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Abstract
Bradykinin, a member of the kallikrein–kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodila-
tor and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through 
kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, 
Gαq and Gβ1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including 
IL-6, IL-1β, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as 
inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array 
of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understand-
ing of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture 
that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the 
pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. 
This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described 
above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.
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Introduction

Bradykinin is a potent, transient vasoactive peptide that acts 
as a vasodilator and an inflammatory mediator in various 
signaling cascades. It is a member of the kallikrein–kinin 
system (KKS), associated with inflammatory response 

pathway mediating diverse functions in vascular permeabil-
ity like thrombosis and blood coagulation [1]. Bradykinin 
induces vasodilation in peripheral circulation by decreasing 
the arterial tone of the smooth muscle and increasing blood 
flow [2]. Additionally, it initiates plasma extravasation by 
complying with capillary endothelium and vasoconstriction 
via the induction of venous smooth muscle fibers. During 
inflammatory conditions such as asthma, it promotes cellular 
movement from blood to tissues and activates mast cells, 
fibroblasts, macrophages and smooth muscles of organs [3, 
4]. Bradykinin mediated signaling is also involved in chronic 
pain, vasculopathy, obesity, neuropathy, diabetes, and cancer 
[5–9].

Recently, it has been outlined that severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) disrupts KKS 
and renin–angiotensin–aldosterone system (RAAS), usher-
ing in bradykinin storm, a process leading to heightened 
expression of bradykinin and consequent downstream sign-
aling mediated effects. In such a state, bradykinin is at the 
core of many disparate symptoms of coronavirus disease 
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(COVID-19), like loss of sense of smell and taste, leaky 
blood vessels, fluid accumulation in tissues and organs 
abnormal coagulation. The process impairs oxygen transfer 
from lungs to the blood, a common abnormality in COVID-
19 patients [10]. Being a member of KKS, Bradykinin 
relies on other components for its synthesis and sustenance. 
Rightly so, the biochemistry of these components, namely 
bradykinin receptors, bradykinin-related peptides, receptor 
agonists and antagonists and various other aspects, has been 
outlined in far more detail than bradykinin [5, 11, 12]. The 
evidence above casts a spotlight on bradykinin as a molecule 
of immense therapeutic potential that deservingly needs its 
due share of focused discussion fulfilled.

Here, we attempt an excursion into the currently available 
knowledge on bradykinin under the broad landscape of KKS, 
its signaling cascades and role in disease pathophysiology, 
both protective and deleterious, and bradykinin receptor tar-
geting that can carve the premise of the therapeutic utiliza-
tion of bradykinin in various conditions.

Kallikrein–kinin system and bradykinin synthesis

Kinins are low molecular weight peptides that get liber-
ated from high molecular weight kininogens (HMWK) and 
low molecular weight kininogens (LMWK) by the action 
of plasma kallikrein (PK) or tissue kallikrein (TK), respec-
tively, which makes up an integral part of KKS [13]. Distinct 
gene transcripts of plasma HMWK and tissue LMWK are 
derived from the kininogen gene (KNG1) located on chro-
mosome 3q26 (in humans) by alternate splicing. This gene 
contains 11 exons, of which 9 and apart of exon 10 codes for 
the heavy chain of both kininogens. Full coding sequence of 
exon 10 makes 56 kDa light chain of HMWK and exon11 
codes for 4 kDa light chain of LMWK [14, 15].

Plasma KKS are involved in constitutive anti-coagulant 
activity protecting endothelium, whereas the tissue system 
is essential in tissue repair and reaction to noxious or arti-
ficial stimuli [16]. HMWK is primarily expressed in the 
liver, whereas LMWK are widely distributed and expressed 
in endothelial cells of vasculature [17]. PK is produced as 
zymogen plasma pre-kallikrein, secreted primarily from 
hepatocytes into the blood. In the blood, it circulates as a 
complex with HMWK [18]. Normally, circulating PK is 
inactive but can be activated with a negatively charged sur-
face like the basement membranes mediated blood clotting 
by factor XII (Hageman factor/FXII) and HMWK as co-
factor]. PK then processes HMWK (120 kDa) to release the 
nonapeptide bradykinin [19, 20].

