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Viruses efficiently transfer and express their genes in host cells and evolve to evade the 
host’s defense responses. These properties render them highly attractive for use as gene 
delivery vectors in vaccines, gene, and immunotherapies. Among the viruses used as 
gene delivery vectors, the macaque polyomavirus Simian Virus 40 (SV40) is unique in 
its capacity to evade intracellular antiviral defense responses upon cell entry. We here 
describe the unique way by which SV40 particles deliver their genomes in the nucleus of 
permissive cells and how they prevent presentation of viral antigens to the host’s immune 
system. The non-immunogenicity in its natural host is not only of benefit to the virus but 
also to us in developing effective SV40 vector-based treatments for today’s major human 
diseases.
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iNTRODUCTiON

As intracellular parasites, viruses hijack the host cell machinery to replicate, spread and survive. 
Host cells use membrane-bound and cytoplasmic receptors to sense pathogen-associated molecular 
patterns (PAMPs). After receptor-binding, viral structural proteins may serve as PAMPs and bind 
toll-like receptors (TLRs) that are located on the cell surface or on endosomal membranes. After 
replication, virus-specific RNAs serve as PAMPs and bind cytoplasmic RIG-I-like receptors (RLRs). 
Activation of TLRs or RLRs leads to the assembly of inflammasomes that induce an inflammatory 
response (1, 2). Inflammation is a highly orchestrated cascade of processes aimed at confining the 
infection and ultimately in inducing an adaptive immune response directed to peptides (antigens) 
derived from viral proteins that are presented on major histocompatibility (MHC) molecules on the 
surface of cells of the immune system.

Simian Virus 40 (SV40), the type member of the Polyomaviridae family, was discovered in the 
fifties of the previous century as a contaminating virus in the polio vaccines that in those days were 
produced in primary cells from macaques (3, 4). Since then, SV40’s DNA genome was the first 
animal virus genome to be characterized (5, 6). SV40 served as the model virus to study molecular 
and bioche mical processes in eukaryote organisms (7). The first mammalian viral gene delivery 
vector was derived from SV40 (8) and pioneering gene transfer studies using replication-defective 
SV40 vectors ultimately resulted in the recent approval of the first viral vector-based gene therapies  
to the market (9), albeit that the currently used vectors are derived from adeno-associated virus 
(AAV) or the human immunodeficiency virus type 1 (HIV-1).

SV40 is a macaque polyomavirus consisting of icosahedral particles of 45  nm in diam-
eter (10, 11). The virus particle consists of 72 pentamers of the major viral protein VP1. On the  
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FigURe 1 | An overview of the Simian Virus 40 (SV40) cell entry process. (1) Binding of the virus particles to major histocompatibility class I (MHC-I) molecules that 
target them to lipid rafts, enriched in GM1 molecules. (2) Release from MHC-I molecules, binding to GM1 molecules, and caveolae vesicle formation. (3) Endosome 
internalization. (4) Endosome maturation and particle destabilization. (5) Release from endolysosomes and endoplasmic reticulum (ER) trafficking. (6) ER-associated 
degradation (ERAD)-mediated particle destabilization. (7a) ERAD-mediated cytosol transport. (7b) Viroporin-mediated nuclear entrance. (8) Cytosol destabilization. 
(9) Nucleopore-mediated nuclear entrance. The SV40 image was created using VMD software (19) PDB ID: 1SVA (20) and is a courtesy of Dr. J.-Y. Sgro, UW-
Madison, USA (http://www.virology.wisc.edu/virusworld/).
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inside of the capsid, each pentamer forms a hydrophobic pocket 
that is bound to one monomer of the viral proteins VP2 or VP3 
(12). Each particle contains a single copy of the viral genome, a 
circular 5.2 kilobase pairs long double-stranded DNA molecule 
packaged with histones to form a mini-chromosome. The SV40 
genomic DNA has two genes. The early gene encodes two 
non-structural replication-associated proteins: small T antigen 
and large T antigen. The late gene codes for the structural viral 
proteins VP1, VP2, and VP3, respectively (13, 14).

In macaques, SV40 causes chronic asymptomatic infections 
(15). Children who received the SV40-contaminated poliovirus 
vaccine did not develop an adaptive immune response to the 
virus particles and excreted SV40 in their stools within 5 weeks 
after vaccination (16). This indicates that SV40 capsids do not 
serve as PAMPs and that the virus does not replicate in human 
cells. Studies in animals administered with replication-defective 
SV40 vector particles in the absence of adjuvants (PAMPs) do not 

result in the induction of an adaptive immune response to SV40, 
demonstrating that SV40 particles are non-immunogenic in vivo 
(17, 18). This implies that SV40 after its entrance into permis-
sive cells (Figure 1) is able to efficiently evade TLR binding and 
prevents presentation of viral antigens on MHC molecules to cells 
of the host’s immune system.

