
TypeTaxonScript: sugarifying and enhancing data
structures in biological systematics and
biodiversity research
Lucas S�a Barreto Jord~ao 1,�, Marli Pires Morim2, Jos�e Fernando A. Baumgratz2, Marcelo Fragomeni Simon 3,
Andr�e L. C. Eppinghaus1 and Vicente A. Calfo1

1Centro Nacional de Conservaç~ao da Flora—CNCFlora, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
2Diretoria de Pesquisa Cient�ıfica—DIPEQ, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
3Embrapa Recursos Gen�eticos e Biotecnologia, Parque Estaç~ao Biol�ogica–PqEB, Bras�ılia, 70770-901, Brazil

�Correspondence address. Centro Nacional de Conservaç~ao da Flora—CNCFlora, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro,
22460-030, Brazil. E-mail: tucarj@gmail.com

Abstract

Object-oriented programming (OOP) embodies a software development paradigm grounded in representing real-world entities as objects,
facilitating a more efficient and structured modelling approach. In this article, we explore the synergy between OOP principles and the
TypeScript (TS) programming language to create a JSON-formatted database designed for storing arrays of biological features. This fusion
of technologies fosters a controlled and modular code script, streamlining the integration, manipulation, expansion, and analysis of
biological data, all while enhancing syntax for improved human readability, such as through the use of dot notation. We advocate for
biologists to embrace Git technology, akin to the practices of programmers and coders, for initiating versioned and collaborative projects.
Leveraging the widely accessible and acclaimed IDE, Visual Studio Code, provides an additional advantage. Not only does it support
running a Node.js environment, which is essential for running TS, but it also efficiently manages GitHub versioning. We provide a use
case involving taxonomic data structure, focusing on angiosperm legume plants. This method is characterized by its simplicity, as the
tools employed are both fully accessible and free of charge, and it is widely adopted by communities of professional programmers.
Moreover, we are dedicated to facilitating practical implementation and comprehension through a comprehensive tutorial, a readily
available pre-built database at GitHub, and a new package at npm.

Keywords: JavaScript; TypeScript; JSON; Mimosa; Node.js; taxonomy; morphology; Leguminosae; Fabaceae; Visual Studio Code; plant

Introduction
The endeavour to describe and catalogue organisms spans gener
ations, contributing significantly to the foundations of biological
knowledge and classification. Rooted in historical scientific liter
ature, the practice of representing organisms through textual
descriptions acts as a bridge connecting past and present scien
tific communities [1, 2]. As the digital age dawns, traditional
methods merge with contemporary technology [2, 3].

In the present day, taxonomists and systematists often resort to
familiar text editors, like Microsoft (MS) Word, to meticulously craft
their descriptions. While some practitioners venture into spread
sheets for structured data [4], rapid technological advancements
unveil new avenues for documentation and data organization.

Amidst this evolving landscape, untapped potential arises
through cutting-edge methodologies. While digital tools have sig
nificantly streamlined numerous research tasks, a notable gap
persists between these contemporary solutions and their wide
spread acceptance within the scientific community. In this con
text, our exploration delves into the symbiotic relationship
between object-oriented programming (OOP) and document-
oriented databases (DOD). Through this lens, we foresee a

paradigm shift propelling biodiversity research into an era of effi
ciency, collaboration, and innovation.

TypeScript (TS), an extension of JavaScript (JS), is a robust
choice for intricate and organized systems [5]. Combining OOP
principles with TS creates a powerful development ecosystem,
facilitating the building of a JS Object Notation (JSON) database.
Moreover, it permits to incorporate multiple layers of data vali
dation to establish a highly reliable database.

The JSON format emerges as crucial within DOD, standing out
for data structuring [6]. Diverging from spreadsheets, JSON’s versa
tility and hierarchy accommodate varied data types, ideal for hous
ing diverse biological data and annotations. This aligns with
complex domains like systematics, chemistry, ecology, reproduc
tion, genomics, and proteomics, often better represented through
nested hierarchies.

In parallel, another approach for biological data management
involves ontologies like Gene Ontology [7, 8] and Plant Ontology
[9, 10]. These structured vocabularies connect biological concepts
intricately. Yet, not only their complexity, but also their repre
sentation demands specialized expertise, making JSON simplic
ity’s appealing to a wider community.

Received: 28 December 2023. Revised: 19 February 2024. Editorial decision: 26 February 2024. Accepted: 12 March 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-
use, please contact journals.permissions@oup.com

Biology Methods and Protocols, 2024, bpae017

https://doi.org/10.1093/biomethods/bpae017
Advance Access Publication Date: 14 March 2024

Methods Article

https://orcid.org/0000-0002-9501-0548
https://orcid.org/0000-0002-5732-1716

JSON shines in integrating biodiversity databases, offering an
accessible alternative. While ontologies require expertise and are
reliant on specific software, JSON directly empowers biologists as
it lies at the core of web evolution, enabling the democratization
of data-driven research. Furthermore, embracing GitHub tech
nology fosters collaboration by enabling the seamless sharing of
code, data, and insights [11]. Concurrently, Visual Studio Code
(VS Code) adeptly manages GitHub versioning. This combined
toolset significantly supports researchers in diverse fields, facili
tating multidisciplinary endeavours aimed at advancing our
comprehension of biodiversity and ecological systems.

As capabilities in biodiversity research continue to expand,
the role of effective data integration mechanisms and collabora
tive tools becomes increasingly pivotal. In this context, the utili
zation of JSON to represent data structures in biodiversity
databases, alongside code versioning, not only bridges the gap
between complex data structures and the broader scientific com
munity but also propels collaborative solutions in the field of bio
diversity research.

Here, we present TypeTaxonScript (TTS), a JS/TS package
designed to enrich taxonomic descriptions and advance system
atics, while also offering a versatile data structure capable of
seamlessly accommodating ecological, reproductive, and other
pertinent information of biological entities. We advocate start
ceasing the use of text and spreadsheet editors, such as MS Word
and Excel, for taxonomic descriptions, due to their lack of robust
validation processes during data entry. Instead, we aim to estab
lish a resilient, user-friendly database ensuring data integrity,
stability, and compliance with standardized scientific practices
in textual taxonomic descriptions, as well as character and inter
action matrices.

Background
JS and Node.js environment
JS [12] serves as the foundation for a wide range of modern pro
gramming endeavours, including the management of biological
data [13–15]. Its versatility and widespread adoption have cata
lysed the development of tools and platforms that harness its
capabilities.

Node.js, a runtime environment built on Chrome’s V8 JS engine,
extends the potential of JS beyond the confines of web browsers
[16]. It enables the execution of JS code outside of browsers, facili
tating server-side scripting. This is particularly advantageous for
tasks involving data processing, handling API requests, and manag
ing databases [15]. Moreover, Node.js offers access to a wide array
of libraries and packages, expediting the development of databases
while enhancing its overall functionality.

JS and Node.js are powerful tools in the field of biological data
management. Their capabilities contribute to the development of
efficient, dynamic, and scalable databases, facilitating advance
ments in biodiversity research.

OOP and TS
In the ever-evolving realm of biological data management, the
fusion of OOP principles with TS, a powerful programming lan
guage extension, marks a significant leap forward. OOP, a para
digm in software development, revolves around representing
real-world entities as objects, each imbued with distinct attrib
utes and methods [17, 18]. At its essence, OOP depends on the
foundation of classes and instances, where each object repre
sents an instance of a class. This paradigm promotes code reus
ability, modularity, and streamlined maintenance, offering

indispensable tools for navigating the intricate landscape of bio
logical data. The integration of OOP principles into information
systems for biological data has been leveraged to combine di
verse data sources and interactions [18–21].

TS, as an extension of JS closely tied to OOP, elevates the lan
guage’s capabilities by introducing essential features like static
typing and interfaces [5]. This upgrade makes TS a powerful tool
for building complex, robust, and well-organized systems. A
noteworthy aspect of TS is its ability to capture errors at compile-
time, in contrast to the runtime error detection found in tradi
tional JS [5]. This attribute enhances the identification and reso
lution of potential issues within the code prior to execution. In
the construction and management of biological databases, this
early error detection ensures data integrity and improves the
overall dependability of the database. This becomes especially
crucial when grappling with intricate relationships and complex
hierarchies intrinsic to biological data.

Furthermore, within this proposed framework, methods play
a pivotal role. These methods, which represent behaviours asso
ciated to classes, act as a layer of validation during runtime.
They enforce conditions and rules, guaranteeing the accurate
and consistent input of data. For example, when a particular
structure’s absence is declared, such as a plant trichome type,
assigning a size to that character becomes illogical. Methods
function as conditional safeguards, preventing erroneous or in
compatible data from infiltrating the database. As a result, data
quality and reliability are significantly enhanced.

The amalgamation of OOP principles with TS’s capabilities
spawns a potent toolkit for structuring and managing biological
data. This dynamic fusion facilitates the establishment of an or
derly and dependable ecosystem, ensuring the precision and in
tegrity of biodiversity information.

In a similar vein, TS introduces the concept of syntactic sugar,
heightening code readability and expressiveness. This feature
incorporates elements that streamline code comprehension
without altering its core behaviour. For instance, consider the
contrast between dot notation and JSON-like indentation. Dot no
tation is significantly more intuitive and easier to understand.
This refinement in syntax enhances human readability, making
it accessible to both experienced developers and researchers, as
well as those with limited programming backgrounds. The inte
gration of syntactic sugar harmonizes seamlessly with the over
arching framework objectives.

Another compelling instance of the syntactic sugar principle lies
in the adoption of linguistic conventions from the domain of biolog
ical sciences. Instead of relying solely on primitive types like true
or false, we advocate for the use of contextually appropriate terms
like yes or no, present or absent. This strategic approach reso
nates with the syntax employed in descriptions of comparative
analyses within the biological sciences. The deep alignment be
tween code semantics and domain-specific concepts adds an addi
tional layer of cohesion to the framework’s objectives, nurturing a
user-oriented and friendly environment meticulously designed to
propel advancements in biodiversity research.

