the new sensor can be used to
measure respiration rate and variations thereof and holds potential to estimate tidal lung volume
from EMG measurements obtained from the diaphragm.

Keywords: biomedical signal processing; wearable biomedical sensors; medical equipment; multi-
sensor fusion; respiration; tidal volume; cubic spline interpolation

1. Introduction

Reliable unobtrusive monitoring of respiration is of great importance in critically
ill patients and ordinary healthy people. Several research groups have reported various
respiration monitoring methods. However, we need to overcome some technical challenges
to develop genuinely wearable sensors that can become practical and clinically meaningful.
Particularly, continuous respiratory monitoring requires to address the technical issues of
battery power source, sensor data storage, wireless data communication, and automated
diagnosis [1,2]. There have been significant innovations to achieve wearability using a range
of material properties, structure, and integration. For example, stretchable sensors, such as
strain gauges and many novel materials embedded bands, were attached to the human
chest to measure local strain realizing the respiration monitoring [3–5]. Bioimpedance
devices have been used for measuring lung capacity [6,7] because bioimpedance has a
linear relationship with respiratory volume during normal breathing. In other studies,
the inertial measurement units (IMU) were attached to the abdomen and chest to monitor
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respiratory behaviors [8–10]. Also, recently skin-mounted soft electronics were reported to
detect the human motions toward motion recognition [11–13].

Understanding respiration sound characteristics has been one of the earliest and popu-
lar methods of detecting early respiratory illnesses with abnormal lung sounds [14–17]. It is
understood that the coordinated contraction of respiratory muscles such as the diaphragm
and external intercostals increases the ribcage and the chest’s rising [18–22]. For example,
the diaphragm, which, during regular inspiration, contracts and flattens, pushing on the
abdomen, while the lower ribs move upwards and outwards. The muscle movements of
the diaphragm and the ribcage induce air flow through the trachea and bronchi. It is the
flow of air that makes the sound signals. It is also well-known for many years that the
respiration cycles and heartbeats are tightly coupled [23–27]. For example, the respiratory
motion can also be estimated by analysis of electrocardiogram (ECG) variations. The
heart rate increases during inspiration; during expiration, it decreases again [16]. Thus,
an integrated approach of using respiratory sounds and cardiovascular physiological ef-
fects simultaneously can help model the breathing patterns, such as respiratory rate, tidal
volume, and diaphragmatic activation, more precisely.

In this study, we have built a light-weight wireless wearable digital health lung sensor
system. This paper presents a novel way to monitor lung health by using a stethoscope
and EMG integrated wearable sensors ready to employ artificial intelligence to detect
lung function changes remotely. This paper is organized as follows. Section 2 describes a
custom-designed multi-channel integrated sensor system to detect lung sounds and muscle
activity simultaneously. The multi-sensor device tracks cardiogram and breathing while
sticking to human skin comfortably. The system can measure lung function with a sound
transducer and a set of EMG electrodes remotely. The whole system weighs only 15 g and
sticks to human skin like a Band-Aid. Further, it can synthesize the sensor data from very
different sources (e.g., EMG and sound data) for estimating the comprehensive state of
lung health.

Section 3 describes the study to build tidal volume estimation models to reproduce
lung mechanics using mathematical methods and statistical analysis. It provides a unique
way of estimating the tidal volume using high-frequency EMG signals from breathing
muscles (e.g., diaphragm and the external intercostal muscles). Section 4 introduces a new
signature matrix-based signal processing method suitable for sensor fusion and scalable
machine learning algorithms. The new approach can integrate sensor data with varying
reliability and sensitivity using new statistical feature extraction. The proposed wearable
sensor system is suitable for daily use and to engage in digitally interactive lung function
monitoring. The device and the computer program were developed and demonstrated.

2. Wearable Sensor System Overview

The development of the electronic and digital wearable health sensors can introduce
computer-aided monitoring and diagnosis by automated analysis, graphic visualization,
storage, and archiving. Figures 1 and 2 show the wireless wearable health sensors, which
provide the capability to monitor and record the sound and the biopotential signals of the
heart and the lung remotely onto their PC or laptop for further visualization and analysis.
The system has sensor electrodes and transducer, the data acquisition and signal-processing
circuit, wireless data transmission chip in the wearable sensor system. The analysis and
diagnosis of the transmitted signals are conducted in the external computer system. The
output of the signal processing in the external computer system is the feature classification
result for clinical diagnostic decision making. Detailed descriptions of the sensor system
components and their specifications are provided in Table 1.
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Table 1. The specifications of the wireless wearable health sensor.