The non-immunogenicity of SV40 combined with the absence 
of an immune memory for this macaque polyomavirus in the 
human population is of benefit to us, since it renders SV40 
highly attractive for use as a gene delivery vector in gene and 
immunotherapies.

eNDOCYTOSiS

SV40 binds MHC class I (MHC-I) molecules present on the 
surface of all body cells (21–23). Once bound, the SV40–MHC-I 
complexes migrate to caveolin-enriched membrane domains 
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FigURe 2 | SV40 cell attachment and internalization. SV40 particles attach to the cell surface by binding to major histocompatibility class I molecules (1) that shuttle 
the virus particles to GM1-rich lipid rafts (2). The particles bind GM1 and induce the formation of caveolar endocytic vesicles (3)  
and get into the cytosol through an active translocation mediated by glycosylphosphatidylinositol (GPI)-anchored proteins (4).
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named caveolin pits also known as lipid rafts (Figure 2). Caveolin 
pits are cell surface membrane domains enriched in cholesterol, 
gangliosides, glycosphingolipids, and protein receptors including 
MHC-I molecules that are involved in endocytosis and transcy-
tosis (24–27).

At the caveolin pits, the MHC-I molecules are degraded by 
metalloproteinases whereby the SV40 particles bind to mem-
brane ganglioside GM1 molecules which are considered their 
endo cytic receptors (28, 29). Binding of SV40 particles to GM1 
induces a curvature of the cell membrane that results in the for-
mation of endocytic vesicles known as caveolae (20, 24, 26, 30). 
Caveolae are circular or tubular vesicles of 70–100 nm in diameter 
and usually contain one SV40 particle. Next to GM1, cholesterol 
and tyro sine kinases are needed for the formation of caveolae, 
since nystatin (a cholesterol sequestering agent) and genistein  
(a tyrosine kinase inhibitor) efficiently block the translocation of 
SV40 particles into the caveolae (Figure 2) (29, 31–33).

The caveolar tyrosine kinases promote the recruitment of 
the cytoskeleton proteins actin and dynamin II (30, 34, 35) and 
assisted by Rab5 (a GTP-binding protein) and Arf1 (a GTP-ase) 
the caveolae traffic along the cytoskeleton to early endosomes 
(Figure  3) (36, 37). The SV40 particles remain bound to the 
membrane-associated GM1 molecules in endosomes during 
their maturation to late endosomes and endolysosomes. At this 
stage, the cell entry process of polyomaviruses differs from that 
of other viruses. Most viruses directly move from the endolyso-
some to the nucleus (38, 39). However, before they traffic to the 
nucleus, major part of their structural proteins is degraded by 
the lysosomal proteases yielding viral peptides which are loaded 
as antigens on MHC class II (MHC-II) molecules (40). MHC-II 
molecules are expressed in antigen-presenting cells (APCs) that 
are involved in the induction of adaptive immune responses.

Polyomaviruses, on the contrary, traffic from the endolyso-
some to the endoplasmic reticulum (ER) (36). The acidic envi-
ronment in the endolysosome renders SV40 particles susceptible 
to successive disassembly steps later in the ER. However, before 
the virus particles are degraded by lysosomal enzymes they leave 
the endolysosome. The GM1 molecules that remained bound 
to the SV40 particles mediate the budding from the endolyso-
some membranes, it has remained unknown which factors are 
responsible for the timing of the budding process (41). The early 
exit from the endolysosomes prevents degradation of the SV40 
structural proteins by lysosomal enzymes. As a result, SV40 anti-
gens are not loaded on MHC-II molecules and presented by APCs 
to lymphocytes.

eR PROCeSSiNg AND NUCLeAR eNTRY

The virus-containing vesicles traffic from the endolysosome to 
the ER using the trans-Golgi network, a bidirectional vesicle 
trafficking route between ER and Golgi apparatus (Figure  3) 
(42). Trans-Golgi network vesicles are coated with coat protein I 
(COPI) complex proteins originating from the lysosomal mem-
branes (43, 44). The COPI-coated vesicles containing the SV40 
particles fuse with the ER membranes (45) releasing the virus 
particles into the ER lumen.

