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Millions of individuals are diagnosed with type 2 diabetes mellitus (T2D), which increases

the risk for a plethora of adverse outcomes including cardiovascular events and kidney

disease. Metformin is the most widely prescribed medication for the treatment of T2D;

however, its mechanism is not fully understood and individuals vary in their response

to this therapy. Here, we use a non-targeted, pharmacometabolomics approach to

measure 384 metabolites in 33 non-diabetic, African American subjects dosed with

metformin. Three plasma samples were obtained from each subject, one before and

two after metformin administration. Validation studies were performed in wildtype mice

given metformin. Fifty-four metabolites (including 21 unknowns) were significantly altered

upon metformin administration, and 12 metabolites (including six unknowns) were

significantly associated with metformin-induced change in glucose (q < 0.2). Of note,

indole-3-acetate, a metabolite produced by gut microbes, and 4-hydroxyproline were

modulated following metformin exposure in both humans and mice. 2-Hydroxybutanoic

acid, a metabolite previously associated with insulin resistance and an early biomarker

of T2D, was positively correlated with fasting glucose levels as well as glucose levels

following oral glucose tolerance tests after metformin administration. Pathway analysis

revealed that metformin administration was associated with changes in a number of

metabolites in the urea cycle and in purine metabolic pathways (q < 0.01). Further

research is needed to validate the biomarkers of metformin exposure and response

identified in this study, and to understand the role of metformin in ammonia detoxification,

protein degradation and purine metabolic pathways.
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INTRODUCTION

It is estimated that ∼11% of people in the United States aged 20 years or older have diagnosed or
undiagnosed type 2 diabetes mellitus (T2D), and 35% of adults in the same age group are estimated
to have prediabetes based on fasting glucose or hemoblogin A1c levels (Centers for Disease
Control and Prevention, 2014). Metformin is an effective and extensively prescribed medication
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for the control of T2D, and is now being investigated for its
potential beneficial effects in the prevention or treatment of
other diseases, such as a wide-ranging number of cancers (Evans
et al., 2005; Zakikhani et al., 2006, 2008; Duncan and Schmidt,
2009). Although metformin has been in use as a glucose lowering
drug for several decades, its underlying mechanism of action,
as well as its effects on metabolism are not well understood.
Metformin has been shown to impact the adenosine-5-phosphate
kinase (AMPK) signaling pathway (Zhou et al., 2001), which is
thought to be an important component in metformin’s glucose-
lowering mechanism. Other pathways, such as the mTOR
pathway have also been implicated in the beneficial effects
of metformin including its antiproliferative effects in cancer
treatment (Sahra et al., 2011). Recently, Madiraju et al. (2014)
showed that metformin reduces gluconeogenesis via inhibition
of a mitochondrial enzyme, glycerophosphate dehydrogenase in
the liver (Madiraju et al., 2014). Understanding the complex
mechanisms of action of metformin is of particular interest as
it may lead to validated biomarkers that can be used to identify
individuals most likely to respond to the drug, as well as those
most likely to experience adverse drug effects.

Metabolomics is a rapidly emerging field with the potential
to transform our understanding of mechanisms of drug action
and the molecular basis for variation in drug response by
characterizing metabolism at an “omic” level (Kaddurah-
Daouk et al., 2014, 2015). The “metabotype,” the metabolic
“signature” of a patient, is a unique identity that contains
information about drug response and disease heterogeneity.
Metabolic signatures of drug exposure can now identify pathways
involved in both drug efficacy and adverse drug reactions
(Trupp et al., 2012; Kaddurah-Daouk et al., 2013; Lewis et al.,
2013; Zhu et al., 2013; Rotroff et al., 2015). The application
of metabolomics to study drug effects and variation in drug
response is creating “pharmacometabolomics,” a discipline that
complements pharmacogenomics and clinical pharmacology
by capturing the metabolic signatures associated with drug
exposure, therapeutic and adverse drug response as well as
interindividual differences in these signatures.

Several studies have used metabolomic approaches to identify
metabolites in plasma and urine that were associated with
metformin exposure in non-diabetic subjects or patients with
T2D of North East Asian (Cai et al., 2009; Huo et al., 2009;
Song et al., 2012; Cho et al., 2015; Xu et al., 2015). In
this study, we focused on a non-diabetic, African-American
population, and used a pharmacometabolomic approach to gain
further insights about the mechanisms of action of metformin.
Our goals were to identify metabolic signatures associated
with metformin exposure and its pharmacologic action on
oral glucose tolerance. Using a non-targeted, GC-TOF mass
spectrometry based metabolomics platform, we investigated the
effect of metformin on a wide range of metabolites, and their
relationship with changes in plasma glucose. Although this
technology represents the state-of-the-art, manymetabolites have
not been previously annotated, highlighting the vast potential
for expanding our understanding of novel biology, A pathway
enrichment approach was used to gain novel insights to the
biological pathways impacted by metformin treatment. Finally

we performed a follow-up study in mice to determine if the most
significantly affected metabolites from the clinical study were
replicated in mice exposed to metformin.