Specification Description Value

Sensor size and weight sensor packaging & battery (no electrodes) (60 × 12 × 5) mm
15 g

Sensor circuit size PCB & battery (30 × 10 × 3) mm
6 g

Power source rechargeable battery 8 h/charging
Data transmission Bluetooth wireless 1 M bps in 2 m
Sound transducer piezoelectric plate 10 mm diameter
EMG electrodes Disposable Ag/AgCl standard pre-gelled and self-adhesive (20 × 20) mm
Front-end circuit Intan Tech Chip 10 mV, 16 bit, 8 ch

Onboard CPU ARM Cortex M4 4096 Hz/ch sampling rate
Wireless circuit NRF 52X 2.4 G ESB RF
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The sound detection is achieved in the wearable sensor unit by placing a piezoelectric
microphone mounted on the sensor’s middle. A piezoelectric transducer converts the heart
and lung sound signals to analog electrical signals in the stethoscope. Furthermore, the
system can transmit heart sounds wirelessly up to 10 m to a remote processing network,
promoting telemedicine’s evolution and potential applications. It also allows the possibility
of automatic acoustic interpretation in cardiovascular and respiration diagnostics. The
sound acquisition module uses a piezoelectric microphone with a sampling frequency of
4 kHz. An INTAN chip-based analog-to-digital conversion with a 16-bit resolution and
pre-amplification is performed inside the wearable sensor unit. The raw sound signals
include cardiac sounds with a spectrum 20–100 Hz.

The wearable sensor also comprises of multiple channels (8-ch) that communicate
wirelessly using Bluetooth low-energy (BLE) technology, as shown in Figure 2. For ex-
ample, the biopotential electrodes for EMG sensors acquire the heartbeat and breathing
muscle activation signals and feed it to the analog-font-end, for pre-amplification. After
that, the signal is transmitted wirelessly into a personal computer (PC), where the signal
data is processed and classified using MATLAB. The sensor system accomplishes a real-
time multiple sensor signal acquisition, amplification, filtering, digitization, and wireless
transmission. For this study, a custom wearable sensor was designed and implemented
using two commercial adhesive EMG patches, as shown in Figure 1.

3. Experimental Results

In the study, a set of experimental sensor signals was collected from a healthy male and
female with slow respiration with a constant rate (i.e., 4-s inspiration and 4-s expiration).
The breathing cycle was controlled using a metronome (https://www.imusic-school.com/
en/tools/online-metronome/, accessed on 31 December 2020). Five different tidal volumes
(i.e., 1000, 875, 750, 625 and 500 mL) were controlled by using a Voldyne 5000 Spirometer
(Hudson RCI, calibrated with PF100 digital Peak Flow & FEV1 Meter, Microlife, Clearwater,
FL, USA). The wearable system has a bandpass filter program installed to maximize the
sensor’s heart and lung signals. The sampling frequency was set by 4 kHz per channel for
the experiment. A higher sampling rate can also be arranged for greater accuracy at more
power consumption.

Figure 3 represents the time and amplitude characteristics of typical lung sound and
EMG signals obtained from the diaphragm muscle location. The first 4-s represents the
inspiration phase (shown in a red box), and the following 4-s one the expiration. The
sound and EMG signals in the figure show synchronized patterns in the graphs since the
respiration cycles, and heartbeats are tightly coupled [23–27] (see purple and orange circles
in red boxes). Further, in the figure, the heartbeat signal heights variations during the
inspiration and expiration respiratory motions are noticeable (blue circles). It is known that
the heartbeat signal heights are shortened during inspiration [28].

Figure 4a shows the filtered signals to separate the low and high-frequency lung sound
signals (the first and the second figures) and the low and high-frequency EMG signals
obtained from the diaphragm muscle location (the third and the fourth figures) using the
proposed multimodal wearable sensor. It is clear from Figure 4a that the heartbeat and
cardio sounds can be monitored simultaneously. Further, as noted from Figure 3, the first
(sound under 100 Hz) and the third (EMG under 50 Hz) figures show the typical heartbeat
signals in synchrony with the phases of respiration (purple circle), whereby heartbeat signal
heights are shortened during inspiration (blue circle) and lengthened during expiration [29].
From the fourth figure and Figure 3, it can also be noted that there is clear evidence of
the increasing intensity of high-frequency EMG signals at the diaphragm muscle location
during the phase of inspirations (orange circles) compared to expirations.

