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Abstract

Background: Highly parallel analysis of gene expression has recently been used to identify gene sets or ‘signatures’ to
improve patient diagnosis and risk stratification. Once a signature is generated, traditional statistical testing is used to
evaluate its prognostic performance. However, due to the dimensionality of microarrays, this can lead to false interpretation
of these signatures.

Principal Findings: A method was developed to test batches of a user-specified number of randomly chosen signatures in
patient microarray datasets. The percentage of random generated signatures yielding prognostic value was assessed using
ROC analysis by calculating the area under the curve (AUC) in six public available cancer patient microarray datasets. We
found that a signature consisting of randomly selected genes has an average 10% chance of reaching significance when
assessed in a single dataset, but can range from 1% to ,40% depending on the dataset in question. Increasing the number
of validation datasets markedly reduces this number.

Conclusions: We have shown that the use of an arbitrary cut-off value for evaluation of signature significance is not suitable
for this type of research, but should be defined for each dataset separately. Our method can be used to establish and
evaluate signature performance of any derived gene signature in a dataset by comparing its performance to thousands of
randomly generated signatures. It will be of most interest for cases where few data are available and testing in multiple
datasets is limited.
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Introduction

In recent years, DNA microarray technology has been

increasingly used in oncology. It has provided insight into the

biological mechanisms underlying tumour formation and identi-

fied new therapy targets [1,2]. However, most studies performed

in this field identify gene sets, or so-called signatures, which can be

used to improve diagnosis and risk stratification [3,4,5,6]. These

signatures can be acquired through supervised analysis methods

[7]. Both patient microarray and clinical data are directly used to

find the genes that correlate with tumour type or patient outcome

[8,9,10,11,12]. Also biology-based signatures can be used for

patient prognosis, which are usually derived from in vitro

microarray data [2,13,14,15]. Though the performance of these

classifiers can be very high in the dataset studied, application of

these signatures in other datasets is often limited and data

reproduction is not straightforward [16]. Furthermore, signatures

identified in comparable studies show little overlap in gene content

[1,10,17,18,19,20]. Michiels et al. [4] showed that identified gene

lists were highly variable within one dataset and depended on the

patients included in the training set. Further, they demonstrated

that several published gene classifiers did not classify patients

better than by chance. They stress that validation is an important

issue in microarray research. Fan et al. [21] repeated and extended

these analyses 5 years later and made similar conclusions.

Moreover Boutros et al. [19] amongst other showed that the use

of different statistical procedures could identify multiple highly

prognostic signatures from one dataset [22,23]. An extensive

analysis of the effect of different statistics on ranked gene lists

showed large variability [24].

A major challenge with DNA microarray technology is to take

account of variability across a very large number of parameters

[1]. This variability arises from several sources: the biological

samples, hybridisation protocols, scanning, and image and

statistical analysis [7]. In a recent review, Dupuy et al. [1]

demonstrated that proper methodology in pre-processing and

statistical analysis is essential in these sorts of studies. They found

that a large subset of published microarray studies show flaws in

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28320



the applied analysis; serious mistakes are made in the selection of

genes and inadequate control of multiple testing is performed. The

issue of multiple testing is crucial, as microarrays monitor the

expression of thousands of genes, while the number of samples is

relatively small.

Statistical significance of the differences in gene expression

patterns for different patient groups or tumour types is often

determined with traditional statistical testing procedures, such as

the two-sample t-tests or Wilcoxon rank sum tests [1,7,20]. These

procedures are challenged with serious multiplicity and without

employment of a correction for multiple testing, the number of

false positives will be extremely high. Various methods have been

developed to overcome this problem of identifying differentially

expressed genes and are used to create gene signatures

[11,19,20,25].

More importantly multiple testing is often not considered in

evaluating the prognostic power of signatures. Once a signature is

created, its prognostic power is determined with traditional

survival statistics and standard cut-off values for significance. We

hypothesise that this can lead to high numbers of false prognostic

signatures when the number of evaluated datasets is limited.

Therefore we sought to develop a simple method to take into

account the high-dimensionality of microarrays in the phase of

evaluating signature prognosticity.

To quantify the problem of multiple testing we have developed

a method to test batches of random signatures in microarray

datasets. We show that the average chance that a random

signature produces a prognostic result in one dataset is

approximately 10% but can range from 1% to ,40%. Increasing

the number of datasets reduces this false positive rate significantly.

As a result of this high degree of variability amongst datasets, we

developed a method that can be used to determine an appropriate

threshold level of significance that must be reached for a given

signature. This is done by testing a set of randomly chosen

signatures along with the signature of interest within the dataset

under investigation.