Document-oriented database and JSON
The paradigm shift initiated by DOD and the adoption of the
JSON format has had a profound impact on the landscape of bio
logical data management. In contrast to traditional relational
databases, DOD store data as self-contained documents,
embracing complexity while retaining flexibility [18, 22–27]. In a
non-relational DOD, each row in a spreadsheet represents a

2 | Jord~ao et al.

document in the database, while each column corresponds to a
property of these documents.

At the core of this transformation lies the JSON format, a corner
stone of DOD, offering a versatile and hierarchical structure capa
ble of accommodating diverse data types within a schema-free
environment. This schema flexibility allows for the storage of semi-
structured data without the constraints of predefined tables, as
seen in traditional relational databases [27]. This capability enables
capturing nuances that rigid frameworks might overlook. The in
herent compatibility between the JSON format and the intricate
characteristics of biological information leads to a more compre
hensive and precise representation of biological features within the
JSON’s data structure. This starkly contrasts with the challenges
posed by relational databases in capturing complex relationships
without resorting to convoluted structures and joins.

While relational databases have found widespread use in
structuring data, even within the field of biology, they lack the in
herent readability that human thinking naturally craves. The
shift from two-dimensional spreadsheet thinking to embracing
the hierarchical notation of JSON is clearly advantageous, as it
allows for a more effective handling of complexity, leading to the
development of a more readable and manageable data structure.

A fundamental characteristic of a DOD is its structural foun
dation, comprised of an array of objects, each of which is treated
as a document. This array serves as the database and requires ro
bust querying capabilities. Each individual object within this ar
ray is assigned a specific index. When working with DOD, our
primary objective is to navigate through all levels of a JSON
structure. This involves not only identifying the index where our
query is situated but also tracing the JSON path that leads to this
discovery. This dual process of information retrieval offers us a
comprehensive methodology for precisely pinpointing and
accessing the desired data. Consequently, within a DOD, the doc
ument index within the database and the associated JSON path
emerges as the two critical tools for effective navigation and
data retrieval.

Within JSON, an object comprises a key-value pair. The key
serves as a label for a JSON object property. It uniquely identifies
a specific piece of data or information stored in the object. Each
key is associated with a value, which represents the actual infor
mation or data assigned to that key. Values can encompass vari
ous data types, including strings, numbers, booleans, arrays,
nested JSON objects, or null. This key-value structure in JSON
allows for the organization, representation, and access of data in
a structured manner, ensuring clarity and ease of retrieval when
working with JSON objects.

Equally significant is JSON’s contribution to simplifying data
querying. By employing JSON notation, researchers can effi
ciently retrieve data, harnessing its inherent structure for effec
tive information organization and retrieval. Prominent databases
like MongoDB (https://www.mongodb.com/) leverage the capabil
ities of JSON, facilitating efficient querying and manipulation,
but other non-opinionated tools can also be employed as query
languages. These resources empower researchers by offering a
data structure that facilitates a highly integrative approach and
provides a more intuitive means of retrieving information.

Documentation and TSDoc
Documentation plays a vital role in storing information about
objects, highlighting their attributes and values. This is particularly
crucial when constructing a robust database with efficient meta
data organization, as emphasized by Spinellis [28] and Rai et al. [29],

especially in the context of biological data, as highlighted by
Warren et al. [30].

Creating detailed documentation establishes a comprehensive
reference guide for all objects by accurately describing each class
and its attributes, providing a clear overview of their fundamen
tal characteristics.

Here, TSDoc (https://tsdoc.org/) functions as a valuable tool,
introducing standardized annotations that clarify attribute
details, including type and purpose. These annotations establish
a consistent framework, helping contributors understand the
purpose and usage of each element.

Solid documentation is essential for developing a sturdy data
base. It serves as the foundation for effective data organization,
ensuring accurate inputs and maintaining database integrity.
Furthermore, detailed documentation facilitates team collabora
tion by offering easy access to object information, reducing
errors, and enhancing data accuracy.

Addressing documentation within metadata and database con
texts constructs a framework that supports a comprehensive un
derstanding of objects, attributes, and methods. Documentation
not only describes but also organizes and clarifies stored values.
Incorporating TSDoc annotations enhances this clarity by standard
izing descriptions and improving accessibility.

Integrated development environment and Visual
Studio Code
An Integrated Development Environment (IDE) stands at the
heart of modern software development, offering a comprehen
sive toolkit to streamline coding, debugging, and collaborative
efforts. Notably, VS Code (https://code.visualstudio.com/), a
widely acclaimed IDE renowned for its adaptability and efficacy,
exemplifies this role. Developed by MS, VS Code caters to a di
verse range of programming languages and has become a go-to
choice for developers and researchers alike.

The core strength of VS Code lies in its user-friendly interface,
accommodating developers from various backgrounds. Yet, its true
power emerges from an expansive extension marketplace and ro
bust capabilities, which can be customized to meet the demands of
diverse coding tasks, spanning TS projects and beyond.

Within our specific project context, VS Code becomes a pivotal
asset for manipulating and managing JSON-formatted biological
data. Seamlessly integrating TS in Node.js, this IDE ensures the
maintainability, adaptability, and responsiveness of the underly
ing codebase. This proves especially crucial in meeting the evolv
ing demands of biodiversity research. However, it is worth noting
that other IDEs are also capable of performing the same tasks.

An added advantage of VS Code is its built-in version control
functionality, hinging on Git and GitHub. This integration
empowers collaborative development by enabling effortless shar
ing, reviewing, and tracking of code modifications. Beyond just
expediting the development process, these features foster trans
parency, accountability, and effective teamwork within the
realm of biological data management.

By embarking on an exploration of the integration of OOP, TS,
and JSON databases within VS Code environment, we unlock
novel possibilities to improve the processing, analysis, and utili
zation of biological data.

We prioritize the simplicity and effectiveness of a programming
environment’s functionality, intending to utilize it as a platform for
constructing a controlled vocabulary database with comprehensive
documentation. We have observed that this development environ
ment is equally effective for creating biological databases, rather
than attempting to create a new opinionated software. By

Sugarifying and enhancing data structures | 3

https://www.mongodb.com/
https://tsdoc.org/
https://code.visualstudio.com/

proposing this framework, our goal is to provide as few opinions as
possible in building a robust biological database.

Git versioning and GitHub
The strategic utilization of version control significantly contrib
utes to maintaining a coherent and collaborative coding environ
ment. GitHub, a widely utilized platform for version control and
collaborative development, seamlessly integrates with VS Code,
thereby enhancing efficiency and transparency within the devel
opment process [31–33]. However, alternative Git versioning plat
forms are also available for use.

By capitalizing on GitHub’s versioning capabilities embedded
within VS Code, researchers, biologists, and systematists collabo
rate on shared projects with ease, effectively tracking changes
and managing contributions. The integration guarantees timely
synchronization between local repositories and remote reposito
ries hosted on GitHub, ensuring that all team members have ac
cess to the most current code.

GitHub’s versioning features, encompassing branching, pull
requests, and merging, expedite effective collaboration by fur
nishing clear avenues for reviewing and incorporating code alter
ations. This structured approach to development workflow
mitigates the potential for errors, ensuring thorough testing and
approval of code changes before they are integrated into the pri
mary codebase.

Branching plays a pivotal role in the development of code
bases for biological data representation. It allows developers to
work on distinct features or aspects of biological character repre
sentation independently, preventing conflicts and ensuring code
integrity. By creating branches, researchers can experiment with
different approaches or modifications, fostering innovation while
maintaining the stability of the main codebase. This practice
facilitates efficient collaboration, as team members can concur
rently work on diverse aspects of biological representation.

Pull requests, an essential aspect of collaborative software de
velopment within Git versioning, serve as a mechanism for pro
posing and discussing changes to a repository’s codebase. When
a developer or contributor wants to suggest modifications or
additions, they create a pull request, allowing others to review
the proposed changes. This process promotes transparency, peer
review, and collaboration within the development community.
Pull requests also facilitate meaningful discussions and help
maintain the quality and integrity of the codebase, making them
an integral part of the open-source and collaborative develop
ment workflow on Git platforms.

Merging is a crucial aspect of maintaining codebase integrity
in the context of biological data representation. It enables the
seamless integration of changes made in separate branches back
into the main codebase. When developers or researchers have
completed their work on specific biological character representa
tions, merging ensures that these modifications are smoothly in
corporated into the larger project. Through merging, the
collaborative efforts of the team are harmonized, and conflicts
are resolved to produce a cohesive and comprehensive codebase,
facilitating progress, and ensuring the accurate representation of
biological data.

Issues in the representation of biological characters in the pro
posed classes can be effectively addressed through the use of is
sue tracking systems, such as Git issues. These platforms provide
a structured framework for documenting and discussing chal
lenges associated with accurately representing biological con
cepts within the codebase. Researchers and collaborators can
openly engage in dialogues, assign tasks, categorize issues, and

link discussions to code modifications or pull requests. This ap
proach promotes collaboration and transparency while enabling
efficient progress tracking and maintaining a comprehensive re
cord of decision-making. Consequently, leveraging issue tracking
systems enhances the quality and integrity of biological charac
ter representations within the code, contributing significantly to
the success of scientific endeavours.

The combination of GitHub versioning and VS Code engenders
an environment that augments code management while foster
ing the open exchange of ideas and expertise. This collaborative
approach empowers researchers and developers to collectively
contribute to the advancement of biodiversity research, harness
ing the power of version control to guarantee accuracy, traceabil
ity, and a unified endeavour towards comprehending and
preserving the intricacies of biological systems.

The use of Conventional Commits (https://www.conventional
commits.org/) in collaborative GitHub projects can yield significant
benefits. By adhering to the standardized commit message format,
developers can clearly and succinctly communicate the changes
made to the codebase. This aids in comprehending modifications
by fellow collaborators, as commit messages follow a consistent
pattern. Additionally, automated tools can leverage these messages
to automatically generate a detailed change history (changelog),
assisting the team in maintaining a track record of alterations over
time. With uniform naming and well-organized information, the
code review process becomes more efficient as reviewers can
swiftly grasp the purpose of each change.

This endeavour has the potential to make significant advance
ments in biodiversity research and systematics, which may lead
to scaling up and innovation. This, in turn, enhances transpar
ency, collaboration, and overall effectiveness in collaborative
database development within the Git versioning environment.