MATERIALS AND METHODS

Subject Recruitment and Study Design
Subjects were recruited directly from the Study of
Pharmacogenetics in Ethnically Diverse Populations (IRB
10-03167). Thirty-three subjects, who were of African-American
ethnicity, were enrolled in this study. Males and females between
the ages of 18 and 45 were included. Screening included a
comprehensive medical history, physical examination, and
laboratory studies (complete blood count, electrolytes, blood
urea nitrogen and creatinine, albumin, and liver enzymes).
Subjects of an ethnic background other than African-American,
women who were pregnant, people who were not between the
ages of 18 and 45 years, and individuals with certain health
conditions were excluded (e.g., elevated liver enzymes, anemia,
and elevated creatinine concentrations). This study has been
described previously (Stocker et al., 2013). Subjects did not have
a diagnosis of diabetes and their laboratory values were in the
normal range.

Subjects were asked to maintain stable physical activity levels
for 7 days before starting the study. Individuals met with
a dietitian to establish a 3-day meal plan that maintained
carbohydrate intake at 200–250 g per day before being admitted
to the General Clinical Research Center at San Francisco General
Hospital for 3 days (72 h). At 7:00 p.m. on day 0, subjects
were admitted to the General Clinical Research Center at San
Francisco General Hospital for overnight fasting (10 h). At
8:00 a.m. on day 1, a 3-h oral glucose tolerance test (OGTT)
was administered (75 g glucose solution). In the evening on
day 1 (7:00 p.m.), subjects were dosed orally with 1000mg
metformin (Major Pharmaceuticals, Livonia, MI), followed by a
10-h overnight fasting. On the next morning (7:30 a.m.; day 2),
subjects received an additional oral dose of 850mg of metformin,
and a second OGTT was administered 2 h after this metformin
administration. Throughout the study, standardized meals were
provided. In addition, subjects were asked to drink 8 oz of water
every 2 h to maintain urine flow and pH.

Blood samples were collected at various times before and
after drug administration into “heparin (plasma separation)
tube.” Metformin concentrations in the plasma were assayed by
a validated liquid chromatography-tandem mass spectrometry
method (Stocker et al., 2013). Glucose concentrations in
plasma were determined using standard colorimetric assays.
Pharmacokinetic metrics of metformin and glucose were
calculated as described previously (Stocker et al., 2013).

Three plasma samples per individual were selected to measure
metabolite levels using the GC-TOF platform at the West Coast
Metabolomics Center at UC Davis. Time point A samples were
taken at 8 a.m. on day 1 and represent the baseline plasma level
after 10 h overnight fasting prior to dosing with metformin.
Time point B samples were taken at 7:30 a.m. on day 2, which
was 10 h of overnight fasting and 12.5 h after the first dose of
metformin. Time point C samples were taken 2 h after the second
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dose of metformin and is referred to as the maximal plasma
concentration of metformin (Figure 1).

Metabolomic Profiling
Using the GC-TOF platform, 384 metabolites were quantified,
of which 155 have been structurally identified. This platform,
samples preparations and methods for profiling have been
described in several studies by the Pharmacometabolomic
Research Network (Ji et al., 2011; Trupp et al., 2012; Wikoff et al.,
2013; Zhu et al., 2013).

Data Analysis
Data Processing
Metabolite data was normalized by performing a log(x+1)
transformation and the population means were imputed for
missing values. All analyses were conducted using the statistical
software, R (R Development Core Team, 2014).

Signature of Exposure of Metabolites to Metformin
The effect of metformin exposure on metabolite levels between
time points: A (baseline pre-metformin day 1), B (baseline
day 2), and C (peak of metformin day 2) were tested using
paired Wilcoxon tests. Spearman’s rank correlation was used to
test for correlations between the significant metabolites and to
determine the direction of association. Results were corrected
for multiple testing using an FDR approach and results with
q < 0.2 were considered to be statistically significant (Benjamini
and Hochberg, 1995). Hierarchical clustering was performed
on significant metabolites (q < 0.2) at the three time points
using modulated modularity clustering and the Spearman’s rank
correlation (Stone and Ayroles, 2009).