Results

In order to assess the potential for identifying prognostic gene

signatures by chance alone in microarray based datasets a method

was developed to test the prognostic value of batches of randomly

generated signatures. Six different publicly available microarray

datasets with follow-up data were used (Table 1). These six

datasets differ in number of patients, number of measured genes,

number of reporters measured per gene, as well as platform and

type of cancer.

For each dataset separately 5 batches of 10,000 random

signatures were generated and tested. In each batch the number

of genes (UnigeneIDs) in a gene set was predefined. The number

of genes (UnigeneIDs) in the five batches were 10, 25, 50, 100 and

200 respectively. For example, the first batch included 10,000

random signatures, each consisting of ten genes. For each

signature a patient score was derived, defined as the average of

the expression of the genes in a signature (equation 1). Each

signature score was then tested for prognostic value by ROC

analysis and determination of the AUC. Figure 1A–F shows the

distribution of the AUCs for the first batch of 10,000 random

signatures for the different datasets.

To define a reasonable cut-off value for the AUC values, we first

searched for AUCs used in published gene signatures. However,

the majority of studies do not evaluate gene signatures using the

AUC. Most gene signatures are evaluated with Kaplan-Meier

survival curves and log-rank tests. Kaplan-Meier survival analyses

and ROC analyses are linked; a high AUC corresponds to a good

separation in distinct survival groups. To be able to define a cut-

off, we calculated the AUCs for the different gene sets as evaluated

in the review by Ntzani et al. [26]. The calculated AUCs as well as

additional information are provided in Supplementary File S1.

Based on these calculations we chose the cut-off values AUC#0.4

and $0.6.

In Figure 1G the percentages of signatures that passed the

criteria for the different batches of signatures are given. These

percentages range from 1% to ,40%, dependent on the dataset

and the number of genes in the signatures. Table 2 provides the

average, standard deviation as well as maximum and minimum

AUC for the analyses with the gene sets consisting of ten genes.

These data show that the larger the standard deviation, the higher

the chance that a randomly generated signature is considered

prognostic. Further, the maximum and minimum AUC show that

very high signature performances can be found at random.

Sampling 10,000 gene sets is a small number compared to the

total number of possible gene sets. In order to show that the

10,000 random gene sets are sufficient to estimate the AUC

distribution, we tested batches of 1,000,000 signatures consisting of

10 genes in the six datasets. The AUC distributions for this

permutation study were similar to the distributions for the batches

of 10,000 gene sets (Table 3).

From the differences between the six datasets (Table 1), it could

be that the number of patients, the number of genes (UnigeneIDs)

Table 1. Overview of the analysed patient microarray datasets.

Dataset Cancer type

Number of
patients with
survival data

Number of
UnigeneIDs
on array

Average number of
reporters measured
per UnigeneID Source

Miller Breast cancer 236 20,647 1.97 GEO accession GSE3494:
http://www.ncbi.nlm.nih.gov/projects/geo/

Wang Breast cancer 286 12,867 1.61 GEO accession GSE2034:
http://www.ncbi.nlm.nih.gov/projects/geo/

Van de Vijver Breast cancer 295 18,781 1.21 http://microarray-pubs.stanford.edu/wound_NKI/

Zhao Renal cancer 177 5,640 1.40 SMD:
http://smd.stanford.edu/

Beer Lung cancer 86 5,396 1.15 http://dot.ped.med.umich.edu:2000/ourimage/pub/Lung/index.html

Garber Lung cancer 24 4,936 1.15 SMD:
http://smd.stanford.edu/

doi:10.1371/journal.pone.0028320.t001
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and the number of reporters measured per gene influence the

probability that a randomly chosen signature is considered

prognostic. To further investigate the impact of these parameters,

the Miller dataset was used. To determine the influence of patient

number, the dataset was split in halves and in quarters. For these

partial datasets the same five batches of 10,000 random signatures

were tested. The influence of the number of genes was tested by

splitting the dataset in half, this time based on genes rather than

patients. Again, five batches of 10,000 random signatures were

tested. To investigate the influence of the number of reporters

measured per gene, again a set of five batches of 10,000 genes was

tested on the dataset, considering only genes with more than one

reporter. This was repeated, but for each gene only one reporter

measurement was considered. Of these parameters only patient

number influenced the false discovery rate. Results of the analysis

to determine the influence of the number of genes and the number

of reporters measured per gene are given in Supplementary File S1

and figures S1A and S1B.