https://www.imusic-school.com/en/tools/online-metronome/
https://www.imusic-school.com/en/tools/online-metronome/
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Figure 4. (a) Wearable sensor signals: The time and amplitude characteristics of typical lung sound and EMG signals
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Problems in either heart valves or the heart muscles result in abnormal heart sounds,
and murmurs can be accounted for other cardiovascular issues [30]. The second figure
shows that the proposed wearable sensor can monitor. Figure 4b shows one example of
the stethoscope audio signals obtained from diaphragm muscle location (1000 mL tidal
volume; 2-s inspiration (red box)). The sound signals were recorded using a conventional
commercial stethoscope head (shown in Figure 4b picture) with an audio microphone
(30 dB sensitivity, 20–20,000 Hz range, 20 kHz sampling rate). We used a stethoscope
diaphragm to pick the lung and heart sounds from the body. The QuickTime software
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allowed us to directly record the sound onto a computer for further visualization and
analysis using MATLAB. Figure 4b also shows the heart sounds (red circles), which we can
find from Figure 4a with the wearable sensor device.

For the validation, we also used a Delsys Trigno Wireless EMG system (Delsys Inc.,
Natick, MA, USA) as a reference system to compare with the electromyographs from
the wearable sensor. It is a widespread commercial EMG system with 16 channels and
a sampling rate of 2000 Hz. The signal acquisition was carried out via the EMGworks
software. Figure 4c shows the reference EMG signals obtained from diaphragm muscle
location. Both Figure 4a,b show heartbeat signal height variation as well as increasing
intensity of high-frequency EMG signals at the diaphragm muscle location during the
phase of inspirations (orange circles).

4. Modeling of Respiration Function

This section describes the methods for modeling respiration functions, such as the
respiration rate and the tidal volume from the wearable sensor signals.

4.1. Extraction of Respiration Volume
4.1.1. Cubic Spline Interpolation

Cubic spline interpolation is a type of interpolation method that involves the approx-
imation of data points by piecewise cubic functions/splines [31]. Each cubic function
connects adjacent data points and is useful for estimating the value of a function within
the range of a discrete set of known data points without knowing the actual function.
Using cubic spline interpolation method, we derived a function that estimates the tidal
volume from the area under the curve (AUC) of a given EMG graph (see Figure 5). To
accomplish this, we create a cubic function Sj that connects adjacent points of tidal volumes
and corresponding AUC per breathing cycle:

Sj(x) = aj
(

x− xj
)3

+ bj
(
x− xj

)2
+ cj

(
x− xj

)
+ dj f or j = 0, . . . , n− 1 (1)

where n denotes the number of data points and xj denotes known mean AUC for the
high-frequency EMGs per breathing cycle (see Figure 5) collected by the sensor at either
the diaphragm or EIM location. Sj(x) is the jth cubic spline describing the tidal volume as a
function of x. The cubic splines Sj(x) connects adjacent data points therefore the number of
splines will be one less than the number of data points as stated in Equation (1). Relevant
conditions are required in order to determine the coefficients aj, bj, cj, and dj of the cubic
splines. We impose that the cubic splines must match the function values at known points
and that the first and second derivatives of adjacent splines are continuous [20]. This gives
us the following 4n − 2 conditions:

Sj
(
xj
)
= yj f or j = 0, . . . , n− 1 (2)

Sn−1(xn) = yn f or j = 0, . . . , n− 1 (3)

Sj
(
xj+1

)
= Sj+1

(
xj+1

)
j = 0 f or j = 0, . . . , n− 2 (4)

S′j
(
xj+1

)
= S′j+1

(
xj+1

)
f or j = 0, . . . , n− 2 (5)

S′′j
(
xj+1

)
= S′′j+1

(
xj+1

)
f or j = 0, . . . , n− 2 (6)

where yj are known values of tidal volume corresponding to the mean AUC for the high-
frequency EMGs per breathing cycle. Equation (1) has 4n undetermined coefficients,
therefore we need two more conditions in order to obtain the 4n conditions necessary to
determine the coefficients. We set two additional conditions by imposing natural boundary
conditions, i.e.,

S0
′′ (x0) = 0 (7)