Signature of Response of Metabolites to Metformin

Concentration
Univariate association for each metabolite with metformin
concentration in plasma at the three time points was determined
using a linear regression model. The analysis was performed
using two variations of response: (1) metformin AUC, and (2)
peak (Cmax) metformin concentration. Gender, age, body mass
index (BMI), weight, and height were tested for association with
each response variable using a Pearson correlation coefficient =
|r| > 0.15. BMI was the only covariate that met this criterion and
was subsequently included in the model, with an r = −0.25 and
−0.13 for Cmax and AUC, respectively. Additional information

FIGURE 1 | Diagram showing time point A, B, and C relative to

metformin administration and oral glucose tolerance tests, OGTT.

about the linear model and covariate selection are available in the
Supplementary Material.

Correlations of Metabolites with Glucose Change
Metabolites associations with changes in glucose upon
metformin exposure were tested using the Spearman’s correlation
between glucose response and the metabolites at each time point
separately (A, B, and C), and themetabolite changes for each time
point (A to B, B to C, and A to C). Glucose response was defined
as either the absolute difference of AUC glucose measurements
pre- and post-metformin treatment, or the post-metformin
AUC glucose measurement. Results were corrected for multiple
comparisons using an FDR approach, and a threshold of q < 0.2
was used for statistical significance (Benjamini and Hochberg,
1995).

Pathway Analysis
Two separate pathway analyses were conducted using either
metabolites significantly different between the three time points
(q < 0.2), and metabolites significantly associated with glucose
change pre- and post-metformin (q < 0.2). Metabolite pathway
data was obtained from the Human Metabolome Database
(HMDB v3.5; Wishart et al., 2013), and metabolites in HMDB
not attributed to a pathway and “unknown” metabolites in our
data set were excluded from the pathway analysis. Pathways
were tested for enrichment using an over-representation analysis
(ORA) approach, where overlapping metabolites in each group
and pathway were tested for statistical significance using the
hypergeometric distribution. Finally, significance values were
adjusted for multiple comparisons using an FDR approach
(Benjamini and Hochberg, 1995).

Follow-up Mouse Study
Overlapping metabolites that were significant in the signature
of metformin response analysis in subjects were tested to
determine whether significant metabolites were replicated in a
mouse model. Eighteen, 12-week old male C57BL/6J mice were
randomly placed into three treatment groups of either saline, 50
mg/kg metformin, or 150 mg/kg metformin. Treatments were
administered intraperitoneally each day for 7 days. Mice were
fasted 16 h before blood sample and liver collection. The animal
protocol was approved by UCSF IACUC (protocol number:
AN119364). Frozen serum and liver samples were sent to the
West Coast Metabolomics Center at UC Davis for metabolomic
analysis using the GC-TOF platform. Metabolite data processing
and analysis was conducted using the same methods as stated
above for the human samples. Metabolite changes with multiple
test corrected q < 0.3 were considered to have replicated.

RESULTS

Signature of Exposure to Metformin from
Time Points A to B
Metformin exposure significantly altered 17 metabolites between
time points A (overnight fasting, pre-metformin) and B
(overnight fasting, 12.5 h post-metformin first dose; q < 0.2), 9
of which have been structurally identified (Table 1). Compared
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TABLE 1 | Signature of exposure to metformin.

Metabolite Change q-value

*629905 ↑ 0.000114

*629906 ↑ 0.000114

Citrulline ↓ 0.00627

Ornithine ↓ 0.008409

4-hydroxyproline ↑ 0.037956

*781707 ↑ 0.077604

Methionine sulfoxide ↓ 0.077604

*203221 ↑ 0.085495

*300348 ↓ 0.085495

*223618 ↓ 0.094211

*199203 ↓ 0.118784

Glutamic acid ↑ 0.137676

Indole-3-acetate ↑ 0.137676

Glutamine ↓ 0.151364

Threonic acid ↓ 0.151364

*223973 ↑ 0.16033

Xylulose NIST ↑ 0.16033

Significant metabolites that either increased or decreased between time points A (pre-

metformin) and B (post-first dose of metformin) in non-diabetic African-American subjects

(n = 33).

*Metabolite compounds yet to be structurally identified.

to baseline, the five most significantly increased metabolites
were 629905, 629906, 4-hydroxypoline, 781707, and 203221, and
the five most significantly decreased metabolites were citrulline,
ornithine, methionine sulfoxide, 300348, and 223618.

Signature of Exposure to Metformin from
Time Points B to C
Metformin exposure from time points B (overnight fasting, 12.5
h post-metformin first dose) and C (2 h post-metformin second
dose) significantly altered 23 metabolites (q < 0.2), including
14 of which are structurally known (Table 2). Compared to
time point B, the five most significantly increased metabolites
were 629905, 629906, 300195, ribose, and 214535; while the
five most significantly decreased metabolites were indole-3-
acetate, levoglucosan, glycerol-3-galactoside, 2-deoxyerythritol
NIST, and adenosine-5-phosphate. The two most significant
metabolites (629905 and 629906) in this analysis were also the
most significant metabolites identified when comparing time
points A and B.