Influence of patient numbers
It has already been reported in previous studies [26,27] that the

number of patients influences the false discovery rate. The Miller

dataset was split into two and four groups respectively to confirm

the importance of this factor. The same 5 batches of 10,000

random signatures that were tested on the whole dataset were

tested on these subgroups (Figure 2A). Indeed the number of

prognostic signatures increases dramatically when the size of the

patient group decreases. To characterize the relationship between

patient number and the probability that a randomly chosen

signature is considered prognostic, additional analyses were

performed for the batch of 10,000 runs with ten genes. The

dataset was split into three, five and ten groups respectively.

Figure 2B shows the distribution of the AUCs for the batch of

10,000 random signatures consisting of ten genes for the different

dataset sizes. It is clear that the smaller the dataset, the wider and

flatter the distribution becomes. Figure 2C presents the number of

prognostic signatures as a function of dataset size.

Effect of filtering
One of the parameters that could account for differences in the

number of prognostic signatures for a given dataset is filtering. To

briefly explore the influence of filtering, two simple filtering

methods were applied on the Miller dataset. After this filtering,

again five batches of 10,000 signatures were tested.

The first filtering procedure was to only consider reporters that

had no absent calls in the patients. This very stringent filtering

resulted in a reduction in number of reporters from ,45,000 to

,7,300 (approximately 5,000 unique UnigeneIDs). The second

filtering method, often used in microarray based studies, consists of

simply applying a threshold to the fold change. To show the effect

of this step on the number of false positives a twofold threshold was

applied. Only genes that show at least a two-fold change across the

patients are considered. This reduced the number of reporters

from ,45,000 to ,23,000.

The results for these analyses show that both filtering methods

have a different effect (Figure S1C). Fold change filtering did not

influence the probability that a randomly chosen signature is

considered prognostic; rather, it provides similar results to those of

non-filtered analysis. Filtering for absent reporters, on the other

hand, introduced a signature size dependency for the false positive

rate. A small signature size resulted in a false positive rate of

,10%, whereas large signatures had a false discovery rate of only

,0.5%. The average, however, stands at 5–6%, similar to the

non-filtering and fold change filtering analyses.

Signature testing procedure
To demonstrate that this random signature method can be used

with all sorts of signature evaluation methods, two additional

evaluation procedures were tested in the Miller dataset. In the

previous analyses the signature score was used as continuous

variable.

Here we selected 10,000 random samples of 10, 25, 50, 100 and

200 genes. In the first setup the signature score was used to median

dichotomize the patients. In the second setup these gene subsets

were in a K-nearest neighbor classification (KNN) combined with

leave-one-out-cross validation (LOOCV). Both procedures results

in patient classification into two groups, which were then coupled to

outcome and evaluated by the AUC. Similar AUC distributions are

obtained with these different signature evaluation procedures, exact

distributions characteristics differ slightly (Table 4). The numbers of

random gene sets passing the criteria are comparable (Figure S1D).

Evaluating signatures by random testing
To show that the random signature testing method is a valuable

tool in microarray based studies, several published gene signatures

Figure 1. Random signature AUC distribution in different published microarray datasets. Batches of 10,000 random signatures were
tested in six publicly available expression microarray datasets. Receiver-operator curves (ROC) were used to evaluate the signatures. The distribution
of the AUC for the different datasets for the batch of 10,000 random signatures consisting of ten genes are displayed ((A) Miller dataset, (B) Wang
dataset, (C) van de Vijver dataset, (D) Zhao dataset, (E) Beer dataset, (F) Garber dataset). The percentages of signatures that pass the criteria of
AUC#0.4 or AUC$0.6 for the 5 batches of 10,000 runs are shown in (G).
doi:10.1371/journal.pone.0028320.g001

Table 2. A batch of 10,000 random signatures of 10 genes was tested in the six datasets.

Dataset Average (± standard deviation) AUC Maximum AUC Minimum AUC

Miller 0.50560.054 0.692 0.312

Wang 0.47560.043 0.644 0.329

van de Vijver 0.49960.073 0.744 0.297

Zhao 0.47260.048 0.666 0.333

Beer 0.50260.073 0.753 0.249

Garber 0.53660.118 0.938 0.031

doi:10.1371/journal.pone.0028320.t002

Random Signature Testing Procedure
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Table 3. A batch of 1,000,000 random signatures of 10 genes was tested in the six datasets.