Sn−1
′′ (xn) = 0 (8)
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and corresponds to setting the curvature to zero at the end points. Using the conditions
Equations (2)–(6) and Equations (7)–(8) we are able to solve for the coefficients aj, bj, cj,
and dj in Equation (1).
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Figure 5. The EMG signal above 50 Hz were recorded at 4 kHz sampling frequency. The experiments
were conducted to have the same 2-s inspiration, 2-s expiration, 5-s pause cycle breathing pattern
from diaphragm location (a–c) and the EIM location (d–f): (a) 500 mL tidal volume; (b) 750 mL tidal
volume; (c) 1000 mL tidal volume; (d) 500 mL tidal volume; (e) 750 mL tidal volume; (f) 1000 mL
tidal volume.

Figure 6 shows box plots of the AUCs during one breathing cycle for different tidal
volumes for two different people. Using the spline interpolation method, we can predict
the tidal volume using the AUC calculation for the EMG data collected from the sensor. The
high-frequency EMG data collected at the EIM location have somewhat higher variations
than those from the diaphragm location (Figure 6). Thus, it appears that the diaphragm
sensor placement looks more appropriate for tidal volume estimation. Diaphragm and EIM
are the vital muscle for respiration, requiring both for inspiration in the form of muscle
contraction and expiration by relaxation. In our study, the AUC range for high-frequency
EMG data obtained at the EIM is smaller than those obtained at the diaphragm and is
consistent with what we would expect for the data since the EIM are a group of 11 pairs
of tiny muscles found between the ribs. The sensor was placed on only one of the 11
pairs of EIM; thus, the EMG intensity will be lesser. During inspiration, it is known that
the diaphragm movement displaced about 700 mL, and the right hemidiaphragm dome
shortened by about 70 mm [32]. Further, the high-frequency filtered EMG signals (>50 Hz)
can reduce unwanted low-frequency EMG artifacts from body motion.
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Figure 6. Box plots for the AUCs during one breathing cycle for different tidal volumes: (a) Sensor is placed at the EIM
(subject 1, male); (b) Sensor is placed at the diaphragm (subject 1); (c) Sensor is placed at the EIM (subject 2, female);
(d) Sensor is placed at the diaphragm (subject 2).

4.1.2. Analysis of Variance (ANOVA)

The respiratory volume is extracted by computing the area under the EMG graph per
breathing cycle. The box plot in Figure 6 visually presents the area under the curve (AUC)
for different tidal volume at the external intercostal muscle (EIM) and diaphragm. The null
hypothesis H0 is that there is no difference between the median AUC for the different tidal
volumes. A Kruskal Wallis test for the AUCs at the diaphram return a p value of 4 × 10−4,
indicating that we reject the null hypothesis that there is no difference between the AUC
for the different tidal volumes at a 1% significance level. The ANOVA table (see Table 2)
provides additional test results. In Table 2, Source represents the source of the variability
(i.e., Column or Error). Column represents the variability between the AUC measurements
obtained for the different tidal volume groups. Error represents the variability of the AUC
measurements within each tidal volume group. Total represents the total variability. SS
represents the sum of squares due to each source, and df is the degree of freedom associated
with each source. MS is the mean squares for each source, which is the ratio SS/df. Chi-sq
represents Chi-square value.
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Table 2. Kruskal-Wallis ANOVA table for AUC at the diaphragm.

Subject 1

Source SS df MS Chi-sq Prob > Chi-sq
Columns 1573.0 4 393.1 20.3 4× 10−4

Error 674.5 25 27.0
Total 2247.5 29

Subject 2

Source SS df MS Chi-sq Prob > Chi-sq
Columns 1095.0 4 273.9 20.2 4× 10−4

Error 203.9 20 10.2
Total 1299.5 24

A Kruskal Wallis test for the AUCs from the EIM location returns a p value of 0.55 for
subject 1 and 0.0001 for Subject 2, indicating that we accept the null hypothesis that there is
no difference between the median AUC for the different tidal volumes a 1% significance
level. The ANOVA table (see Table 3) provides additional test results. Comparing the
p-values in Tables 1 and 2, we conclude that the EMG data collected at the diaphragm is
more consistent than those obtained at the EIM. Therefore, we use the data collected at
the diaphragm (Figure 6b and d) to create the cubic splines for predicting tidal volume
from mean AUC for EMG data. The data from Figure 6b,d is summarized in Table 4. The
resulting cubic spline generated from Equation (1) and Table 4 is presented in Figure 7.
The cubic splines in Figure 7a,b provides estimates of tidal volume from mean AUC for
EMG data collected at the diaphragm of the two subjects. After fitting a linear function to
the data (see Figure 7c,d), we observe that the tidal volume varies somewhat linearly with
the AUCs for the range of tidal volume used in the study. The AUC values for EMG per
breathing cycle for different tidal volumes collected at the diaphragm for the male subject
is higher than the female subject (see Table 4 and Figure 7).