Meanwhile, TK differs from PK as it can be encoded 
by various genes and secreted by many organs, including 
the pancreas, salivary glands and kidney [21]. There are 15 
known TKs encoded by the genes named it from KLK1 to 
KLK15, the most prominent protease family in the human 

genome, which are located on 19q13 chromosome [22]. TK 
produces decapeptide, kallidin or Lys-BK (LBK) mainly by 
its action on LMWK (70 kDa). In addition, TK can also act 
on HMWK to generate LBK [23] (Fig. 1). LBK can be con-
verted into bradykinin in some circumstances by the action 
of plasma aminopeptidases upon removal of N-terminal 
lysine. These activated kinins can stimulate endothelial cells, 
increasing vasodilation, vascular permeability, nitric oxide 
(NO) production, and arachidonic acid mobilization [24]. 
Aminopeptidase B can act on LBK and release N-terminal 
lysine, thereby releasing bradykinin without further degra-
dation [25].

Kinins are altered by a number of enzymes, including 
Carboxypeptidase M (CPM), a kininase I-type enzyme that 
modifies bradykinin and LBK into des-Arg9-BK and des-
Arg10-LBK, respectively [26]. Further, C-terminal arginine 
residues of the kinins can be removed by carboxypepti-
dase N (CPN), a plasma carboxypeptidase. Angiotensin I 
converting enzyme (ACE) is a key kininase II that cleaves 
C-terminal dipeptides from kinins, rendering them inactive. 
Kinins are cleaved at internal phenylalanine (Phe5 in BK) 
by membrane-bound Neutral endopeptidase (NEP) [27, 28]. 
Therefore, given these factors, the circulating lifespan of 
bradykinin corresponds to only a few seconds following its 
transient activity with this consortium of digesting enzymes 
[29] (Fig. 2).

Kinin receptors

Regoli et al. have characterized kinin receptors through phar-
macological studies [30]. The cell surface receptors such 
as kinin B1 and B2 are transmembrane G-protein coupled 
receptors with seven domains that mediate the biological 
effects of kinins [31]. BDKRB2 is widely expressed in many 
healthy tissues and stimulated by the binding of unaltered 
kinins. Unlike BDKRB2, BDKRB1 is inducible and present 
minimally in healthy tissues but expressed rapidly during 
inflammation and responded to kinin lacking C-terminal 
arginine residues [6].

BDKRB1 is scarcely detectable in peripheral tissues 
under normal physiology, but its mRNA was present con-
stitutively in different brain regions and spinal cord [32, 33]. 
BDKRB1 is rapidly induced in almost all inflammatory and 
stressful conditions at transcriptional and post-transcrip-
tional levels in the whole body [8, 34]. Pro-inflammatory 
mediators like interleukin-1β, IFNγ, TNFα, soluble gC1qR 
and epidermal growth factor at inflammatory sites can 
upregulate de novo synthesis of BDKRB1 in various cells 
especially, endothelial [35–37]. CPM binds to the external 
loop 2 of BDKRB1 increasing conformational activation and 
generates BDKRB1 agonists from kinins [38]. BDKRB2 
is localized constitutively in the majority of inflammatory 
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relevant cells, including endothelial cells, osteoblasts, epi-
thelial cells and neurons in the brain. It is also expressed 
in different types of tumor cells and immune cells [33, 
39–41].

BDKRB2 is activated by phosphorylation at serine (S339, 
S346, S348) and threonine (T342, T345) residues on the 
C-terminal region when an agonist binds, which leads to 
arrestin mediated internalization through clathrin-coated 
vesicles [42, 43]. When exposed to kinin for an extended 
period of time, BDKRB2 is secluded into the lysosome 
for degradation, whereas short-term stimulation results in 
dephosphorylation and, as a result, the receptor is recycled 
back to the surface. In contrast, agonist-induced internaliza-
tion is not seen in BDKRB1. Unless BDKRB1 binds to ago-
nist, its internalization occurs independent of beta-arrestin 
and is broken down in lysosomes [44, 45]. However, if a 
ligand binds to BDKRB1, the available number of recep-
tors is increased by redirecting sequestered clathrin-coated 
BDKRB1 vesicle into the cell membrane [44] (Fig. 3).