Signature of Exposure to Metformin from
Time Points A to C
The most significant impact on metabolite concentrations,
as expected, occurred between baseline (time point A, pre-
metformin treatment) and the time at which metformin
concentrations in plasma reached their maximum (time point C,
2 h post-metformin second dose, Cmax). A total of 38metabolites
were significantly changed between the two time intervals (q
< 0.2; Table 3). Of the 38, 25 have been structurally identified.
Compared to the pre-metformin treatment (baseline), time point

TABLE 2 | Signature of exposure to metformin.

Metabolite Change q-value

*629905 ↑ 0.000131

*629906 ↑ 0.004753

Indole-3-acetate ↓ 0.004753

Levoglucosan ↓ 0.00725

Glycerol-3-galactoside ↓ 0.010948

2-deoxyerythritol NIST ↓ 0.023427

Adenosine-5-phosphate ↓ 0.023427

Butane-2,3-diol NIST ↓ 0.023427

Inosine ↓ 0.023427

*300195 ↑ 0.032767

Ribose ↑ 0.032767

2-Hydroxyglutaric acid ↓ 0.039829

*214535 ↑ 0.039829

*218765 ↑ 0.039829

*228377 ↑ 0.042798

Arachidonic acid ↑ 0.046093

*238384 ↑ 0.062027

Lathosterol (NIST) ↓ 0.062027

Maleimide ↑ 0.062027

*748746 ↑ 0.062877

Glucuronic acid ↓ 0.125629

*460930 ↑ 0.134797

Pyruvic acid ↓ 0.153147

Significant metabolites that either increased or decreased between time points B (post-

first dose of metformin) and C (post-metformin second dose) in non-diabetic African-

American subjects (n = 33).

*Metabolite compounds yet to be structurally identified.

A, the five most significantly increased metabolites were 629905,
228605, 629906, hypoxanthine, and maltose; whereas, the most
significantly decreased metabolites were citrulline, tyrosine,
ornithine, 223618, and 199203. The three most significant
metabolites overall (629905, 228605, 629906) were all previously
unknown. Furthermore, 629905 and 629906 were identified
as significant metabolites in multiple signatures of metformin
exposure analyses, as described above.

Individual metabolite changes and their pathway context are
shown in Figure 2. Overall, metabolites 629905 and 629906,
were found to be significant when comparing all three different
time points (A and B, B and C, A and C). Additional, spectral
analysis suggests that these metabolites are likely to be the same
compound (Supplementary Figure 1).

Correlations between Changing
Metabolites
Figures 3–5 show correlations between metabolites significantly
altered due to metformin exposure for the given time interval
(q < 0.2). The modules represent clusters determined using
the MMC clustering algorithm (Stone and Ayroles, 2009) and
show which metabolites are increasing or decreasing together.
For time points A to B, only unknown metabolites 300348
and 629905 clustered together (Figure 3). For time points B
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TABLE 3 | Signature of exposure to metformin.

Metabolite Change q-value

*629905 ↑ 8.19E-08

*228605 ↑ 5.04E-05

*629906 ↑ 5.04E-05

Citrulline ↓ 5.04E-05

Hypoxanthine ↑ 5.04E-05

Maltose ↑ 5.04E-05

Ribose ↑ 5.04E-05

Glutamic acid ↑ 0.000979753

Tyrosine ↓ 0.001993223

Cellobiotol ↑ 0.007832535

Ornithine ↓ 0.007832535

*223618 ↓ 0.029131013

*199203 ↓ 0.029829182

Glucuronic acid ↓ 0.029829182

Maltotriose ↑ 0.034537934

*284946 ↓ 0.038066794

4-hydroxyproline ↑ 0.038066794

Inosine ↓ 0.038066794

Glycerol-3-galactoside ↓ 0.038621793

Xylulose NIST ↑ 0.039272793

Uridine ↑ 0.040013669

*322652 ↑ 0.040839767

Naproxen ↓ 0.050799173

Cytidine-5′-diphosphate ↑ 0.055347551

Hippuric acid ↑ 0.060289124

*235327 ↑ 0.065649756

*223973 ↑ 0.071456533

*199786 ↑ 0.073205052

*353747 ↓ 0.095009578

Glutamine ↓ 0.097307921

Levoglucosan ↓ 0.105569426

*748746 ↑ 0.120340346

Aspartic acid ↑ 0.120340346

Mannitol ↓ 0.120340346

Arachidonic acid ↑ 0.137600629

Butane-2,3-diol NIST ↓ 0.14882581

Maleimide ↑ 0.152636013

*300348 ↓ 0.173640266

Significant metabolites that either increased or decreased between time points A

(pre-metformin) and C (post-metformin second dose) in non-diabetic African-American

subjects (n = 33).