Table 3. Kruskal-Wallis ANOVA table for AUC at EIM.

Subject 1

Source SS df MS Chi-sq Prob > Chi-sq
Columns 165.6 4 41.4 3.06 0.55

Error 1133.9 20 56.7
Total 1299.5 24

Subject 2

Source SS df MS Chi-sq Prob > Chi-sq
Columns 1773.7 4 443.4 22.9 0.0001

Error 473.8 25 19.0
Total 2247.5 29

Table 4. Mean AUC for EMG per breathing cycle for different tidal volumes. EMG data collected by
sensors at the diaphragm.

Mean AUCs for EMG per Breathing Cycle

Subject 1, Male Subject 2, Female

j Mean AUC(
xj
) Tidal Volume (mL)(

yj
) j Mean AUC(

xj
) Tidal Volume (mL)(

yj
)

0 0.70× 108 500 0 0.70× 108 500
1 0.77× 108 625 1 0.40× 108 625
2 0.88× 108 750 2 0.45× 108 750
3 1.12× 108 875 3 0.50× 108 875
4 1.23× 108 1000 4 0.61× 108 1000
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Figure 7. Curve fitting. The y-axis represents the tidal volume and the x-axis represents the mean
AUC values calculated from the EMG data (obtained at the diaphragm) for the different tidal volume
during one breathing cycle. (a,b) Cubic spline interpolation. (a) subject 1 (male), (b) subject 2 (female);
(c) Fitting a linear model to subject 1’s data at the diaphragm yields f (x) = 8.6× 106x− 56 as the
best fit line with 95% confidence bounds (adjusted R2 = 0.96). Here x represents the AUC during
one breathing cycle obtained at the diaphragm and f represents the tidal volume. (d) Fitting a linear
model to subject 2’s data at the diaphragm yields f (x) = 2.2× 105x− 249.4 as the best fit line with
95% confidence bounds (adjusted R2 = 0.92).

4.2. Extraction of Respiration Rate
4.2.1. Signature Matrix Method

In this study, we present a new method of using signature matrix [33]. The method
generates a series of two-dimensional “image-like” signature matrix patterns from the
sensor signals. These signature matrix patterns reflect the compressed characteristics per
sampling window using the calculated probabilities as pixels of an image frame. The
classification zone can be set up from a set of well-planned series of subgroups (i.e.,
template) to estimate the characteristic (or signature) behavior of the means of a sensor
signal pattern.
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For all sensor channels, a signature matrix (i.e., frame) SIGk for sample subgroup k is
defined by:

SIGk =


sig11 sig12 . . sig1N
sig21 sig22 . . sig2N

. . sigij . .

. . . . .
sigN1 sigN2 . . sigNN

 (9)

For a selected combination of the sample sensor signals (i.e., say channels X and
Y), a frequency count can be calculated from a matching column j and row i for the
corresponding zone of channels X and Y. Thus, a signature matrix is a probability map that
a selected subgroup (or sample) can fall into a specific classification zone. Thus:

sigij = P
[

(a mean o f X belongs to class j )
∩(a mean o f Y belongs to class i )

]
(10)

4.2.2. Lung Motion Signature

In this study, the signature matrix can be described as a two-dimensional probability
diagram (or image map) with a 3 × 3 matrix size. The method uses a two-dimensional
(image-like) signature matrix pattern from the Equation (10). The data were collected in a
subgroup size of 20 data points. Thus, there will be 80 subgroups per second if the sampling
frequency is 4 kHz, the sampling frequency used for the lung sensor signal monitoring.
Let us define the pixel elements of the template and the measured matrix at the sampling
period of k:

sigT
ij ≡ (a pixel o f the template matrix) (11)

sigk
ij ≡ (a pixel o f the measured matrix) (12)