Exploring the database
In the domain of DOD, exploring new avenues is of paramount im
portance. These databases provide a flexible schema approach, ca
pable of accommodating diverse data formats within the same
database—a particularly advantageous trait for navigating data
characterized by evolving or unpredictable structures. The seam
less management of unstructured and semi-structured data aligns
harmoniously with the principles of DOD, fostering efficient stor
age, management, exploration, and analysis without imposing rigid
structures. Additionally, these databases excel in managing com
plex data relationships found in real-world scenarios, directly rep
resenting hierarchical data structures, arrays, and nested
documents. Moreover, robust aggregation frameworks play a
pivotal role, empowering researchers to conduct advanced analyses
within the database and extract valuable insights from
extensive datasets.

In the context of data exploration, DOD employ sophisticated
querying methods to efficiently retrieve and manipulate data.
These methods are tailored to the adaptable data representation,
enabling researchers to execute complex queries across diverse
data structures. For instance, MongoDB (https://www.mongodb.
com/), a prominent DOD, seamlessly integrates these querying
techniques. MongoDB’s capacity to handle adaptive schema, sup
port unstructured data, and manage intricate relationships
aligns seamlessly with the querying methodologies intrinsic to
the nature of DOD. By leveraging MongoDB’s querying capabili
ties, researchers can fully leverage these databases to explore
and analyse diverse datasets, including the intricate domain of
biological data analysis.

4 | Jord~ao et al.

https://www.conventionalcommits.org/
https://www.conventionalcommits.org/
https://www.mongodb.com/
https://www.mongodb.com/

The popularity of JSON has led to the development of various
packages, each offering unique ways to query JSON data. These
querying packages, like JsonPath (https://github.com/dchester/
jsonpath), Underscore (https://underscorejs.org/), and Lodash
(https://lodash.com/), are similar to tools that help us find spe
cific information within JSON structures. However, because each
tool has its distinct approach, there is no universal method for
querying JSON. This diversity can be complex, like having differ
ent tools for different tasks. Learning all these tools requires
time, and comparing their performance can be challenging.
Despite the absence of a standardized query language, the vari
ety of approaches offers a range of possibilities for querying JSON
data effectively. As the field evolves, researchers and developers
continue to explore and refine methods to improve the efficiency
and user-friendliness of querying JSON data.

Numerous querying techniques are available in DOD like
MongoDB. However, the standard approach does not typically in
volve searching for specific keys or executing queries without
providing the complete JSON path of keys. Nevertheless, we find
ourselves in need of this particular capability. For instance, we
aim to locate all keys such as f"trichomes.setiform.are":
"present"g or f"obtainingMethod": "SEM"g, and retrieve
database documents that match these conditions, irrespective of
their structural placement. This requirement essentially involves
conducting an exhaustive nested search, a functionality not
readily provided by MongoDB or similar databases. Fulfilling this
task requires the development of a recursive function with the
ability to traverse all levels of a JSON configuration, a function
provided within TTS via the findProperty command.

Standard guidelines
Standard recommendations serve as the foundation upon which
we establish a cohesive and structured development environ
ment. By diligently adhering to these standards and recommen
dations, we lay the groundwork for a development ecosystem
that not only facilitates clear communication, collaboration, and
intuitive coding practices, but also aligns with the intricate
domains of TS development and biodiversity data management.

In this database, each piece of data must be organized within
a predefined class. For example, taxa, characters, and sources
are all depicted as classes, with each class residing within a dedi
cated .ts file.

The underlying structure of organisms, as delineated by taxo
nomists and biologists, is abstracted into a hierarchical tree of
characters. This hierarchical structure is mirrored by a nested ar
rangement of directories, each containing .ts files. Biological
characters are encapsulated as classes. If a character-describing
class relies on other classes, it manifests as a directory with the
class name, which includes an index.ts file inside (e.g. the class
Flower, which imports other classes, is defined as Flower/in
dex.ts). This index.ts file is imported and exported using the
directory’s name, implicitly referencing the index.ts filename.
However, if a character-describing class stands alone without de
pendencies, it is represented by a standalone .ts file with the
class’s name (e.g. Calyx.ts). The interconnections between
these components are established through module import and
export mechanisms.

For instance, within our pre-built database, the Mimosa L. ge
nus is exemplified by a class named Mimosa. This class is accom
panied by an index.ts file within the Mimosa directory,
providing a comprehensive depiction of the Mimosa class.

Similarly, the attributes of a leaf are described within a single

index.ts file residing within the corresponding directory.
The process of inserting data occurs within the corresponding

species file. Each piece of information is accommodated within

an object that aligns with a specific class. These objects are tai

lored to interact seamlessly with their corresponding classes, fa

cilitating the organized storage of data within the database. The

initial step involves the instantiation of an object, followed by the

population of that object with data. This process is pivotal for

accessing object attributes and methods associated with the

class instantiated during compilation. It also supports the utiliza

tion of autocompletion tools. Within the codebase, a new class

instance is created in the following manner: new ClassName().
The act of modelling classes constitutes a foundational task

within this database. It entails the definition of attributes and

methods. Although this necessitates coding effort, it is para

mount for establishing the data types accommodated by each at

tribute (or property).
Sources are represented as instances of the Sources class and

can be associated with specific taxa or characters. The instantia

tion of Sources, however, is achieved through the use of the

extends function in TS. This design decision ensures that every

class within this database has the capability to incorporate a

source. This class functions as a repository for establishing con

nections between bibliographic sources, encompassing elements

such as images or alternative data formats, and the distinctive

structures of organisms.

Directory and file naming conventions
At the project’s root, we find the taxa and characters directo

ries, serving as repositories for our database of genus and species,

along with their features, represented as a tree of characters.
Within the characters directory, we establish a nested hierar

chy of features related to the organism’s body, or the tree of charac

ters. Characters are structured into directories according to their

hierarchy. Each level of hierarchy is encapsulated within a directory

bearing the class name, along with an accompanying index.ts

file. Within this index.ts file, classes utilized within its scope are

both imported and exported. On the highest level of the charac

ters directory, we encounter initial characters such as ‘stems’,

‘leaves’, ‘trichomes’, ‘prickles’, ‘inflorescence’, ‘flowers’, ‘fruits’, and

‘seeds’. In situations where a class does not rely on any other class,

the filename corresponds to the class name with the initial letter

capitalized (e.g. Calyx.ts).
Within the taxa directory, we generate subdirectories desig

nated by the generic epithet (e.g. Mimosa). Within each of these sub

directories, an index.ts file is generated. This file is responsible for

importing all character classes utilized for articulating the attrib

utes of a species belonging to the particular genus, thereby contrib

uting to the comprehensive structure of our database. Enhancing

the systematic arrangement, each individual species is detailed

within a distinct .ts file, situated within its corresponding genus

directory (e.g. ./Taxa/Mimosa/Mimosa_sevilhae.ts).

Character tree
A pre-built database, which houses the character tree located

within the characters directory, has been created based on taxo

nomic research involving Mimosa (Leguminosae, Caesalpinoideae)

[34–37]. As per tradition, it is initially released as version 1.

Subsequent projects adhering to these standards can use this proj

ect as a starting point.

Sugarifying and enhancing data structures | 5

https://github.com/dchester/jsonpath
https://github.com/dchester/jsonpath
https://underscorejs.org/
https://lodash.com/

Describing genus
Within the genus directory, the index.ts file should encompass
the importation of all characters found at the first depth of the
tree of characters, subsequently declaring each of them as attrib
utes. Note that the characters we imported, namely Stems and
Leaf, are described in dedicated .ts files within the charac
ter directory.

The initial lines of code entail the import of all characters de
fined at the initial depth of the tree of characters, along with the
annotation classes. Subsequent to this, the imperative task is the
creation of the Mimosa class. In extending the Sources class to
it, the capacity to associate a source with a species is enabled,
distinct from attaching it to any of its constituent parts, such as
the characters within the tree of characters. Notably, the expor
tation of the Mimosa class should not be overlooked. Refer to
the following:

// Import characters

import f

Stems,

Leaf,

//other classes of first depth in tree of characters

g from '././characters/v1'

// Import annotation classes

import fSourcesg from '././characters/v1/Sources'

import fDescriptionAuthorshipg from '././charac

ters/v1/descriptionAuthorship'

export class Mimosa extends Sources f

specificEpithet: string

habit: 'tree' j 'shrub' j 'subshrub' j 'herb'
stems: Stems

leaf: Leaf

//other attributes

constructor() f

super()

g

g

In the provided code snippet, it is worth emphasizing that, as is
conventionally understood, lines starting with // are exclusively
utilized for commenting within the codebase.

Describing species
Comprehensive information pertaining to a species is meticu
lously preserved within an individual .ts file inside its corre
sponding genus directory. To describe a species, we need to
import the Mimosa class representing the Mimosa genus, import
the characters classes, describe the species using the imported
characters, and finally export the class representing this de
scribed species. This structure can also accommodate other in
fraspecific taxa within the database. The Mimosa class functions
as the central module for the construction of all Mimosa species,
encompassing the assembly of their respective tree
of characters.

Importing modules
The initial lines of code involve importing taxa, characters, and
annotation classes. To import these, use the following syntax:

// Import genus Mimosa

import fMimosag from '.'

// Import characters

import fStems, Trichomesg from '././characters/v1'
import fCapitateg from '../../characters/v1/Trichomes'
import fCapitateFiliformg from '../../characters/

v1/Trichomes/Capitate'

// Import annotation classes

import fSource, DescriptionAuthorshipg from

'../../characters/v1'

For a streamlined import process, the technique of object
destructuring can be employed, allowing for the efficient acquisi
tion of classes from other interconnected modules.

Description
When describing a species, it is recommended to create a con
stant utilizing the following syntax: Mimosa_osmarii. While var
iables in JS are commonly named using camelCase, when
developing a biodiversity database, it is suggested to use snake_
case for variables that store descriptions. Additionally, to adhere
to biological nomenclature rules, the genus name should be capi
talized–a Snake_case.