*Metabolite compounds yet to be structurally identified.

to C, metabolites 228377, inosine, 214535, glucuronic acid,
glycerol-3-galactoside, and 218765 clustered together (Figure 4).
Lastly the pre-metformin (baseline) to peak metformin time
point (A to C), produced seven modules with the module 1
containing unknown metabolites 300348 and 629905, consistent
with time points A to B. Module 2 contained four unknown
metabolites that clustered closely (322652, 235327, 199203, and
748746). Module 3 contained 7 metabolites, all of which have
been structurally annotated (uridine, tyrosine, inosine, hippuric
acid, glutamic acid, maleimide, and ornithine; Figure 5).

Signature of Association with Peak
Metformin Concentration
There were five metabolites significantly associated (q< 0.2) with
maximum metformin concentration, Cmax, all for time point B
comparisons. Of these five metabolites only one (Oxoproline)
has been structurally identified. Results from the signature of
metformin exposure are available in Supplementary File 1.

Signature of Association with
Metformin-Mediated Glucose Response
Glucose AUC post-metformin was tested for significant
correlations with metabolites measured at each time point (A, B,
and C). No metabolites measured pre-metformin (baseline, time
point A) were significantly correlated with glucose AUC post-
metformin. Two metabolites at time point B (2-hydroxybutanoic
acid, 2-deoxytetronic acid) were significantly and positively
correlated with glucose AUC post-metformin (Table 4). For
time point C, four metabolites were significantly correlated with
glucose AUC post-metformin (fumaric acid, glycine, malic acid,
and 2-hydroxybutanoic acid). Interestingly, 2-hydroxybutanoic
acid at both time points B and C were positively correlated with
glucose AUC post-metformin (Table 4). For the correlations
of the change in metabolites for given time intervals, the time
interval A to C was the only time interval analysis that had
significant outcomes (q < 0.2). Overall, six metabolites that
changed during this interval were significantly correlated with
glucose AUC; all six of these metabolites were previously
unknown (Table 4).

Pathway Over-Representation Analysis
Signature of Exposure
There were 33 known metabolites that were statistically
significant during at least one time interval (A to B, B to C, or
A to C) in the signature of metformin exposure analysis (q < 0.2)
and 32 of these metabolites overlapped with at least one pathway
in the HMDB database. Pathways were then tested to determine
if any pathways in the HMDB database were enriched for
these 32 metabolites. Significant pathways found in this analysis
include, urea cycle, purine metabolism, ammonia recycling,
arginine and proline metabolism, pyrimidine metabolism, amino
sugar metabolism, histidine metabolism, glutamate metabolism,
cysteine metabolism, and malate-aspartate shuttle pathways
(q < 0.05; Table 5). The urea cycle pathway was significantly
impacted based on the following seven metabolites: adenosine
monophosphate, L-aspartic acid, citrulline, L-glutamic acid,
L-glutamine, ornithine, and pyruvic acid, which overlapped
with the 10 metabolites annotated in this pathway (KEGG
ID: map00330). Metabolites adenosine monophosphate, L-
glutamine, hypoxanthine, and inosine were also implicated in the
purine metabolism pathway (q= 0.04; Table 5).

Signature of Metformin Response
Only three known metabolites (glycine, malic acid, and fumaric
acid) were statistically significant in at least one time interval
in the signature of metformin response analysis (q < 0.2) and
overlapped with at least one pathway in the HMDB database
(Supplementary Table 1). Overall, 14 pathways were significantly
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FIGURE 2 | Pathways significantly impacted following metformin administration and associated with metformin’s effects on glucose levels after an

oral glucose tolerance test in non-diabetic African-American subjects.

FIGURE 3 | Correlation and clustering between significant metabolites from time interval A to B. The modules represent the grouping clusters of the

metabolites. R, correlation coefficient (−1 < R < 1).
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FIGURE 4 | Correlation and clustering between significant metabolites from time interval B to C. The modules represent the grouping clusters of the

metabolites. R, correlation coefficient (−1 < R < 1).

FIGURE 5 | Correlation and clustering between significant metabolites from time interval A to C. The modules represent the grouping clusters of the

metabolites. Shading represents the correlation coefficient (−1 < R < 1).

enriched for this set of metabolites (e.g., citric acid cycle,
glutathione metabolism, alanine metabolism, gluconeogenesis,
mitochondrial electron transport chain; Supplementary Table 1).