In common, BDKRB1 and BDKRB2 receptors are 
involved in the progression and sustenance of chronic pain 
in complex regional pain syndrome type-I, vulvodynia and 
fibromyalgia-like pain symptoms [46–48]. Additionally, 
both receptors are activated in pathologies involving tissue 
damage due to oxidative stress, pro-inflammatory stimuli, 
vasoactive peptide stimuli such as those found in the renin-
angiotensin system, lipopolysaccharides, and endotoxins. 
These receptors are also regulated by post-translational 
modifications (PTMs) [49–51]. Protective or pathological 
outcomes of receptors of kinin family (BDKRB1, BDKRB2) 
regulation and mediation by KKS in the events of both nor-
mal and pathophysiological states are discussed in multiple 
studies [52–54].

Bradykinin and its involvement in disease

Bradykinin-activated signaling pathways play a sig-
nificant role in various pathological conditions such as 

Fig. 1   The gene for KNG is present on q-arm of chromosome 3. 
Boxes 1–11 show the respective exons with intermittent introns. KNG 
gene undergoes alternative splicing to form HMWK and LMWK. 
Boxes 1–9 codes for signal peptide and heavy chain of HMWK and 

LMWK. Exon 10b encodes the bradykinin sequence. Exon 10b codes 
for the light chain of HMWK, whereas exon 11 contains sequences 
characteristic of the LMWK light chain
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cardiovascular complications, fibrosis and the most recent 
pandemic COVID-19.

COVID‑19

COVID-19 is a highly contagious viral infection caused by 
the SARS-CoV-2 virus. The infection was first reported from 
Wuhan, China in December 2019 and advanced rapidly due 
to onward transmission [8]. It is hypothesized that brady-
kinin pathway is dysregulated in COVID-19 patients leading 
to various complicated respiratory conditions. Garvin et al. 
have reported that bronchoalveolar lavage fluid (BALF) of 
COVID-19 patients have reduced ACE gene expression and 
raised ACE2, renin, angiotensin, AT1 and AT2, kininogen 
and kallikrein enzymes that activate BDKRB1 and BDKRB2 
receptors [10] (Fig. 4). The expression of the BDKRB1 and 
BDKRB2 receptors was reported to be raised by 2945- and 
207-folds, respectively. Kininogen and kallikreins expres-
sion was undetected in controls but expressed in COVID-19. 
Although ACE gene expression reduced eightfold, result-
ing in enhanced activity of bradykinin, downregulation of 

ACE2 culminated in reduced degradation of des‐Arg(9)‐
bradykinin. All of this along with the increased expression 
BDKRB1 and BDKRB2 receptors can lead to the bradykinin 
storm [10, 55]. Such ‘Bradykinin storm’ leads to vasodila-
tion, vascular permeability, and hypotension. It is possible 
that this bradykinin is produced by bronchiole and alveoli-
resident mast cells. Tissue resident granulocytes and mast 
cells are known to generate bradykinin by synthesizing 
heparin, activating coagulation factor XII, and forming PK 
[56, 57]. Thus, the rise of bradykinin could be attributed to 
heightened mass cells density in the lungs of COVID-19 
patients’ [58].

It is also hypothesized that bradykinin metabolite, des-
Arg9-BK, could lead to inflammation, vasodilation, vascu-
lar permeability through bradykinin receptors [59]. This 
becomes important because des-Arg9-BK is cleaved by 
ACE2 [60] and is in contrary to the report by Garvin et al., 
it is established that SARS-CoV-2 infects target cells via 
its spike protein (S) antigen with ACE2 [61, 62]. The inter-
nalization of the resulting complex reduces the activity of 
ACE2. This increases its signaling via BDKRB1 leading to 
fluid extravasation and leukocyte movement to lungs [60, 

Fig. 2   KKS organisation. Following alternate splicing of KNG gene, 
LMWK and HMWK are synthesized. Various physiological insults 
such as tissue damage leads to proteolytic activations of TK, which 
converts LMWK into LBK. Factor XII (Hageman factor) activates 
PK, that transforms HMWK to bradykinin. LBK and bradykinin are 
agonists for BDKRB2, and upon the action of carboxypeptidases like 
CPM/CPN can result in the formation of Des-Arg9-Kallidin and Des-