Use dot notation to create objects within objects. This nota
tion enhances code readability and is akin to a syntactic
sugar concept.

To instantiate a class as an object in the description, we need
to couple the instantiation within an object that accepts the in
stantiated class. In the example below, the code functions be
cause the Mimosa class has the specificEpithet attribute,
which receives a value of the primitive type string:

// Description of Mimosa leptantha

const Mimosa_leptantha ¼ new Mimosa()

Mimosa_leptantha.specificEpithet ¼ 'leptantha'

It is important to instantiate each nested class before state an at
tribute. Effectively describing the presence or absence of specific
features requires adherence to precise conventions. The terms
is and are serve as synonyms, facilitating the indication of fea
ture presence or absence based on singular or plural object
names. It is advisable to articulate the presence or absence im
mediately after initializing a new class instance:

Mimosa_leptantha.stems ¼ new Stems()

Mimosa_leptantha.stems.trichomes ¼ new Trichomes()

Mimosa_leptantha.stems.trichomes.capitate ¼ new Capitate()

Mimosa_leptantha.stems.trichomes.capitate.

filiform ¼ new CapitateFiliform()

Mimosa_leptantha.stems.trichomes.capitate.

filiform.are ¼ 'present'

Based on the provided example, we are asserting the presence of
capitate-filiform trichomes on the stems of Mimosa leptantha
Benth., at the database.

Annotations
It is strongly recommended that annotations should be declared
for last, but of course, before the exportation of the species de
scription. After description. It is important to add the author of
the description with the attribute descriptionAuthorship that

6 | Jord~ao et al.

receive name and a date timestamp. The timestamp will adhere
to the Unix timestamp format, representing the count of seconds
since 00:00:00 Coordinated Universal Time on 01 January 1970.

// Description authorship

Mimosa_leptantha.descriptionAuthorship

¼ new DescriptionAuthorship()

Mimosa_leptantha.descriptionAuthorship.addAuthor(f

name: 'June Doe',

date: 1692107172

g)

A Source class is modelled to store bibtex-like citations, but we
add the obtainingMethod attribute, that can be one of
these values: nakedEyes, stereoscope, opticalMicroscope,
scanningElectronMicroscope,tranmissionElectron
Microscope, photo, drawing.

To add a source and link the publication and the plant body,
first we need to create a constant that we recommend to for store
the class Source and we use the method addSource().

// Sources

/// Trichomes

const source1¼new Source()

source1.sourceType ¼ 'article'

source1.authorship ¼ 'Jord~ao, L.S.B. & Morim, M.P. &

Baumgratz, J.F.A.'

source1.year¼ '2020'
source1.title

¼ 'Trichomes in �Mimosa� (Leguminosae): Towards a

characterization and a terminology standardization'

source1.journal ¼ 'Flora'
source1.number¼ '272'
source1.pages¼ '151702'
source1.figure ¼ '9I, J, K, L'

source1.obtainingMethod

¼ 'scanningElectronMicroscope'
Mimosa_leptantha.stems.trichomes.capitate

.filiform.addSource(source1)

Exporting modules
While there are various ways to export modules in JS and TS, a
standard practice is to ensure that the species is fully described,
and the last line of the file exports the variable. This approach
improves code readability and maintainability.

// Export Mimosa leptantha

export fMimosa_leptanthag

Modelling character classes
In TS, character classes are structured as classes themselves.
The class name adheres to the PascalCase convention and is de
fined using the syntax: class Fruit fg.

When importing a class for character description, the preven
tion of duplicate names is crucial. Consequently, addressing the
occurrence of repeated character names becomes imperative.

In cases where a structure is named with hyphens, such as
‘setiform-capitate’ or ‘stellate-lepidote’, the class name initiates
with the first word. In these instances, it transforms into
SetiformCapitate and StellateLepidote.

For classes bearing generic names like ‘abaxial’, ‘adaxial’, or
‘margin’, the recommended practice is to lead with the common
name, followed by the corresponding anatomical structure. For
instance, AbaxialLeaflet and MarginBracteole.

Attribute names within the classes conform to the camelCase
pattern and are defined using the syntax: numberOfPairs: num
ber. This mirrors the key-value pairs characteristic of JSON objects.

Attributes can encompass a range of data types, including
strings and numbers. Here are a few illustrative examples:

Defining a specificEpithet attribute of the Mimosa class that
holds a string value:

class Mimosa f

specificEpithet: string

g

Establishing a numberOfPairs attribute for the Leaflet class,
accommodating a number value:

class Pinnae f

numberOfPairs: number

g

Presenting alternative types for an attribute by employing the
vertical bar symbol (j):

class Replum f

shape: 'straight' j 'undulate'

g

Offering versatility to a multistate character by incorporating
(value j value j value) []:

class Leaflet f

shape:

'linear' j

'lanceolate' j

'elliptic' j

'oval' j

(

'linear' j

'lanceolate' j

'elliptic' j

'oval'
) []

g

After describing the attributes of the class, it is necessary to in
voke the constructor() fg function to instantiate each attrib
ute as soon as the module is imported elsewhere.

The methods of the class are listed after the constructor.
When it comes to naming methods for characters and document
ing their functionality, maintaining a consistent and informative
approach is crucial. We’ve chosen to avoid using native language
functions to enhance intuitiveness. Method names follow a stan
dardized format, such as using add for methods like addSource.
When specifying data, set is employed, as seen in setLength, to
ensure uniformity and clarity.

In the context of this codebase, a set of methods has been devel
oped to manage measurements of different dimensions, specifically
length, height, and width. These methods enable the precise def
inition and manipulation of these measurements for various
objects. By accepting numeric values, the setLength, setHeight,
and setWidth functions individually establish the primary dimen
sions. Furthermore, the _setLengthMinMax, setHeightMinMax,
and setWidthMinMax functions accommodate the specification of
ranges, considering minimum and maximum values. Additionally,
the setLengthRarelyMin and setLengthRarelyMax functions al
low for the input of occasionally used minimum and maximum val
ues; the same for height and width. These methods collectively

Sugarifying and enhancing data structures | 7

contribute to a comprehensive framework for managing dimen
sional attributes in accordance with specific conditions and con
straints that can be verified at the execution time.

Finally, during export, if a class has attributes that are classes
with their own attributes, forming a nested pattern, it is neces
sary to export not only the created class but also each imported
attribute. This is to ensure the coherence of imports and exports
for module dependencies.

TS documentation
This document provides guidelines for documenting taxa
descriptions, covering both mandatory and optional tags.
Mandatory fields include the author’s name and date, which at
tribute proper attribution to the description.

The documentation process employs TSDoc. The initial line
should serve as a class title. To enhance class descriptions, the
@remarks tag can be utilized. Several Markdown markups are
functional within TSDoc, and topics can be added using a hyphen
at the line’s beginning.

An essential tag to consider is @source, which enables the ad
dition of bibliographic references. Within the @source tag,
Markdown notation for HTML references, [label](link), can
be employed effectively. Consequently, DOI URLs can be cited to
establish direct links from the database.

Taxon documentation
When documenting the attributes of a genus, it is recommended
to include the genus name in the initial line of each
TSDoc’s frame.

Before the constructor() fg section, it is advisable to declare
‘Creates an instance of [class].’ This practice reinforces the
principles of OOP. Our database exclusively contains a singular
taxon class, Mimosa, which represents a genus. For documenting
this class, a specialized syntax is employed:

export class Mimosa extends Sources f

/��

� Species of �Mimosa�

�/

specificEpithet: string

/��

� Habit of �Mimosa�

�/

habit: 'tree' j 'shrub' j 'subshrub' j 'herb'

/��

� Stem of �Mimosa�.
�/

stems: Stems

/��

� Prickles of �Mimosa�.
�/

prickles: Prickles

/��

� Leaf of �Mimosa�: bipinnate
�/

leaf: Leaf

/��

� Creates an instance of �Mimosa� species.

�/

constructor() f

super()

g

g

For the genus description, pertinent documentation regarding

main characters can be stored:

export class Mimosa extends Sources f

/��

� Trichomes of �Mimosa�.
�

� @remarks
� Trichomes in �Mimosa� can be classified in the

following types:
� - ��filiform��

� - ��setiform��

� - ��stellate��

� - ��dendritic��

� - ��porrect��

� - ��fasciculate��

� - ��verruciform��

� - ��lepidote��

� - ��granular��

� - ��capitate-filiform��

� - ��capitate-setiform��

�

� @source [Jord~ao et al. (2020)](https://doi.org/10.

1016/j.flora.2020.151702)
� @source [Santos-Silva et al. (2013)](https://doi.

org/10.11646/phytotaxa.119.1.1)
�/

trichomes: Trichomes

/��

� Creates an instance of �Mimosa� species.
�/

constructor() f

super()

g

g

Character documentation
To document a character class, it is recommended to include the

name of the parent class in each attribute. Within @remarks,

consider listing the attribute types as separate topics and bolden

ing them using the ��markup. After, provide a descriptive expla

nation. This approach ensures clear and comprehensive type

descriptions.
As illustrated in the example below, the attribute name is reit

erated and linked to its associated class. This practice ensures

the cohesion of assembling objects within the character tree:

export class Epicarp extends Sources f

/��

� Type of epicarp.
�/

type: 'monospermic' j 'undivided'

/��

� Margin of epicarp.
�

� @remarks
� The epicarp margin can be: 'straight' or 'undulate':

8 | Jord~ao et al.

https://doi.org/10.1016/j.flora.2020.151702
https://doi.org/10.1016/j.flora.2020.151702
https://doi.org/10.11646/phytotaxa.119.1.1
https://doi.org/10.11646/phytotaxa.119.1.1

� - ��straight��: The epicarp margin is straight and

not undulated.
� - ��undulate��: The epicarp margin is undulated

and not straight.
�/

margin: 'straight' j 'undulate'

/��

� Creates an instance of Epicarp.
�/

constructor() f

super()

g

g

Exporting the database
In order to export the JSON database, we present a method that
involves the retrieval of all species files from the genus directory
and their organization into an array of objects. Additionally, we
have implemented a layer of validation that checks for dupli
cates within these arrays and removes them, but other valida
tions can be implemented.