Replication in Mouse Study
After intraperitoneal dosing of metformin (150 mg/kg for 7
days), significant decreases in ornithine, adenosine-5-phosphate,
inosine, pyruvic acid, hypoxanthine, maltose, tyrosine, uridine,

and aspartic acid were observed in serum samples from mice
treated with metformin compared to mice treated with saline
for the same length of time (q < 0.3; Supplementary Table 2).
Indole-3-acetate and 4-hydroxyproline were elevated following
metformin treatment, at all doses and 150 mg/kg, respectively, in
the mice compared with mice treated with saline. Liver samples
from the mouse model demonstrated significant decreases in
levels of methionine sulfoxide, glutamine, inosine, maleimide,
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TABLE 4 | Metabolites significantly correlated with post-metformin

glucose area under the plasma concentration time curve measured at

various time intervals.

Time interval Metabolite R q-value

B 2-hydroxybutanoic acid 0.607307 0.055967

B 2-deoxytetronic acid 0.546755 0.155866

C Fumaric acid −0.59113 0.104851

C Glycine −0.56567 0.104851

C Malic acid −0.55418 0.104851

C 2-hydroxybutanoic acid 0.538918 0.116422

A→C *200476 0.554803 0.061408

A→C *206556 0.571023 0.061408

A→C *221574 0.580554 0.061408

A→C *225398 0.595234 0.061408

A→C *815932 0.559485 0.061408

A→C *232017 0.508319 0.160358

*Metabolite compounds yet to be structurally identified.

tyrosine, and uridine (q < 0.3) following metformin treatment
at both 50 and 150 mg/kg doses (Supplementary Table 3).
Additionally, liver samples from the mouse model demonstrated
significant decreases in levels of ornithine, 2-hydroxyglutaric
acid, and hypoxanthine at only the high dose of 150 mg/kg
(q < 0.3) following metformin treatment (Supplementary
Table 3).

DISCUSSION

Metformin is a commonly prescribed glucose-lowering
medication; however, the underlying mechanism of action
of metformin remains elusive. Here, we investigated the impact
of metformin on a diverse set of metabolites using a non-targeted
metabolomics approach in 33 subjects without a diagnosis of
diabetes and of African-American ethnicity. The metabolites and
biological pathways identified in our study provide information
about signatures of metformin exposure and pharmacologic
action. We first discuss our results in the context of exposure
to metformin followed by its effects on glucose concentrations
following an OGTT.

Exposure to Metformin
Differences in metabolite levels obtained at time points A and B,
and B and C are both indicative of exposure to metformin. A to
B differences reflect metabolites that increased or decreased 10 h
after an oral dose of metformin; whereas differences inmetabolite
levels between time points B to C represent metabolites that
increased or decreased 2 h after an oral dose of metformin.
Unlike previous studies, which identified metabolite signature of
metformin at steady state (Cai et al., 2009; Huo et al., 2009; Xu
et al., 2015), our study highlights metabolite signatures after acute
exposure. Of the metabolites with levels that changed in plasma
after exposure to metformin (time points A to B), indole-3-
acetate was notable because it was modulated in both the clinical
and the mouse study. In the clinical study, indole-3-acetate levels
were reduced 2 h after metformin administration (time point C

compared with time point B) and increased 10 h after metformin
administration (time point B compared with time point A).
In mice, indole-3-acetate levels increased following metformin
administration for 7 days at both 50 and 150mg/kg doses. Indole-
3-acetate is derived from the gut microbiota, and at time point
C, estimated metformin concentrations in the intestine are about
25–50 mM (a 500–1000mg dose in 250 mL intestinal fluid).
These concentrations of metformin may have potent effects on
the intestinal microbiome. In fact, several recent studies have
shown that metformin has profound effects on the human gut
microbiota (Lee and Ko, 2014; Zhang et al., 2015). The fact
that indole-3-acetate levels were reduced in the 2 h sample but
elevated in the 10 h sample of the clinical study as well as the
mouse study may reflect differences in the effects of metformin
on the formation, absorption and elimination kinetics of indole-
3-acetate at various times. For example, high concentrations of
metformin in the gut 2 h post-metformin dosing may affect
the formation and the absorption of indole-3-acetate resulting
in lower plasma levels; whereas at 10 h post-metformin dosing,
metformin may inhibit the renal elimination of indole-3-acetate.
Metformin has recently been shown to be an inhibitor of several
transporters in the intestine and kidney (Chen et al., 2014;
Liang et al., 2015). Interestingly, metabolites 629905 and 629906
were found to be significant when comparing all three different
time points (A and B, B and C, A and C). Additional, spectral
analysis suggests that these metabolites are likely to be the same
compound (Supplementary Figure 1). However, it is noted that
these two metabolites were only found in time point B and C,
where the levels were higher in C compared to B and it is possible
that these metabolites were part of the inert ingredients in the
metformin tablet, as they were only observed after and not before
metformin dosing.