Arg9-BK, members  BDKRB1 agonists. Bradykinin can be broken 
down into inactive fractions by ACE and NEP and LBK converted 
into bradykinin by an aminopeptidase. (Notations:  LMWK-Low-
molecular-weight kininogen,  HMWK-High-molecular-weight kini-
nogen, PK-Plasma kallikrein, ACE-Angiotensin-converting enzyme, 
NEP-Neutral endopeptidase)
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63]. Raised BALF ACE2 levels in the study by Garvin et al. 
could be because it was either membrane shed form (via 
ADAM17-mediated proteolytic cleavage) or soluble form 
and that the type of ACE2 was not exactly determined [10]. 
Dry cough as a COVID-19 symptom could be explained 
by bradykinin-mediated sensory nerve activity as a cas-
cade for ACE-inhibitor modulated dry cough [64]. Further, 
bradykinin may have a role in gustatory and olfactory dys-
functions [65]; also, ACE-inhibitors can lead to olfactory 
dysfunction [66].

The loss of ACE2 function and the resulting raised Ang-II 
levels can also lead to decreased ACE activity via a negative 
feedback loop (renal ACE and renin gene is downregulated 
by Ang-II). This decrease in ACE levels can lead to a rise 
in bradykinin levels. Further, it is reported that Ang-II is 
involved in the raised expression of prolyl-carboxypeptidase, 
resulting in PK-induced generation of bradykinin [67]. 
Reduced ACE2 level outcomes like vasoconstriction [68], 
pro-inflammatory cytokine levels [69], C-reactive protein 
[70], pulmonary fibrosis [71], coagulopathy with increased 
plasma D-dimer, pulmonary thrombosis and venous throm-
boembolism [72, 73], dispersed intravascular coagulation 
[74] and ARDS [69, 75] are reported in COVID-19 patients. 
Reduced eNOS activity and NO levels are involved in 
COVID-19 patients with endothelial dysfunction, resulting 
in thrombosis and organ dysfunctions [76, 77]. It supports 
the hypotheses of reduced BDKRB2 stimulation (which ini-
tiates eNOS) and NO generation. Besides ACE-2, a lysoso-
mal cysteine endopeptidase, cathepsin L, also assists SARS-
COV-2 cell entry via transmembrane protease serine-2 [61]. 
It forms kinins from LMWK and HMWK [78], and has kini-
nogenase activity [79]. It can lead to bradykinin release and 
has hypotensive activities [80].

The rise in bradykinin, des-Arg9-BK, and Ang-II levels in 
the pulmonary vascular bed and peripheral vascular system 
by SARS-CoV-2 infection can lead to the onset of acute res-
piratory distress syndrome (ARDS) [81], a potentially fatal 
lung respiratory failure caused by inflammation and fluid 
build-up in the lungs, resulting in stiff lungs and hypoxemia 
[82]. It is proposed that BDKRB2 blockers and inhibition of 
PK might prevent the development of COVID-19 induced 
ARDS [59].

Cardiovascular complications

Prolonged hypertension is generally associated with renal 
dysfunction and tissue injury. Some studies suggest the pro-
tective function of bradykinin against hypertension-induced 
complications [83, 84]. For instance, salt-induced hyperten-
sive and renal injured rats were infused subcutaneously with 
bradykinin showed protective effects against renal injury but 
not hypertension. In this way, bradykinin directly protects 
against salt-induced renal injury [84]. Bradykinin also has 

a proliferative effect on endothelial cells. Locally synthe-
sised bradykinin takes part in neovascularization and helps 
repair vascular wall and remodeling after acute ischemia. 
It signals through BDKRB2/PI3K/eNOS mediated employ-
ment of circulating progenitor cells having the regenerat-
ing capacity to the injury site [83]. Bradykinin has a key 
function in all cardiac conditioning mechanisms [85, 86]. 
Bradykinin infusion in isolated rat hearts provides intermit-
tent protection through a pathway involving BDKRB2, PKG, 
NOS and mitochondrial K(ATP) channel [86]. Bradykinin 
also inhibits myocardial apoptosis through Akt and GSK-3β 
phosphorylation, improves antiapoptotic protein profile and 
plays a role in ventricular remodeling [87, 88].