The Sources class, represented as an array of objects, can be
found at all depths within the taxa description and the tree of
characters. To facilitate data retrieval and querying, especially
for source-related data, we have included a method to export a
source database. This database allows us to retrieve positional
information (such as index and JSON path) within the main data
base. This information is particularly useful for pinpointing the
exact character associated with a specific source.

Git versioning
In the context of Git versioning, commit messages can adhere to
a standardized semantics for clear communication, and even
certain automation on Git system.

Adding a new taxon
In scenarios where a new taxonomic entry is introduced to the
database, the suggested commit message format is exemplified
as follows:

feat(taxon): Add taxon "Mimosa osmarii"

Add taxon to the database.

By encapsulating the action (‘Add’), the affected entity (‘taxon’),
and the specific entity’s name (‘Mimosa osmarii’), this format
concisely communicates the essence of the commit. The accom
panying description provides further context, ensuring that fel
low developers understand the nature of the addition.

Updating data of taxon
When updates are made to the data associated with an existing
taxon, the commit message adheres to the following structure:

feat(taxon): Update taxon "Mimosa osmarii"

Update data of taxon in the database.

This message structure harmoniously conveys the alteration
made (“Update taxon”), specifies the taxon being modified
(“Mimosa osmarii”), and offers a brief description of the
change itself.

Add new character
Introducing new characters into the database follows a similar
semantic framework:

feat(character): Add character "Leaf", "Petiole"

Add character(s) to the database.

The “feat(character)” identifier indicates the addition of a charac
ter, followed by the character names. The accompanying descrip
tion provides clarity on the action taken.

Updating character
Updating existing character information is likewise captured
within this structure:

feat(character): Update character "Leaf", "Petiole"

Update character(s) in the database.

The consistency in structure enables swift comprehension of the
change (‘Update character’), identifies the specific characters
modified (‘Leaf’ and ‘Petiole’), and offers a concise summary of
the update itself.

Tutorial of TTS
Install Node.js
Before you begin, ensure that Node.js is installed on your system.
Node.js is essential for running JS applications on your machine.
You can download and install it from the official Node.js website
(https://nodejs.org/).

Install VS Code
VS Code is a versatile code editor that provides a user-friendly in
terface and a plethora of extensions for enhanced development.
Download and install VS Code from its official website (https://
code.visualstudio.com/) to utilize its features for your project.

Clone the repository from GitHub in VS Code
To clone the Mimosa project repository for TTS from GitHub, fol
low these steps:

1. In VS Code, access the Command Palette by pressing Ctrl þ
Shift þ P (Windows/Linux) or Cmd þ Shift þ P (macOS).

2. Type Git: Clone and select the option that appears.
3. A text field will appear at the top of the window. Enter the

URL of the repository you want to clone. In this case, use
https://github.com/lsbjordao/TTS-Mimosa.

4. Choose a local directory where you want to clone the reposi
tory to.

We highly recommend using a path for cloning the repository
that excludes spaces () or any other unconventional text charac
ters. This precaution ensures that files can be easily opened by
simply pressing Ctrl þ clicking on the file path within the
IDE’s console.

Open the TTS project directory in VS Code
To open the TTS project directory in VS Code:

1. Click on File in the top menu.
2. Select Open Folder from the dropdown menu.
3. Navigate to the location where your TTS project (e.g. TTS-

Mimosa) directory is stored.
4. Click on the TTS project directory to select it.
5. Click the Open button.

Installing TS globally
Within VS Code, open your terminal and execute the command
bellow, following these steps:

Sugarifying and enhancing data structures | 9

https://nodejs.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/lsbjordao/TTS-Mimosa

1. Navigate to the top menu and select Terminal.
2. From the dropdown menu, choose New Terminal.
3. In the terminal, type and execute the following command:

npm install -g typescript

Installing TTS package globally
Within a terminal in VS Code, type and execute the follow

ing command:

npm install -g @lsbjordao/type-taxon-script

Install it globally using -g to prevent unnecessary dependencies

from being installed within the TTS project directory. If one do

not include -g argument, the ./node_modules directory and

package.json file will be inconveniently created in the TTS proj

ect directory.
To verify the installation of the TTS, use the following com

mand to check the current version:

tts –version

For comprehensive guidance on available commands and func

tionalities, access the help documentation using:

tts –help

Uninstalling TTS package
To uninstall TTS package, open your terminal and execute the

command at the root, where is the package.json:

npm uninstall -g @lsbjordao/type-taxon-script

Initializing a TTS project
To initiate the use of a TTS project, execute the follow

ing command:

tts init

This command will verify the presence of an existing TTS project

within the directory. Additionally, it will generate two mandatory

directories, ./input and ./output, but only if the characters

and taxon directories already exist. These newly created directo

ries are essential for the project functioning.

Describing a new taxon
To generate a new .ts file containing a comprehensive script

outlining the entire hierarchy of characters, serving as the foun

dational template to initiate the description of a species from

scratch, utilize the command tts followed by the -new argu

ment, specifying the genus name and the specific epithet as

shown below:

tts new –genus Mimosa –species epithet

After the process, a new file named Mimosa_epithet.ts will be

created in the ./output directory. To access this script file, sim

ply hold down the Ctrl key and click on the file path displayed

in the console. However, before you begin editing the script, it is

important to relocate this file to the ./taxon directory, as the

script specifically functions within that directory. Outside this di

rectory, the script will not works properly. Opening the script

outside of this directory will trigger multiple dependency errors.

Importing from .csv file
It is also possible to import data of multiple taxa from a .csv file

with a header in the following manner:

tts import –genus Mimosa

The .csv file is formatted to be compatible with MS Excel, utiliz
ing the separator; and “ as the string delimiter. The only required
field is specificEpithet. Each column should be named
according to the complete JSON path of the corresponding attrib
ute. All values are imported automatically.

To indicate multiple states within a cell, utilize this syntax:
['4-merous', '5-merous'], as demonstrated in the ./input/
importTaxa.csv file.

If we want to describe a specific characteristic, which is a key
object, we need to fill the column name with its JSON path and
enter yes in the cell where that characteristic needs to be auto
matically instantiated. For example, if we have inflorescence
types ‘capitate’ and ‘spicate’, to instantiate the respective class
within the file, in the .csv table, we create columns inflores
cence.capitate and inflorescence.spicate and enter yes
in the cells of the respective taxon. Of course, only one of them is
possible in the plant body, and we should not instantiate both
concurrently. See the example provided in the ./input/

importTaxa.csv file.
The generated .ts files will be located in the ./output direc

tory. Since the script operates exclusively within the ./taxon di
rectory, it is necessary to relocate all these files to that specific
directory for the script to function properly.

Documentation
Every element within the code is accompanied by metadata
(Fig. 1). Simply hover your cursor over an element, and its meta
data will promptly appear.

Taxon edition
To edit a species .ts file, open it and utilize the ' key after the ¼
sign to access attribute options (Fig. 2). After that, press Enter.
The autocompletion feature will assist in completing the entry:

Cross-referecing
Every class is interconnected through cross-referencing. By hold
ing down Ctrl and clicking on a class, the associated .ts file
containing the class description will open automatically. This
feature allows us to seamlessly navigate through the character
tree hierarchy.

Furthermore, we have the capability to track down instances
where a class is employed. For example, when we seek to identify
occurrences of a character class being used, we can easily inspect
the class name. As illustrated in the given example, a Gall is
mentioned in the description of Mimosa gemmulata Barneby, and
by clicking on it, we can promptly open its respective file (Fig. 3).

Multi-line edition
Use the shortcut Ctrl þ Shift þ L for efficient multi-line editing
(Fig. 4). Press Esc to end the multi-line edition.

Automatic code formatting
When you right-click on any content in a file and select
Format Document in VS Code, the code is automatically adjusted
for indentation, spacing, and more. This feature simplifies code
maintenance and helps maintain a consistent coding style
throughout your code.

Git versioning
Within VS Code, a quick click on a file listed in the Git
panel allows you to instantly inspect code changes (Fig. 5).
As you open the file, a split-screen emerges, delineating

10 | Jord~ao et al.

alterations in green (edits) and red (revisions) in contrast to
the previous version of the code. This functionality stream
lines the review process, providing an intuitive and efficient
means to track modifications in your development
environment.

VS Code offers a range of features and extensions to stream
line conflict resolution. These include interactive merge tools,
side-by-side file comparison, and even built-in three-way merge
support. We can manage the Git versioning process using simple
clicks of a button.

Export .json database
To export all taxa inside ./taxon/Mimosa, type:

tts export –genus Mimosa

If you intend to generate a database containing a specific list of
taxa from the directory ./taxon/Mimosa, edit the ./input/
taxonToImport.csv file accordingly. After making the neces
sary edits, execute the following command:

tts export –genus Mimosa –load csv

Figure 1 When hovering the cursor over a text in an IDE like VS Code, a popup will display its metadata

Figure 2 VS Code assists with its autocomplete tool, displaying all allowed states for each property

Sugarifying and enhancing data structures | 11

The resulting JSON database $fgenusgDB.json file will be gener
ated and stored in the directory ./output/.

Errors may arise twice in the export process: once during the
compilation (TS) phase and again during the execution (JS) stage.

Regarding compilation errors, for instance, two issues were
encountered in files Mimosa_test.ts and Mimosa_test2.ts
while attempting to export the Mimosa database (Fig. 6). In the
Mimosa_test.ts script, an undeclared property for the adaxial
surface of the leaflet was caught. In the Mimosa_test2.ts

script, the class ractole was listed as a property of flower, but
the error message suggests the correction to bracteole.
See below:

And errors can be caught during the execution phase. In
the case below, a stipule length was set with its minimum
value as 5 and its maximum as 3 using the .

setHeightMinMax() method (Fig. 7). Such an error will not be
caught during compilation as the type is correct (number), but
during execution, a message in the terminal indicates that the

Figure 3 Module dependency cross-referencing aids in quickly identifying where a character is invoked, while VS Code efficiently tracks and displays
the usage of each character from the character tree

Figure 4 Code editing can sometimes be challenging, but VS Code provides helpful tools to make it more agile, such as multi-line editing

12 | Jord~ao et al.