Another notable metabolite that associated with exposure
to metformin in both humans and mice was the metabolite,
4-hydroxyproline. In the clinical study, 4-hydroxyproline was
significantly increased in the signature of metformin exposure
for time points A to B, and A to C (q < 0.2). This effect
was also observed in serum collected from mice receiving the
50 mg/kg dose and the 150 mg/kg dose (Supplementary Table
2). That is, increased 4-hydroxyproline levels were observed in
mice receiving the 150 mg/kg relative to the 50 mg/kg dose
of metformin. Although the mechanism by which metformin
may result in increased serum levels of 4-hydroxyproline is not
known, it is possible that metformin affects 4-hydroxyproline
elimination or production, which is associated with collagen
content in the body (Jenkins et al., 2003). Consistent with
our results, significant changes in tissue and urine levels of
4-hydroxyproline have been noted in rodents treated with
metformin (Kita et al., 2012; Lekshmi and Reddy, 2013).

Safety and efficacy biomarkers are topics of considerable
interest in precision medicine for many diseases including
diabetes (Pawlyk et al., 2014). In particular, the level of a
biomarker (obtained before dosing) that predicts drug exposure,
e.g., maximum plasma concentration of the drug, Cmax, may
inform drug dosing (precision dosing). Unfortunately, the 11
baseline metabolites (obtained at time point A) that were
associated with metformin Cmax were all of unknown structure,
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TABLE 5 | Results from the signature of exposure pathway analysis (q < 0.05).

Pathway name SMPDB IDa KEGG IDb Universec Pathwayd Groupe Overlappingf Names of overlapping

metabolites

q

Urea cycle SMP00059 map00330 137 10 32 7 Adenosine monophosphate,

L-Aspartic acid, Citrulline,

L-Glutamic acid, L-Glutamine,

Ornithine, Pyruvic acid

0.004

Purine metabolism SMP00050 map00230 137 6 32 4 Adenosine monophosphate,

L-Glutamine, Hypoxanthine, Inosine

0.040

Ammonia recycling SMP00009 map00910 137 9 32 5 Adenosine monophosphate,

L-Aspartic acid, L- Glutamic acid,

L-Glutamine, Pyruvic acid

0.040

Arginine and proline

metabolism

SMP00020 map00330 137 7 32 4 L-Aspartic acid, Citrulline,

L-Glutamic acid, Ornithine

0.040

Pyrimidine metabolism SMP00046 map00240 137 5 32 3 CDP, L-Glutamine, Uridine 0.040

Amino sugar

metabolism

SMP00045 map00520 137 5 32 3 L-Glutamic acid, L-Glutamine,

Pyruvic acid

0.040

Histidine metabolism SMP00044 map00340 137 3 32 2 Adenosine monophosphate,

L-Glutamic acid

0.040

Glutamate metabolism SMP00072 map00250 137 3 32 2 L-Glutamic acid, L-Glutamine 0.040

Cysteine metabolism SMP00013 map00270 137 3 32 2 L-Glutamic acid, Pyruvic acid 0.040

Malate-aspartate

shuttle

SMP00129 137 3 32 2 L-Aspartic acid, L-Glutamic acid 0.040

aSmall Molecule Pathway Database ID;
bKyoto Encyclopedia of Genes and Genomes ID;
cNumber of metabolites in database that overlapped with metabolites tested using the metabolomics platform;
dNumber of metabolites in pathway;
eNumber of significant metabolites detected for at least one time point;
fNumber of significant metabolites detected that also overlapped with metabolites in the pathway.

reflecting the current state of metabolomic research with many
unknown metabolites. It would be of great interest to identify
these metabolites and test them as biomarkers to inform
metformin dosing and to gain insights into the mechanisms
involved in metformin pharmacokinetics.