Figure 8 shows the 3 × 3 signature matrix formation used for the high and low fre-
quency EMG signals. These signature matrix patterns reflect the sensor signals compressed
characteristics per given data length of interest. A real-time sensor data assessment can
be conducted by comparing the measured signature matrix patterns (i.e., targets) with
the stored patterns (i.e., templates). The method starts with dividing the signal averages
into zones. This study used a 2-sigma confidence interval to classify and allocate the EMG
signals to the corresponding pixels. A combination of the signal averages from the data
subgroups from two sensors finds the corresponding pixel in the signature matrix, calcu-
lates a new pixel value, and assigns the new probability value to the matrix pixel. Figure 9
shows the calculated signature matrix pixel values from the high and low frequency Sound
and EMG signal values from the EIM location with 1000 mL tidal volume. The calculated
3 × 3 template signature matrices are shown as follows:

SIGT
sound ≡

 0.0497 0.1370 0.0392
0.1116 0.3278 0.0000
0.0518 0.1436 0.1392

 (13)

SIGT
EMG ≡

 0.0119 0.1815 0.0105
0.0395 0.5216 0.0000
0.0136 0.1804 0.0411

 (14)
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The squared difference between the template pixel and the measured pixel is given by:

dk
ij =

(
sigT

ij − sigk
ij

)2
(15)

Thus, the sum of squared differences at the sampling period k between the template
and the measured signature matrices is given by:

Ek
ij = ∑N

i=1 ∑N
j=1

(
sigT

ij − sigk
ij

)2
(16)
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In the study, the inspiration moment can be estimated by calculating Equation (16)
using the inspiration template matrices given in Figure 9 and Equation (16). The inspiration
moments (shown in red arrows) were recorded at 40 kHz subgroup sample frequency and
shown in Figure 10. Please note that the inspiration moments can be identified with a low
level of matching errors (blue and purple circles). Figure 11 shows the breathing cycles
(i.e., inspiration moments) monitored using the template signature matrices obtained from
the diaphragm location.
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5. Discussion

This study was performed from two person’s (one male and one female) breathing
cycle data for a proof-of-concept. The AUC values for EMG per breathing cycle for different
tidal volumes collected at the diaphragm for the male subject is higher than the female
subject. It is known that lung function is influenced by multiple factors, including age,
sex/gender, and height [34,35]. We speculate that the EMG data collected at the diaphragm
may also change between different individuals depending on age, sex/gender, and height.
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Future work would involve using data from a wide range of individuals of different
ages, sex/gender, and heights to understand better how these factors affect our model
predictions.

Our study shows that EMG measurements at both the EIM and diaphragm vary
nonlinearly with tidal volume. The cubic spline interpolation shows that at both diaphragm
and EIM, the distribution for AUC is somewhat linear for all the tidal volumes. Also, at
EIM, there is a wider distribution for AUC. Compared to EIM, the AUC distribution at
the diaphragm has a narrower distribution. The data collected at the diaphragm provides
a better approximation of the tidal volume since AUC distribution at the diaphragm has
lower variance, and the p-value from the Kruskal-Wallis test is smaller than the AUC
distribution at the EIM. Therefore, the diaphragm’s AUC distribution is better suited for
creating predictive models to estimate tidal volume. We used cubic spline interpolation to
create a predictive model for tidal volume. First, we define an inverse problem where we
assume that we seek the corresponding tidal volume for given AUC inputs.

The respiration rate is one of the clinically significant vital signs. Our wearable sensor
system provides an exciting novel approach for continuous respiration rate monitoring
using the new signature matrix method. Our approach is worth further investigation
and analyses on a larger sample size since only two individuals’ breathing cycle data
were used in this study. Future work would include comparing other measuring meth-
ods of the respiration rate, such as impedance measurement and respiratory inductance
plethysmography [36–38].

6. Conclusions

The monitoring and analysis of respiration data remotely and continuously provide
essential healthcare information for the users and the public healthcare communities,
including hospitals. For example, assessment of cyclical fluctuations of heart rate, combined
with the study of respiration-disorders, allows reliable recognition of the signs of illness
such as coronavirus disease, etc. In particular, the coronavirus disease asks for isolation
such as social distancing and quarantine and hospital capacity management to treat many
people quickly. The coronavirus outbreak leads to a permanent shift in the acceptance of
the technology innovations that reduce human-to-human contact and automate intelligent
processes. The wearable describes a multi-sensor multi-channel wireless platform for smart
remote health monitoring to address one of the fastest-growing medical research due to
the increasing aging population and associated diseases.
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