“minimum height must be less than the maximum height.”

See below:

Sources dataset
We can create a consolidated dataset that compiles all sources

into a flatter JSON structure, enabling simpler query access. To

generate a database solely containing sources related to the taxa,

execute the following command:

tts exportSources –genus Mimosa

This dataset includes an index that relates to the main database

and provides the complete key path where each source

is located:

[f

index: 7,

path: 'flower.corolla.trichomes.stellate.lepidote',

Figure 5 VS Code seamlessly integrates with GitHub, making it user-friendly even for individuals with minimal expertise, requiring only a small
learning curve

Figure 6 Errors occurring during the transpilation process from.ts to.js files result from violations of established syntax rules or type inconsistencies
within the TypeScript code. These violations encompass syntax errors, incorrect typing, or improper use of TypeScript language features. Each error
message provides specific details aiding in the identification and resolution of the precise issue encountered

Sugarifying and enhancing data structures | 13

source: f

sourceType: 'article',

authorship: 'Jord~ao, L.S.B. & Morim, M.P.

& Baumgratz, J.F.A.',

year: '2020',
title: 'Trichomes in �Mimosa� (Leguminosae): Towards a

characterization and a terminology standardization',

journal: 'Flora',

number: '272',
pages: '151702',
figure: '4I',

obtainingMethod: 'scanningElectronMicroscope'

g

g]

Export .csv database
In TTS, there is a convenient method for exporting a converted

JSON database to a CSV format using the ‘exportToCsv’ com

mand. Similar to the ‘export’ command, it generates a CSV out

put. Indeed, opening a CSV file in a spreadsheet is undoubtedly

helpful. However, it is important to note that this conversion re

sult in a loss of data structure. The first line of the CSV will be

comprised by all JSON paths, preserving the nested hierarchy,

but arrays of elements will be treated as strings with the same

JSON syntax. For more advanced transformations, one can ex

plore additional methods in Json2csv (https://mircozeiss.com/

json2csv/).

Navigating the database
Utilizing the JSON Grid Viewer extension (https://github.com/

dutchigor/json-grid-viewer), which is readily accessible on the

Visual Studio Marketplace (https://marketplace.visualstudio.

com/), we can effortlessly delve into the intricate structure of

JSON configurations (Fig. 8).

Querying methods
Data querying techniques encompass a range of methods tai
lored to diverse needs. Basic querying relies on key-value pairs
for precise data retrieval, while range queries are optimal for nu
merical, or date-based data, allowing data extraction within
specified value ranges.

Another type of query method involves the aggregation ap
proach, which provides advanced data manipulation capabilities,
enabling chain operations such as grouping and filtering within
the database. This is made possible because the result of a query
always returns the complete document within the database.
Thus, additional queries can be chained to perform multiple fil
ter aggregations.

Character path querying
An essential aspect of querying is to identify a JSON path that
represents nested properties within an array of documents in a
JSON database. In this particular scenario, our objective is to nav
igate the character tree to retrieve taxa properties.

Let us define a ‘property’ as a JSON path of keys within the
character tree. When we need to retrieve a property from the
database, we search for its corresponding JSON path, such as
trichomes.stellate. This search yields the indices of the docu
ments where the property was found and the paths where it was
located, achieved using the findProperty command:

tts findProperty –property trichomes.stellate

–genus Mimosa

The result should be similar to:

// Indices and paths of objects with the property:

// "trichomes.stellate":

[

fspecificEpithet: 'furfuraceae', index: 5, paths:
['flower.corolla']g,

Figure 7 Errors stemming from the compilation of.js files preempt runtime errors, executing the business rules defined within each class method. In
this example, despite no data type violation, as the function accepts two numbers, there exists a business rule to validate whether the minimum value
is truly less than the described maximum value. This process prevents data insertion errors, ensuring adherence to predefined business rules

14 | Jord~ao et al.

https://mircozeiss.com/json2csv/
https://mircozeiss.com/json2csv/
https://github.com/dutchigor/json-grid-viewer
https://github.com/dutchigor/json-grid-viewer
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

fspecificEpithet: 'myuros', index: 6, paths: ['stems']g,

f

specificEpithet: 'schomburgkii',

index: 7,

paths: [

'leaf.bipinnate.pinnae.leaflet.abaxial',
'flower.corolla'

]

g

]

In the preceding example, stellate trichomes were identified

within the corolla of M. furfuraceae Benth., the stems of M. myuros

Barneby, and both the abaxial surface of leaflet and corolla in M.

schomburgkii Benth.

Flexible key-value querying
Another querying approach for property querying involves flexi

ble key-value querying. This method enables searching within a

JSON path using a specific value that can meet de

fined conditions.
To initiate queries within a TTS project export, perform these

operations outside the project’s directory. Begin by creating a

separate directory for a new project, naming it as desired (e.g.

flex-json-searches). Open this directory using an IDE like

VS Code.
For flexible JSON searching, installation of the flex-json-

searcher (https://github.com/vicentecalfo/flex-json-searcher)

and fs modules is necessary. While the fs module is intrinsic to

basic file processing in Node.js, the flex-json-searcher mod

ule offers comprehensive functionality tailored for diverse JSON

file queries. To install these modules, open a new terminal and

execute the following commands:

npm install fs

npm install flex-json-searcher

Next, create a JS file (e.g. script.js) within the project root di
rectory and use the following code snippet as a reference to per
form flexible JSON searches:

// script.js

const fs ¼ require('fs')

const fFJSg ¼ require('flex-json-searcher')

const filePath ¼ './output/MimosaDB.json'

fs.readFile(filePath, 'utf8', async (err, data) ¼> f

if (err) f

console.error('Error reading the file:', err)

return

g

try f

const mimosaDB ¼ JSON.parse(data)

const fjs ¼ new FJS(mimosaDB)

const query ¼ f'flower.merism': f$eq: '3-merous'gg

const output ¼ await fjs.search(query)

const specificEpithets ¼ output.result.

map(item ¼> item.specificEpithet)

console.log'‘Species found:', specificEpithets)

g catch (error) f

console.error'‘Error during processing:', error)

g

g)

After saved, run the following line in the terminal:

node script

The result should be similar to:

Species found: [
'afranioi',

Figure 8 The JSON-grid-viewer package is highly useful as it provides a user-friendly visualization of JSON files. Its primary focus is on visualizing
objects and arrays, which are typical components of a JSON structure

Sugarifying and enhancing data structures | 15

https://github.com/vicentecalfo/flex-json-searcher

'caesalpiniifolia',

'ceratonia var pseudo-obovata',

'robsonii'

]

During the search, �. can be employed to locate a particular

JSON path associated with a value determined by spe

cific conditions.

Range querying
Range querying involves searching for and retrieving data within

a specific range of values or criteria, such as a range of dates, nu

merical values, or any other defined attributes.
To perform range querying, we rely on the fs and flex-

json-searcher modules, both of which need to be installed. To

do this, within the VS Code terminal of a new project directory,

execute the following command:

npm install fs

npm install flex-json-searcher

Next, create a script2.js file within the project root directory

with the code below:

// script2.js

const fs ¼ require'‘fs')

const fFJSg ¼ require('flex-json-searcher')

const filePath ¼ './output/MimosaDB.json'

fs.readFile(filePath, 'utf8', async (err, data) ¼> f

if (err) f

console.error('Error reading the file:', err)

return

g

try f

const mimosaDB ¼ JSON.parse(data)

const fjs ¼ new FJS(mimosaDB)

const query ¼ f'leaf.bipinnate.pinnae.leaflet.

numberOfPairs.min': f$gt: '15'gg

const output ¼ await fjs.search(query)

const specificEpithets ¼ output.result.map(item

¼> item.specificEpithet)

console.log('Species found:', specificEpithets)

g catch (error) f

console.error('Error during processing:', error)

g

g)

In terminal, run:

node script2

The result should be similar to:

Species found: [
'bimucronata',

'bocainae',

'dryandroides var. dryandroides',

'elliptica',
'invisa var. macrostachya',

'itatiaiensis',
'pilulifera var. pseudincana'

]

In the preceding example, we are conducting a query to find spe

cies with a minimum leaflet pairs number greater than 15.
We leverage the output.result to chain queries or perform

query aggregations, allowing us to achieve multiple filtering

operations within the database. To perform a dual conditional

query using ‘greater than’ and ‘less than’ conditions, try the code

below by creating a script3.js file:

// script3.js

const fs ¼ require('fs')

const fFJSg ¼ require('flex-json-searcher')

const filePath ¼ './output/MimosaDB.json'

fs.readFile(filePath, 'utf8', async (err, data) ¼> f

if (err) f

console.error('Error reading the file:', err)

return

g

try f

const mimosaDB ¼ JSON.parse(data)

const fjs ¼ new FJS(mimosaDB)

//First query with criteria greater than 15

const gt15Query ¼ f'leaf.bipinnate.pinnae.leaf

let.numberOfPairs.min': f$gt: '15'gg

const gt15Output ¼ await fjs.search(gt15Query)

const gt15SpecificEpithets ¼ gt15Output.result.

map(item ¼> item.specificEpithet)

console.log('Species with more than 15 leaflet

pairs found : \n', gt15SpecificEpithets)

//Second query using the results of the first search

const fjs2¼new FJS(gt15Output.result)

const lt20Query ¼ f'leaf.bipinnate.pinnae.leaf

let.numberOfPairs.min': f$lt: '20'gg

const lt20Output ¼ await fjs2.search(lt20Query)

const lt20SpecificEpithets ¼ lt20Output.result.

map(item ¼> item.specificEpithet)

console.log('Species with less than 20 leaflet

pairs found : \n', lt20SpecificEpithets)

g catch (error) f

console.error('Error during processing:', error)

g

g)

In terminal, run:

node script3

The result should be similar to:

Species with more than 15 leaflet pairs found:
[

'bimucronata',

'bocainae',

'dryandroides var. dryandroides',

'elliptica',

'invisa var. macrostachya',

16 | Jord~ao et al.