Effects of Metformin on Oral Glucose
Tolerance Tests
Metformin elicits potent effects on glucose AUC after an OGTT,
which is less apparent in non-diabetic subjects than in patients
with T2D (Stocker et al., 2013). Metabolite levels that correlate
positively with the change in glucose AUC upon metformin
treatment may be considered as biomarkers of poor response
to metformin. That is, relative to pre-metformin, no change or
increased glucose levels indicate poor response whereas reduced
glucose levels or AUC indicate a good response to metformin.
In our study, 2-hydroxybutanoic acid levels (at both time points
B and C) were positively correlated with glucose AUC post-
metformin. Several studies have found that 2-hydroxybutanoic
acid levels were associated with insulin resistance in non-diabetic
subjects, and represent a potential early predictor of T2D and
a biomarker for individuals at risk of developing T2D (Gall
et al., 2010; Ferrannini et al., 2013; Muscelli et al., 2014). Our
study showed that 2-hydroxybutanoic acid, at time point A,
was positively correlated with fasting glucose before metformin
administration (r2 = 0.14, p = 0.02), and glucose AUC before
metformin administration (r2 = 0.20, p = 0.006), consistent

with the metabolite being a biomarker of insulin resistance in
non-diabetic subjects (Gall et al., 2010; Ferrannini et al., 2013).
Furthermore, 2-hydroxybutanoic acid, at time points B and C,
was positively correlated with glucose AUC after metformin
administration (r2 = 0.31, p = 0.0004 and r2 = 0.21, p = 0.005)
even when baseline glucose was subtracted from the glucose
levels after the OGTT (data not shown). These data indicate that
plasma levels of 2-hydroxybutanoic acid in addition to predicting
poor glucose tolerance may be a predictor of poor response
to metformin. These results need to be validated in patients
with T2D.

Pathway Analyses
Pathway analysis revealed significant enrichment of metabolites
in the urea cycle. This effect was driven largely by significant
changes in ornithine, citrulline, and uridine, and adenosine-
5-phosphate, which were all decreased upon exposure to
metformin. Ornithine is decreased in the A to B time interval,
and citrulline is decreased in the A to B, and A to C time
intervals. Decreased ornithine was also observed in both liver
and serummouse samples. Our results are consistent with studies
showing that ornithine and citrulline are significantly reduced
in T2D patients treated with metformin (Irving et al., 2015;
Xu et al., 2015). One potential reason for lower citrulline levels
after metformin administration is its effects on mitochondrial
complex I, the primary target of metformin (El-Mir et al., 2000;
Owen et al., 2000). In particular, it is known that patients with
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mitochondrial deficiency (including patients with complex I
deficiency) have significantly lower citrulline levels (Rabier et al.,
1998; Atkuri et al., 2009). Ornithine and urea are produced
by arginase 1 (ARG1) in the cytosol from arginine and water
(Morris, 2002). Recently, metformin has been shown to reduce
ARG1 activity (Bal et al., 2014), which is consistent with the
reduced levels of ornithine observed in our study. Moreover,
inosine was significantly decreased in plasma samples obtained
at time points B and C after metformin exposure compared with
samples obtained at time point A, and was also decreased in
plasma samples obtained inmice treated withmetformin. Altered
inosine levels point toward changes in purine metabolism. Other
pathways that were affected in our study include methionine
and folic acid pathways, which have been shown to be
altered in cancer cells (Cabreiro et al., 2013; Janzer et al.,
2014). In the pathway analysis for the signature of metformin
response, 14 pathways were significantly enriched for this set
of metabolites (e.g., citric acid cycle, glutathione metabolism,
alanine metabolism, gluconeogenesis, mitochondrial electron
transport chain; Supplementary Table 1). Genes in many of
these pathways have been implicated in metformin response
in multiple studies (Chen et al., 2014; Pawlyk et al., 2014).
However, each of these metabolites were enriched based on a
single overlapping metabolite, and therefore, any conclusions
drawn from this analysis should be interpreted cautiously.

It is important to consider that the results presented here
were generated from non-diabetic subjects. Individuals with
T2D diabetes would be expected to have significantly altered
metabolic pathways. Therefore, the results presented here in
non-diabetic subjects may be different from those observed in
individuals with T2D. In addition, all of the subjects in this
study were of African American ethnicity. African Americans
have an increased risk of developing T2D than Caucasian
individuals (Centers for Disease Control and Prevention, 2014);
therefore, it is important to characterize the effects of metformin
in this population, since they have an increased likelihood of
receiving metformin over their lifetime. In addition, although
we replicated results in the murine model, as with any model
organism, species and metabolic differences may impact the

outcome and limit the ability to translate results for human
relevance. Additional research is needed using more targeted
metabolomics platforms with in-depth coverage of the specific
pathways identified in the present study. Further, identifying
the structures of the “unidentified metabolites” will provide
more information on metformin’s effects. It is noteworthy,
that six metabolites that were significantly associated with
the OGTT response to metformin treatment (Table 4), and
that 11 metabolites associated with metformin Cmax were all
unidentified stressing the potential for new biomarkers that may
provide the key for more targeted diabetes treatments in a highly
susceptible population.
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