The ER-associated degradation (ERAD) system is a protein 
quality control mechanism that recognizes nascent polypep-
tides and assists them in their correct folding or degradation by 
cytoplasmic proteasomes (46). The SV40 particles are recognized 
by the ERAD system as misfolded proteins. Peptide disulfide 
isomerase and ER protein 57 bind to and reduce the disulfide 
bonds that stabilize the VP1 pentamers (Figure 4). The pentam-
ers become less tightly associated with each other and the VP2 
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FigURe 3 | SV40 endocytosis and transport to the endoplasmic reticulum (ER). Scheme depicting the traffic of SV40-containing caveolar vesicles to early 
endosomes (1). The maturation of endosomes and fusion with lysosomes to endolysosomes (2). The traffic of coat protein I (COPI)-decorated vesicles to the ER (3). 
ER internalization (4).
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and VP3 become exposed to the exterior (47). Indeed, in vitro 
studies confirmed that the SV40 particles in the ER are larger 
than those in the cytosol (48). The hydrophobicity of VP2 and 
VP3 renders the virus particles prone to aggregation. Aggregation 
is prevented by binding to the molecular chaperone BiP. Usually, 
proteins to be degraded bind a membrane-bound protein 
complex containing Hrd1 that targets them for degradation by 
cytoplasmic proteasomes. In this degradation process, specific 
peptides derived from the proteins are loaded as antigens on 
MHC-I molecules to be presented at the cell surface to cells of 
the host’s immune system. MHC-I molecules are involved in the 
induction of cellular immune responses. Polyomaviruses, how-
ever, do not bind Hrd1-containing complexes and are not loaded 
to proteasomes. SV40 thus has developed an effective mechanism 
to prevent being targeted for proteasome degradation (47, 49). 
This implies that SV40 is also capable of avoiding presentation on 
MHC-I molecules, thereby preventing the induction of cellular 
antiviral immune responses upon infection.

One scenario to explain this phenomenon is that the virus 
particles use an extra step via the cytoplasm to evade proteasome 
degradation and reach the nucleus. In this scenario, the exit of 
the virus–BiP complexes from the ER to the cytosol is facilitated 
by proteins of the ERAD system in combination with cytosolic 
chaperones and takes place at particular domains on the ER 

membrane named foci (Figure 4) (50–52). At the foci, the desta-
bilized virus particles are pulled-out from the ER and released 
into the cytoplasm (53). In the cytoplasm, VP1 is removed from 
the SV40 particles due to the action of chaperones (53) and the 
local physiological conditions (54). The nuclear localization sig-
nals present on VP2 and VP3 bind α/β importins (55–58) that 
mediate the transport of the SV40 genetic material into the 
nucleus through the nucleopores (Figure 5) (59–61).

In another scenario, the virus particles directly move from 
the ER lumen to the nucleus. This scenario relies on the capacity 
of purified VP2 and VP3 monomers to insert in membranes 
forming pore-like structures named viroporins (62, 63). The 
ERAD-mediated destabilized SV40 particles allow the formation 
of VP2/VP3 viroporins on the inner nuclear membranes. The 
viroporins subsequently pull the SV40 genomes into the nucleus 
(Figure 6) (64).

THe PReSeNCe OF Sv40 iN THe HUMAN 
POPULATiON

Polyomaviruses cause chronic symptomless infections in their 
hosts and since they are replication-competent sustained adap tive 
immune responses to the virus are induced in infected hosts (65–69).  
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FigURe 4 | The traffic of SV40 particles from the endoplasmic reticulum (ER) to the cytosol. SV40 particles are destabilized by the ER-associated degradation 
machinery (1) and remain associated with the ER membrane (2). But instead of leaving the ER by binding Hrd1 and to be loaded to cytoplasmic proteasomes (3), 
the destabilized particles interact with ER membrane-resident proteins (4) and associate with cytosolic chaperones (5) to move to the cytosol (6).

FigURe 5 | SV40 nuclear entry. SV40 particles further destabilize by low calcium in the cytosol (1) and lose VP1 by cytosolic chaperones (2). The particles bind 
nucleopores and viral genomes enter the nucleus (3).
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In humans, polyomaviral particles can be found in the kidney 
and urine of immunocompetent individuals and in kidney, brain, 
lung, or peripheral blood mononuclear cells in immunocom-
promised individuals.