'itatiaiensis',

'pilulifera var. pseudincana'
]

Species with less than 20 leaflet pairs found:
['bimucronata', 'itatiaiensis',

'pilulifera var. pseudincana']

Source querying
In the exported sources database, we have the capability to per

form queries and retrieve specific information. For instance, we

can query the database to obtain all images captured using a

scanning electron microscope. To accomplish this, create a

script4.js file and insert the following code:

// script4.js

const fs ¼ require('fs')

const fFJSg ¼ require('flex-json-searcher')

const filePath ¼ './output/MimosaSourcesDB.json'

fs.readFile(filePath, 'utf8', async (err, data) ¼> f

if (err) f

console.error('Error reading the file:', err)

return

g

try f

const mimosaSourcesDB ¼ JSON.parse(data)

const fjs ¼ new FJS(mimosaSourcesDB)

const query ¼ f'source.obtainingMethod'

: f$eq: 'photo'gg

const output ¼ await fjs.search(query)

console.log(output.result)

g catch (error) f

console.error('Error during processing:', error)

g

g)

In terminal, run:

node script4

The result should be similar to:

[

f

index: '0',
path: '',

specificEpithet: 'afranioi',
source: f

obraPrinceps: 'yes',
sourceType: 'article',
authorship: 'Jord~ao, L.S.B. and Morim, M.P. and

Simon, M.F., Dutra, V.F. and Baumgratz, J.F.A.',

year: '2021',
title: 'New Species of �Mimosa� (Leguminosae)

from Brazil',

journal: 'Systematic Botany',
volume: '46',
number: '2',
pages: '339-351',
figure: '3',
obtainingMethod: 'photo'

g

g,

f

index: '17',
path: '',

specificEpithet: 'emaensis',
source: f

obraPrinceps: 'yes',
sourceType: 'article',
authorship: 'Jord~ao, L.S.B. and Morim, M.P. and

Simon, M.F., Dutra, V.F. and Baumgratz, J.F.A.',

year: '2021',
title: 'New Species of �Mimosa�

(Leguminosae) from Brazil',

journal: 'Systematic Botany',
volume: '46',
number: '2',
pages: '339-351',
figure: '5',
obtainingMethod: 'photo'
g

g,

f

index: '21',
path: 'leaf.bipinnate.pinnae.gall',
specificEpithet: 'gemmulata',
source: f

sourceType: 'article',
authorship: 'Vieira, L.G. & Nogueiro, R.M. & Costa,

E.C. & Carvalho-Fernandes, S.P. & Santos-Silva, J.',

year: '2018',
title: 'Insect galls in Rupestrian field and

Cerrado stricto sensu vegetation in Caetit�e,

Bahia, Brazil',

journal: 'Biota Neotrop.',
number: '18',
volume: '2',
figure: '2P, Q',
obtainingMethod: 'photo',

doi: 'https://doi.org/10.1590/1676-0611-BN-2017-0402'
g

g

//…

]

The complete information for each source is readily accessible,

such as the sourceType, journal, figure, authorship.

Other querying applications
MongoDB and its companion tool, MongoDB Compass, offer ad

vanced querying capabilities (Fig. 9). MongoDB’s query lan

guage, empowered by methods like find() and a rich set of

comparison operators such as $lt (less than), $gt (greater

than), and $eq (equal to), allows precise document filtration

based on specific criteria. MongoDB Compass, a graphical inter

face for MongoDB, provides an intuitive platform to visually

construct and execute queries. It simplifies query creation,

data visualization, and optimization by offering a user-friendly

graphical representation of data structures. Leveraging

MongoDB’s querying prowess along with Compass’s interactive

interface enables users to proficiently explore, retrieve, and

manipulate data within MongoDB databases.

Sugarifying and enhancing data structures | 17

https://doi.org/10.1590/1676-0611-BN-2017-0402

Call to action
Not Word or Excel, but TTS. We stand at the threshold of a new
era in biological taxonomy descriptions. In this methodology,
software engineering methods using TS are employed to build a
robust data structure, fostering enduring, non-redundant collab
orative efforts through the application of a kind of taxonomic en
gineering of biological bodies. This innovative programming
introduces a new approach for precise and resilient documenta
tion of taxa and characters, transcending the limitations of tradi
tional text and spreadsheet editors. TTS streamlines and
optimizes this process, enabling meticulous and efficient descrip
tions of diverse organisms including annotations, propelling the
science of taxonomy and systematics to elevate levels of collabo
ration, precision, and effectiveness.

In the realm of collaborative work, even amid challenges, lies
a critical opportunity. Our proposal seeks to galvanize a broader
adoption by the collective community of biologists, taxonomists,
and systematists. This endeavor entails providing an open-
access infrastructure that facilitates collaborative efforts, align
ing with the creation of object classes. This unity ensures the
safeguarding of data integrity, eliminating the need for repetitive
descriptions of fundamental components like the ‘leaf’ class
across various initiatives. By structuring attributes of classes, we
establish a streamlined approach that simplifies the work for
subsequent contributors. Each description necessitates the in
stantiation of these classes as objects, fostering a taxonomic
engineering-like approach to create virtual representations of bi
ological bodies.

Within this collaborative framework, roles are clearly delin
eated—some focus on database modelling, while others engage
in data population. The process of database modelling involves
shaping the object classes that form the foundation of the data
base. To achieve consensus in this dynamic task, community en
gagement is pivotal. In cases where conflicts arise, resolution will
be effectively managed by the repository overseer. Additionally,
even conflicting hypotheses can find their place within the same

database. Each hypothesis can be accommodated as a distinct
class, allowing for diverse perspectives and coexistence of vary
ing viewpoints. This inclusive approach embodies the essence of
collaborative research, where differences are valued and contrib
ute to the richness of the database.

In our pre-built database [38], we add data from the following
publications: [34, 35, 36, 39], and [37]. Furthermore, we incorpo
rate initial data from a project to conduct text mining on [40]
(https://github.com/lsbjordao/PDF-scraping-Barneby), aiming to
compile a table of all characters derived from the meticulous
descriptions.

Discussion
The JSON format occupies a unique position between the sim
plicity of a CSV spreadsheet and the formal structure of an ontol
ogy. However, its potential remains largely untapped in the
realm of biodiversity research. One of the contributing factors to
this underutilization is the preference of many systematic biolo
gists for languages like R when delving into programming tasks,
leading to an attachment to storing and managing data using fa
miliar spreadsheet-like tools, such as dataframes.

While languages like R are popular choices due to their spe
cialized statistical capabilities, they lack native support for JSON
manipulation. Additionally, tools like RStudio, often favoured by
biologists, might not offer the same level of efficiency and versa
tility found in IDEs like VS Code. This attachment to storing data
in spreadsheet formats might stem from their familiarity and
ease of use, even though they can limit the representation of
complex data structures and relationships that JSON excels at.

The integration of JSON into the ecosystem of OOP and TS
brings forth an opportunity to bridge this gap. By showcasing
how JSON databases can effectively represent complex relation
ships and structures inherent in biological data, researchers can
be encouraged to explore alternative data storage methods. This
can facilitate data sharing, interoperability, and the development

Figure 9 MongoDB Compass offers a robust framework for visualizing and investigating DOD, enabling powerful query capabilities

18 | Jord~ao et al.

https://github.com/lsbjordao/PDF-scraping-Barneby

of innovative analytical methods, while still addressing the at

tachment that some biologists may have to spreadsheets.
As the field of biodiversity research continues to expand and

integrate technological advancements, embracing JSON as a fun

damental data format can lead to enhanced data integrity, effi

cient workflows, and accelerated discoveries. By providing

biologists with the tools to manage and manipulate JSON data

smoothly, this integrated framework holds the potential to shift

the tide from traditional spreadsheet-based data storage to more

powerful, schema-free, document-based, and collaborative

approaches, ultimately propelling the field forward into new

realms of understanding and exploration.
Before addressing concerns regarding the necessity of imple

menting a database for specimen (individual) descriptions, it is

crucial to clarify that one of our milestones is the establishment

of a database capable of accommodating detailed specimen

descriptions. However, the process of implementation requires

careful consideration, due to many other complexities that arise

regarding data consistency, such as the lack of definition of data

types in legacy data associated with databases of biological col

lections. Given the intricate and varied nature of information

linked to each specimen, encompassing physical traits, geo

graphical origins, and collection histories, the development of a

flexible and scalable database structure is paramount. Analysing

the project’s specific requirements, selecting suitable technolo

gies, and defining a robust data schema are pivotal aspects for

the success of this endeavor. Moreover, while storing specimen

descriptions within TTS may not be optimal, its principles could

inspire the creation of a dedicated package, such as

TTS-specimens.
TTS presents an innovative approach towards the collabora

tive creation and development of databases. Its versatile frame

work not only facilitates the collective construction of robust

data repositories but also invites users, including readers, to ex

plore and pioneer new applications. The adaptability of this

method transcends conventional boundaries, empowering indi

viduals and communities to envision and implement diverse

uses that resonate with their specific needs. As we delve deeper

into the realm of collaborative data curation, the potential for

novel, impactful applications remain vast, awaiting the creativity

of each participant to shape its future trajectories.

Author contributions
Lucas S�a Barreto Jord~ao (Conceptualization [lead], Data curation

[lead], Formal analysis [lead], Methodology [lead], Software

[lead], Writing—original draft [lead], Writing—review & editing

[lead]), Marli Pires Morim (Investigation [equal], Validation [lead],

Visualization [equal]), Jos�e Fernando Andrade Baumgratz

(Investigation [equal], Validation [lead], Visualization [equal]),

Marcelo Fragomeni Simon (Investigation [equal], Validation

[lead], Visualization [equal]), Andr�e Eppinghaus (Software

[equal], Supervision [equal], Validation [lead], Visualization

[equal]), and Vicente Calfo (Software [equal], Supervision [lead],

Validation [lead], Visualization [equal])

Funding
None declared.

Conflict of interest statement. None declared.

References
01. Winston JE. Describing Species: Practical Taxonomic Procedure for

Biologists. New York, NY: Columbia University Press, 1999, 512.
02. Morim MP, Lughadha EMN. Flora of Brazil online: can Brazil’s

botanists achieve their 2020 vision? Rodriguesia 2015;66:

1115–35. doi:10.1590/2175-7860201566412.