Similarly, a pharmacological study reports the myocar-
dial protective role of BDKRB1 and BDKRB2 in diabetic 
and nondiabetic patients, respectively, in acute coronary 
syndrome [89]. Cardioprotective drug-mediated augmen-
tation of kinins’ half-lives, including bradykinin, has pro-
tective roles in cardiac remodeling, apoptosis and fibrosis, 
via BDKRB2-NO [90, 91]. However, bradykinin can have 
anti-fibrotic effects in pathogenic remodeling that surrounds 
cardiomyocytes leading to left ventricular enlargement and 
dysfunction [92]. In addition, bradykinin is involved in 
infarction triggered chest pain (angina) mediated through 
12-lipoxygenase products, IP3 and TRPV1 channels. Brad-
ykinin also acts as a cardiac nociceptor which stimulates 
BDKRB2 in upper thoracic spinal (sympathetic) sensory 
neurons [93, 94]. Thromboxane A2, a lipid family mem-
ber with prothrombotic properties, reciprocally interacts 
with bradykinin during myocardial ischemia stimulating 
cardiac spinal afferents [94, 95].Bradykinin agonists can 
be therapeutically used to counterbalance Bradykinin defi-
ciency, which seems consistent with endogenous bradykinin-
BDKRB2 mediated cardiac protection. However, deducing 
the right dosage, therapeutic window, and medication period 
will be significant determinants to control the balance.

Fibrosis

Fibrosis is the pathological wound healing condition in 
which connective tissue replaces normal parenchymal tissue 
to an extent that leads to substantial tissue remodeling and 
development of permanent scar tissue [96, 97]. Bradykinin 
has significant roles in diseases marked by tissue remod-
eling and chronic inflammation. In such states, bradykinin 
may have an anti-fibrogenic effect [98]. In cardiac and renal 
damage, stimulated BDKRB2 has protective effects. Over-
expression of kallikrein gene reduces the onset of cardiac 
hypertrophy and renal fibrosis [98–100]. Bradykinin may 
induce such effects in heart and kidney via the beneficial 
role of RAAS inhibitors as the inhibition with pharmaco-
logic agents of this system increases bradykinin levels [99, 
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101, 102]. Also, bradykinin has protective effects in models 
of ischemia–reperfusion, a condition characterised by the 
caused tissue damage owing to the return of the blood supply 
to tissue after a stretch of ischemia or anoxia (or hypoxia). 
This condition induces secretion of vasodilatory intermedi-
aries like NO and prostaglandins [103]. Further, bradykinin 
activates signaling molecules that safeguards parenchymal 
cells from apoptosis by NF-kB and AKT pathway [104, 
105].

Targeting the bradykinin receptor

The proceeds in the cognizance of kinin roles, including BK 
and its receptors, stem from the progress made in chemi-
cally synthesized peptide and non-peptide selective receptor 
ligands [106–108]. Studies reporting compounds mediating 
their effects on B2R have been classified in three generations 
(Fig. 5). The first generation of B2R antagonists includes 
Vavrek and Stewart, who synthesized them by changing the 
C-terminal dipeptide Phe8-Arg9 of BK and substitution of 
Pro7 by D-Phe residue. This [D-Phe7] BK analogue is a weak 
antagonist and partial agonist of guinea pig and rabbit B2R 
[109]. Further, N-terminal addition of a D-Arg and the sub-
stitution of Pro3 by Hyp results in D-Arg- [Hyp3,D-Phe7] BK 
(NPC 567) with improved potency against degradation by 
proteases [110]. D-Arg- [Hyp3, Thi5,8, D-Phe7] BK is a 
homologue of NPC 567 with an unnatural amino acid. This 
replaces Phe at positions 5th and 8th, conceivably confer-
ring resistance against degradation by proteases. In D-Arg- 
[Hyp3,D-Phe7, Leu8] BK, Phe8 is substituted by a Leu to 
eliminate aromaticity [109]. These antagonists are more 
potent in rabbit B2R than other study models (guinea pig, 
mouse) but inactive in humans because of rapid degradation 
by a battery of proteases [111, 112]. Additionally, they are 
converted to desArg9-metabolites (B1R agonists) by CPM, 
thereby making it non-selective [109].

The second generation of B2R antagonists was intro-
duced by discovering HOE140 (Icatibant), which had rigid-
ity, stability, increased binding, and potency without partial 
agonist activity [113]. In HOE140, D-Phe7 was substituted 
by the rigid analogue tetrahydroisoquinoline-3-carboxylic 
acid (D-Tic) and Thi8 by octa hydro indole-2-carboxylic acid 

(Oic) (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8] BK) [111, 114]. It 
could resist endo and exopeptidase activity by its tertiary 
amides D-Tic and Oic, similar to proline and hydroxypro-
line, along with D-Arg at the amino terminus. These charac-
teristics give this molecule extreme stability and prolong its 
interaction with B2R [114]. In addition, these two unnatu-
ral amino acids andthe beta-turn of the C-terminal region 
conferred extra rigidity, which marked the significance of 
the spatial orientation for optimal antagonist activity. Intra-
arterial injection of HOE140 blocked the effect of exoge-
nous bradykinin in rats and was found to be quite potent in 
humans as it competitively binds to B2R. HOE140 is very 
selective as it had almost no effect on other kinin receptors 
[115].