Since the massive administration of children with SV40 in 
the fifties and sixties of the previous century, many studies have  
been performed to determine the consequences of this unde-
sired vaccination. However, the epidemiological studies to iden-
tify SV40 seropositive individuals were inconclusive. The assays 
used in macaques to detect SV40 are not reliable in humans  
(70, 71). Only a small number of individuals vaccinated with 
SV40-contaminated polio vaccine developed antibodies to SV40 
(16, 72) and the very low antibody titers suggest that SV40 does 
not replicate in human cells (73, 74). Finally, the presumed SV40 
antibodies disappeared with time, indicating that the seropositive 
individuals were not chronically infected with SV40 (71, 75, 76).  
From a study with zoo workers that were in close contact with 
macaques for a long time, it was concluded that SV40 does not 
replicate in humans (70, 71, 74, 77). Overall, from all epide-
miologic studies, the Institute of Medicine from the National 
Institutes of Health in the USA concluded that humans are not a 
host of SV40 and that SV40 is not a human pathogen (78).

CONCLUDiNg ReMARKS

The successful entry into a host cell is a crucial step in the virus 
replication cycle. Among all viruses, polyomaviruses including 
SV40 have developed a unique way of entering a permissive cell  

and expressing its genetic information in the nucleus of an 
infected cell. The viral particles prevent activation of TLRs, escape  
from the proteasome, and thus evade antigen presentation to 
cells of the host’s immune system during this initial stage of 
infection. The serological analysis of hosts naturally infected with 
polyomaviruses shows long-lasting adaptive immune responses, 
indicating that replicating polyomaviruses activate RLRs (79).

Epidemiological studies revealed that humans are not a host 
for SV40 and that this macaque polyomavirus does not replicate 
in humans. Therefore, the human population is considered to be 
immunologically naïve for SV40. On the basis of these findings,  
it is expected that replication-defective SV40 gene delivery vec-
tors are completely non-immunogenic in humans.

In a number of reports, it has been shown that replication-
defective viral gene delivery vectors such as vectors derived 
from AAV and HIV-1 induce immune tolerance to the transgene 
proteins when administered to hosts that are naïve to the cognate 
virus (80–83). These studies indicate that replication-defective 
SV40 vectors are ideally suited for inducing immune tolerance 
to the transgene proteins in humans (17, 18). This is crucial for 
designing effective gene replacement therapies where long-term 
transgene expression in the target tissue is required to cure 
patients from inherited diseases. In addition, the capacity of 
SV40 vectors to induce immune tolerance opens the way to treat 
autoimmune diseases by restoring the immune tolerance to pri-
mary self-antigens involved in the autoimmune tissue destruc-
tion.Restoration of immune tolerance to self-antigens using viral 
gene delivery vectors is named reverse viral vector vaccination 

FigURe 6 | Nuclear entry by viroporins. The virus particles destabilized by the endoplasmic reticulum-associated degradation system (1) form VP2 and VP3 
viroporins (2) on the inner nuclear membrane (3) that pull the viral genomes into the nucleus (4).
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and has been a longstanding goal in autoimmunity research. To 
date, diabetes mellitus type 1, multiple sclerosis, and arthritis are 
the best studied autoimmune diseases. In rodent models of these 
diseases, it has been shown that replication-defective AAV or 
HIV-1 vectors encoding the primary self-antigens of the disease 
highly efficiently protect and cure the treated animals from 
the autoimmune disease (84–89). With our rapidly increasing 
know ledge on immunology, the list of autoimmune diseases is 
growing and includes the major degenerative diseases of our time 
such as cardiovascular diseases (90), neurodegenerative and psy-
chiatric diseases (91), obesity, diabetes mellitus type 2 (92, 93), 
arthritis and pulmonary diseases (94). Moreover, the induction 
of immune tolerance in recipients to MHC-I molecules of donor 
cells will improve the success rate of tissue transplantations.

HIV-1 derived vector particles are instable, rapidly degraded 
when administered in vivo, and for these reasons only used for 
ex vivo gene therapy to treat blood-related genetic disorders 
or cancer. To date, AAV vectors are the most popular for use 
in in  vivo gene therapy. However, the majority of the human 
population encountered wild-type AAV together with its helper 
virus (adenovirus, causing the common cold) and developed 

an immune memory against the AAV capsid proteins. Clinical 
studies revealed that because of the immune memory in humans, 
the in  vivo efficacy of AAV vectors is very low. SV40 vectors 
are the only gene delivery vectors that can be used for inducing 
immune tolerance to transgene proteins in humans and for this 
reason the oldest viral gene delivery vector will be key to the 
successful development of effective interventions for today’s 
major diseases (95).
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