03. da Silva TSR. Species descriptions and digital environments:

alternatives for accessibility of morphological data. Rev Bras

Entomol 2017;61:277–81. doi:10.1016/j.rbe.2017.06.005.

04. Sarkar I, Schenk R, Norton CN. Exploring historical trends using

taxonomic name metadata. BMC Evol Biol 2008;8:144.doi:

10.1186/1471-2148-8-144.
05. Microsoft Corporation. TypeScript. 2024. https://www.typescript

lang.org/ (29 February 2024, date last accessed).

06. JSON Schema Community. JSON Schema. 2024. https://json-

schema.org/ (29 February 2024, date last accessed).

07. Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the

unification of biology. Nat Genet 2000;25:25–9. doi:

10.1038/75556.
08. Aleksander SA, Balhoff J, Carbon S et al. The gene ontology

knowledgebase in 2023. Genetics 2023;224:10.

09. Cooper L, Walls RL, Elser J et al. The plant ontology as a tool for

comparative plant anatomy and genomic analyses. Plant Cell

Physiol 2012;54:e1.doi:10.1093/pcp/pcs163.
10. Walls RL, Athreya B, Cooper L et al. Ontologies as integrative

tools for plant science. Am J Bot 2012;99:1263–75. doi:

10.3732/ajb.1200222.
11. Perkel J. Democratic databases: science on GitHub. Nature 2016;

538:127–8. doi:10.1038/538127a.
12. ECMA International. ECMAScript Language Specification 2023.

ECMA International, 2024. https://www.ecma-international.

org/publications/standards/Ecma-262.htm (29 February 2024,

date last accessed).
13. Janicki J, Narula N, Ziegler M et al. Visualizing and interacting

with large-volume biodiversity data using client–server web-

mapping applications: the design and implementation of ant

maps.org. Ecol Inform 2016;32:185–93. doi:10.1016/j.

ecoinf.2016.02.006.
14. Lin J, Gebaly KE. The future of big data is … JavaScript? IEEE

Internet Comput 2016;20:82–8. doi:10.1109/mic.2016.109.
15. DiPierro M. The rise of JavaScript. Comput Sci Eng 2018;20:9–10.

10.1109/MCSE.2018.011111120.

16. Node.js Contributors. Node.js; Node.js Foundation. 2023. https://

nodejs.org/ (29 February 2024, date last accessed).

17. Wegner P. Concepts and paradigms of object-oriented program

ming. Sigplan Oops Mess 1990;1:7–87. doi:10.1145/382192.383004.

18. Sequeira RA, Olson RL, McKinion JM. Implementing generic,

object-oriented models in biology. Ecol Model 1997;94:17–31. doi:

10.1016/S0304-3800(96)01925-4.

19. Bedathur SJ, Haritsa JR, Sen US. The building of BODHI, a bio-

diversity database system. Inf Syst 2003;28:347–67. doi:

10.1016/S0306-4379(02)00073-X.
20. Onkov K. Object oriented modelling in information systems

based on related text data. IFIP Adv Inf Commun Technol 2011;

364:212–8. doi:10.1007/978-3-642-23960-1_26.
21. Tylman W. Computer science and philosophy: did Plato foresee

object-oriented programming? Found Sci 2016;23:159–72. doi:

10.1007/s10699-016-9506-7.
22. Chai H, Wu G, Zhao Y. A Document-Based Data Warehousing

Approach for Large Scale Data Mining, in Pervasive Computing and

the Networked World. Berlin Heidelberg, Germany: Springer,

2013, 69–81. doi:10.1007/978-3-642-37015-1_7.

Sugarifying and enhancing data structures | 19

https://doi.org/10.1590/2175-7860201566412
https://doi.org/10.1016/j.rbe.2017.06.005
https://doi.org/10.1186/1471-2148-8-144
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://json-schema.org/
https://json-schema.org/
https://doi.org/10.1038/75556
https://doi.org/10.1093/pcp/pcs163
https://doi.org/10.3732/ajb.1200222
https://doi.org/10.1038/538127a
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/10.1016/j.ecoinf.2016.02.006
https://doi.org/10.1109/mic.2016.109
https://doi.org/10.1109/MCSE.2018.011111120
https://nodejs.org/
https://nodejs.org/
https://doi.org/10.1145/382192.383004
https://doi.org/10.1016/S0304-3800(96)01925-4
https://doi.org/10.1016/S0306-4379(02)00073-X
https://doi.org/10.1007/978-3-642-23960-1_26
https://doi.org/10.1007/s10699-016-9506-7
https://doi.org/10.1007/978-3-642-37015-1_7

23. Karnitis G, Arnicans G. Migration of relational database to
document-oriented database: structure denormalization and
data transformation. 7th International Conference on Computational

Intelligence, Communication Systems and Networks. Piscataway, NJ:
IEEE, 2015, 113–8. doi:10.1109/CICSyN.2015.30.

24. Chickerur S, Goudar A, Kinnerkar A. Comparison of relational
database with document-oriented database (MongoDB) for big

data applications. 8th International Conference on Advanced
Software Engineering & Its Applications (ASEA). Piscataway, NJ:
IEEE, 2015, 41–7. doi:10.1109/ASEA.2015.19.

25. Olivera HV, de Holanda MT, Guimarâes V et al. Data modeling
for NoSQL document-oriented databases. Symposium on informa
tion management and big data. 2015. https://api.semanticscholar.

org/CorpusID:15589232.
26. Mason RT. NoSQL databases and data modeling for a

document-oriented NoSQL database. In: Proceedings of Informing

Science & IT Education Conference (InSITE). Denver, CO: College of
Computer & Information Sciences, Regis University, 2015,
259–68. doi:10.28945/2245.

27. Baazizi MA, Colazzo D, Ghelli G et al. Schemas and types for

JSON data: from theory to practice. In: Proceedings of the 2019
International Conference on Management of Data. New York, NY:
ACM, 2019, 2060–3. doi:10.1145/3299869.3314032.

28. Spinellis D. Code documentation. IEEE Softw 2010;27:18–9. doi:
10.1109/ms.2010.95.

29. Rai S, Belwal RC, Gupta A. A review on source code documenta

tion. ACM Trans Intell Syst Technol 2022;13:1–44. doi:
10.1145/3519312.

30. Warren A, Patterson DJ, Dunthorn M et al. Beyond the “Code”: a
guide to the description and documentation of biodiversity in

ciliated protists (Alveolata, Ciliophora). J Eukaryot Microbiol 2017;
64:539–54. doi:10.1111/jeu.12391.

31. Blischak JD, Davenport ER, Wilson G. A quick introduction to
version control with git and GitHub. PLoS Comput Biol 2016;12:
e1004668.doi:10.1371/journal.pcbi.1004668.

32. Perez-Riverol Y, Gatto L, Wang R et al. Ten simple rules for tak
ing advantage of git and GitHub. PLoS Comput Biol 2016;12:
e1004947.doi:10.1371/journal.pcbi.1004947.

33. Crystal-Ornelas R, Varadharajan C, Bond-Lamberty B et al. A

guide to using GitHub for developing and versioning data stand
ards and reporting formats. Earth Space Sci 2021;8:
e2021EA001797. doi:10.1029/2021ea001797.

34. Jord~ao LSB, Morim MP, Baumgratz JFA. A new species of Mimosa
(Leguminosae) from Brazil. Phytotaxa 2014;184:131.doi:
10.11646/phytotaxa.184.3.2.

35. Jord~ao LSB, Morim MP, Baumgratz JFA et al. A new species of
Mimosa (Leguminosae) endemic to the Brazilian cerrado.
Phytotaxa 2017;312:237.doi:10.11646/phytotaxa.312.2.6.

36. Jord~ao LSB, Morim MP, Baumgratz JFA. Toward a census of
Mimosa (Leguminosae) in the Atlantic domain, southeastern
Brazil. Syst Bot 2018;43:162–97. doi:10.1600/036364418x696905.

37. Jord~ao LSB, Morim MP, Baumgratz JFA. Trichomes in Mimosa

(Leguminosae): towards a characterization and a terminology
standardization. Flora 2020;272:151702. doi:10.1016/j.
flora.2020.151702.

38. Jord~ao LSB. lsbjordao/TTS-Mimosa: first release (version v1).
Zenodo. 2024. doi:10.5281/zenodo.10671076.

39. Vieira LG, Nogueira RM, Costa EC et al. Insect galls in rupestrian

field and cerrado stricto sensu vegetation in Caetit�e, Bahia, Brazil.
Biota Neotrop 2018;18:e20170402. doi:10.1590/1676-0611-
bn-2017-0402.

40. Barneby RC. Sensitivae Censitae: A Description of the Genus Mimosa

Linnaeus (Mimosaceae) in the New World. Bronx, NY: New York
Botanical Garden, 1991, 835.

20 | Jord~ao et al.

https://doi.org/10.1109/CICSyN.2015.30
https://doi.org/10.1109/ASEA.2015.19
https://api.semanticscholar.org/CorpusID:15589232
https://api.semanticscholar.org/CorpusID:15589232
https://doi.org/10.28945/2245
https://doi.org/10.1145/3299869.3314032
https://doi.org/10.1109/ms.2010.95
https://doi.org/10.1145/3519312
https://doi.org/10.1111/jeu.12391
https://doi.org/10.1371/journal.pcbi.1004668
https://doi.org/10.1371/journal.pcbi.1004947
https://doi.org/10.1029/2021ea001797
https://doi.org/10.11646/phytotaxa.184.3.2
https://doi.org/10.11646/phytotaxa.312.2.6
https://doi.org/10.1600/036364418x696905
https://doi.org/10.1016/j.flora.2020.151702
https://doi.org/10.1016/j.flora.2020.151702
https://doi.org/10.5281/zenodo.10671076
https://doi.org/10.1590/1676-0611-bn-2017-0402
https://doi.org/10.1590/1676-0611-bn-2017-0402

	Active Content List
	Introduction
	Background
	Standard guidelines
	Tutorial of TTS
	Call to action
	Discussion
	Author contributions
	Funding
	References