Dataset Average (± standard deviation) AUC Maximum AUC Minimum AUC

Miller 0.50360.044 0.688 0.290

Wang 0.47560.042 0.691 0.303

van de Vijver 0.51160.072 0.778 0.209

Zhao 0.47260.048 0.699 0.283

Beer 0.50360.073 0.831 0.196

Garber 0.53960.117 1.000 0.000

doi:10.1371/journal.pone.0028320.t003

Figure 2. Effect of dataset size on random signature AUC distribution. Percentages of signatures that pass the criteria of AUC#0.4 or
AUC$0.6 for the 5 batches of 10,000 runs for the Miller dataset, groups consisting of half the Miller dataset patients and groups with a quarter of the
Miller dataset patients (A). Distribution of the AUC for the different subdivisions of the Miller dataset, for the batch with 10,000 random signatures
consisting of ten genes (B). Relationship between size of the dataset and the false discovery rate in the Miller dataset (C).
doi:10.1371/journal.pone.0028320.g002
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were tested. In short, the suggested procedure to test a signature in

a dataset is as follows (Figure 3). For the signature of interest the

AUC was calculated in the dataset, additionally the AUC

distribution for batches of random signatures with a similar size

as the signature of interest was computed. The signature AUC was

then compared to the random signature AUC distribution with a

Z-test to assess whether the signature of interest performed better

than could be expected by chance.

The Wound signature [13], ‘‘invasiveness gene signature’’ (IGS)

[10] and two early hypoxia signatures [15] are recently published

gene signatures. For the Wound and IGS signatures it was

previously shown that these signatures had high prognostic value

in different datasets and cancer types [10,13,28]. The two early

hypoxia signatures however, were only evaluated in one dataset

[15]. These signatures were evaluated in the three breast cancer

datasets [8,29,30] with the signature score (details are provided in

Supplementary File S1).

For the Miller dataset also Kaplan-Meier survival analyses were

performed, since the two early hypoxia signatures were previously

tested in this dataset. The results of Kaplan-Meier survival

analyses and the random signature testing are given in Table 5 and

Figure S3. From the Kaplan-Meier survival analyses all four

signatures seemed to have a high prognostic value (p-values log-

rank test ,0.05). However the random signature testing procedure

indicated that the two early hypoxia signatures did not perform

better than chance in that dataset. Testing the four signatures in

the other two breast cancer datasets indeed showed that the two

early hypoxia signatures did not have prognostic value (p-values

log-rank test .0.05). For the Wound and IGS signatures both

evaluation procedures indicated that the performance of these

signatures is high in the different datasets and that this is unlikely

due to chance.

Discussion

We assessed six patient microarray datasets spanning different

cancer types, numbers of patients and arrays to evaluate the effect

of false positives on gene signature evaluation. Different-sized

batches of 10,000 random signatures were tested in all datasets.

With the given threshold, the average chance that a randomly

generated signature was considered prognostic was approximately

10%, but ranged from 1% to ,40%.

Testing batches of random signatures in different datasets

revealed that the AUC distribution varied widely between

datasets. Choosing an arbitrary cut-off value for significance is

then clearly not suited for gene signature evaluation. Rather a

dataset-based cut-off value should be considered. The random

testing method we propose here can be applied to calculate the

level of AUC necessary to reach significance beyond random for a

given signature size in a given dataset.

Table 4. Batches of 1,000,000 random signatures of 10, 25, 50, 100 and 200 genes were tested in the Miller dataset, where three
different signature evaluation procedures were used.

Signature score Median dichotomized KNN with LOOCV

% UnigeneIDs in signature
Average AUC
(± standard deviation) [min - max]

Average AUC
(± standard deviation) [min - max]

Average AUC
(± standard deviation) [min - max]

10 0.50560.054 0.53560.045 0.55360.036

0.312–0.692 0.348–0.702 0.426–0.717

25 0.50760.054 0.53560.045 0.55860.033

0.313–0.692 0.338–0.690 0.412–0.697

50 0.50960.055 0.53860.045 0.56160.031

0.304–0.694 0.374–0.671 0.457–0.678

100 0.51360.053 0.54060.044 0.56260.030

0.319–0.682 0.352–0.679 0.435–0.689

200 0.51860.052 0.54360.043 0.56260.029

0.335–0.684 0.373–0.688 0.449–0.691

doi:10.1371/journal.pone.0028320.t004

Figure 3. Workflow signature testing procedure. A systematic
overview of the proposed signature testing procedure is depicted here.
First performance of the signature of interest is determined. A batch of
random gene sets with the same size as the signature is subsequently
tested. Signature performance is then compared to the AUC
distribution of the random gene sets with a Z-test to address whether
the signature performs better than random.
doi:10.1371/journal.pone.0028320.g003
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The random testing procedure can also be used to directly test

whether the performance of a certain signature could be due to

chance. A schematic overview is given in Figure 3. A batch of

random signatures with the same size as the signature of interest can

be tested along with the original signature. The AUC distribution of

the random signatures can then be used to statistically test whether

the original signature performs better than random. An equivalent

permutation-based validation step was used by Boutros et al. [19] to

evaluate their signature; this step provided significant information

on the prognostic performance of the gene set.