In addition, it is known as a non-equilibrium antagonist as 
it binds at the same site as BK but dissociates rather slowly, 
thereby preventing the complete occupation of agonist(s) 
[111, 116]. It has been employed in clinical trials to con-
trol acute rhinitis and asthma and gauge kinins' function in 
pain and hyperalgesia [117–119]. Even though it failed to 
manage pollen-induced seasonal allergic rhinitis, it antago-
nised house dust-mite triggered nasal obstruction in allergic 
rhinitis patients [118]. Subcutaneous injection of HOE140 
leads to local skin reaction caused by interaction with a mast 
cell GPCR which releases histamine [120]. Further, it has 
been certified for HAE treatment with acute attacks [121]. 
In order to improve stability, duration of action and flexibil-
ity in comparison to the previously described antagonists, 
dimeric peptides were explored. One such example is Delti-
bant (CP-0127), a homodimer of D-Arg-[Hyp3,Thi5,Cys6,D-
Phe7,Leu8] BK joined at Cys6 by bis-succinimidohexane 
(BSH) [122]. It has moderate potency as demonstrated in 
various assays and enhanced stability and efficacy in various 
in vivo models of trauma [4].

Later, non-peptide, orally active third-generation B2R 
antagonists including WIN64338 and FR173657 were 
synthesized. The former exerts moderate antagonism in 
the guinea pig but is inactive in humans [123–125]. How-
ever, later is highly potent on human B2R with pA2 value 
of 8.2 (pA2 value indicates the affinity of the antagonist to 
the receptor). FR173657 also inhibits bronchoconstriction 
in guinea pigs, reduces carrageenan-mediated paw edema, 
reduces caerulein-mediated pancreatitis in rats, and relieves 
kaolin-mediated pain in mice when administered orally [126, 
127]. Anatibant (LF 16–0687; XY2405) is a synthetic non-
peptide B2R antagonist with a characteristic pharmacologi-
cal profile that meets essential criteria to be considered for 
clinical trials. Further, it is investigated in a clinical trial to 
brain edema after head injury [128–130].

Fasitibant (MEN16132) is also a nonpeptide selective 
antagonist for the B2R with high efficacy in several ani-
mal models of inflammation [131]. Based on the outcomes 
generated in various pharmacological investigations, it was 

Fig. 3   A schematic representation of BDKRB1 and BDKRB2 signal-
ing mechanisms mediated by bradykinin. A Stress, inflammation and 
tissue injury lead to the expression of BDKRB1, which gets stimu-
lated upon binding with Des-Arg9-BK and triggers downstream sign-
aling cascades. In the absence of agonist stimulation, BDKRB1 gets 
internalized for breakdown by lysosomal degradation. B BDKRB2 
receptor is activated upon the binding of Bradykinin and subsequent 
phosphorylation. Arrestin mediated internalization occurs through 
clathrin-coated vesicles. BDKRB2 is secluded into the lysosome for 
degradation if exposed to kinin for the long term. Short-term expo-
sure with bradykinin results in dephosphorylation followed by recep-
tor recycling back to the surface

◂
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Fig. 4   A schematic diagram of ACE2, ACE and Bradykinin regu-
lation mechanisms. The enzyme ACE can act on Angiotensin I 
and Bradykinin to convert them into Angiotensin-(1–9) and inac-
tive fragments, respectively, thus connecting the two pathways. The 

resulting products, Angiotensin-(1–7), Angiotensin II, and des-Arg9 
bradykinin mediate their effects through Mas, AT1 and BDKRB1 
receptors. (Notations: ACE- Angiotensin-converting enzyme, NEP- 
Neprilysin)

Fig. 5   B2R receptor antagonists. Members and properties of the three generations of B2R antagonists are depicted
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taken up for phase II clinical trials for knee pain in osteo-
arthritis (NCT0109116) [132]. Lanadelumab (DX-2930) is 
a Human monoclonal antibody-containing κ-light-chain of 
immunoglobulin G1 against PK [133]. It binds to free solu-
ble PK and HMWK bound PK. Further, it inhibits hydrolysis 
of HMWK by PK, without inhibiting other serine-proteases, 
like Factor XIa and the zymogen PPK [133] (Table 1). It was 
recently approved for the treatment of long-term prophy-
laxis for C1-INH-HAE attacks in patients aged 12 and above 
[134]. However, European Medicines Agency designated it 
as an orphan drug as it is not profitable to produce without 
government assistance [135].

Future directions

The review summarizes pioneer research and recent updates 
on bradykinin-induced effects in various diseases. Along 
with bradykinin, we have also discussed distinctive role 
of BDKRB1 and BDKRB2 in various conditions, which 
are often involved in opposite and not always compensa-
tory or synergistic manner. Albeit under the limelight of 
various KKS and RAAS components, the review showcases 
the important role of bradykinins in the pathophysiology 
of inflammatory conditions and recent COVID-19 burden. 
Due to this conjoined nature of bradykinin signaling with 
other mediators, the results of preclinical and clinical studies 
aiming to manage the above diseases by pharmacological 
exploration of kinin precursors, kinin receptors and related 
enzymes can be exploited in targeting bradykinin as a thera-
peutic molecule.

However, even with such open avenues, the approved 
drugs targeting bradykinin specifically are low in num-
ber. Furthermore, the challenge becomes formidable due 
to poor translational research outputs and, when consider-
ing infectious diseases, pathogen resistance, high toxic-
ity states of most antimicrobial drugs, and unaddressed 
requirements, such as in severe COVID-19 cases. In 

conclusion, to counter the challenges mentioned above and 
cater for the need of improving treatment outcomes in the 
implicated diseases, a multi-pronged strategy that makes 
leverage of the current understanding of bradykinin medi-
ated signaling aspects and undertakes pharmacological tar-
geting of bradykinin associated KKS components; mainly 
kinin receptors need careful consideration to be devised.

Acknowledgements  We acknowledge a research grant from Olav 
Thon Foundation entitled "Discovering new therapeutic targets and 
drugs to combat AMR tuberculosis: proteomics characterization and 
drug screening of mycobacterium -infected macrophages". We also 
thank Karnataka Biotechnology and Information Technology Services 
(KBITS), Government of Karnataka, for the support to Center for Sys-
tems Biology and Molecular Medicine at Yenepoya (Deemed to be 
University) under the Biotechnology Skill Enhancement Programme 
in Multi-Omics Technology (BiSEP GO ITD 02 MDA 2017). D. A. B. 
Rex is a recipient of the Senior Research Fellowship from the Indian 
Council of Medical Research (ICMR), Government of India. Deepak 
and Neelanchal are recipients of BiSEP trainee fellowship from the 
Ministry of IT and BT, Government of Karnataka.

Author contributions  RDAB, NV and KD, drafted the manuscript. SD 
and TSKP, revised the manuscript. RDAB, NV and KD, prepared fig-
ures. TSKP reviewed the article and provided critical comments. All 
authors read, edited, and approved the final article.

Funding  Not Applicable.

Data availability  Not Applicable.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethical approval  Not Applicable.

Consent for publication  Not Applicable.

Table 1   List of drug targets (Bradykinin receptors) and therapeutics in clinical trials

Drug Target Clinical phase Indication References

HOE-140 (Icatibant, Firazyr) B2R antagonist Approved Hereditary angioedema
(HAE)

[136, 137]

CP-0127 (deltibant) B2R antagonist Phase II Severe traumatic brain injury sepsis [138–140]
FR173657 B2R antagonist Reported Bronchoconstriction, pancreatitis, kaolin-mediated pain [125, 126]
LF16-0687 (anatibant) B2R antagonist Phase II Severe traumatic brain injury [129]
MEN16132 (fasitibant) B2R antagonist Phase II Knee pain in osteoarthritis [131]
DX-2930 (Lanadelumab) Human monoclonal 

antibody- against 
PK

Approved long-term prophylaxis for C1-INH-HAE attacks [133]

PHA-022121 B2R antagonist Phase II Hereditary angioedema
(HAE)

[141]
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