We have shown that proper validation is absolutely essential in

gene signature research. This supports several previous studies, which

have argued that signature performance is often overestimated due to

improper validation in a large number of studies [1,26]. For several

analyses, the maximum and minimum AUC were also calculated.

We show that random signatures can have very high performances

(AUC.0.9), which further supports this observation.

A method to overcome this multiple testing problem is

validation in multiple independent datasets. We have shown that

testing random signatures in two datasets decreased the chance

that a random signature is called prognostic dramatically (Figure

S2). However it is not always possible to validate a gene signature

in multiple datasets. In oncology most microarray studies focus on

breast and lung cancer, for these sites there are a lot of public

datasets available that can be used for validation. Therefore this

technique is not primarily meant for these cancer types, but rather

for tumour types where only few data, in terms of the number of

samples and number of datasets, are available; for those cases this

technique would be valuable. By comparing the performance of

four published signatures in one patient microarray dataset with

Kaplan-Meier curves all signatures seemed to have prognostic

value. However, applying the random testing procedure in that

dataset already indicated that two out of four signatures did not

perform better than chance. Testing the four signatures in multiple

datasets indeed showed that these two signatures did not show

prognostic value in the other datasets.

From the analyses on all six datasets, several parameters could

influence the number of false positives. To assess the effect of these

variables, several parameters were manipulated in one of the

datasets. However, of the tested parameters, only patient number

influenced the false positive rate dramatically. The need for large

patient groups to obtain reliable results has already been

recognised in other studies. Ntzani et al. [26] evaluated 84

microarray studies and concluded that small studies often give

inflated, over-promising results. Zien et al. [27] assessed the

influence of the number of samples in a different way: a simulation

model was applied in which specificity and sensitivity were

measured depending on changes in sample size, technical and

biological variability. They showed that with small sample sizes,

sensitivity and specificity were highly dependent on the biological

and technical variance, whereas larger sample sizes led to quite

robust results that were less dependent on biological and technical

variance. Moreover Popovici et al. [23] tested the effect of training

set size on the performance of the trained marker in a validation

dataset. Overall signature performance improved in the validation

data and better concordance between training and testing results

was observed when training dataset size increased.

Testing batches of random generated gene sets in different gene

expression microarray datasets showed that the use of an arbitrary

cut-off value for evaluation of signature significance is not suitable.

Further it is important to use the same signature evaluation

procedure for the random gene sets as for the signature of interest,

since the AUC distribution can differ when using a different method.

Thresholds should be defined for single datasets separately in order

Table 5. Evaluating 4 published signatures with the random signature testing procedure in three breast cancer datasets.

Wound signature

Dataset p-value [log rank test] HR [95% CI] p-value [Wald test] AUC p-value [Z-test]

Miller 0.001 2.48 [1.40–4.41] 0.002 0.671 0.002

Wang 0.016 1.59 [1.08–2.36] 0.017 0.597 0.001

van de Vijver 7.27 1029 4.15 [2.42–7.04] 7.71 1028 0.688 0.018

IGS signature

Dataset p-value [log rank test] HR [95% CI] p-value [Wald test] AUC p-value [Z-test]

Miller 5.28 1024 2.66 [1.49–4.78] 7.93 1024 0.645 0.010

Wang 8.11 1025 2.17 [1.45–3.25] 1.17 1024 0.644 5.80 1025

van de Vijver 2.16 1026 3.12 [1.88–5.15] 6.35 1026 0.668 0.038

Early 0%

Dataset p-value [log rank test] HR [95% CI] p-value [Wald test] AUC p-value [Z-test]

Miller 0.014 2.00 [1.13–3.53] 0.015 0.601 0.083

Wang 0.051 0.69 [0.47–1.02] 0.055 0.452 0.001

van de Vijver 0.786 1.06 [0.67–1.67] 0.785 0.508 0.162

Early 2%

Dataset p-value [log rank test] HR [95% CI] p-value [Wald test] AUC p-value [Z-test]

Miller 0.026 1.85 [1.06–3.22] 0.027 0.593 0.105

Wang 0.545 0.89 [0.61–1.32] 0.558 0.498 0.045

van de Vijver 0.321 1.25 [0.80–1.97] 0.321 0.549 0.418

doi:10.1371/journal.pone.0028320.t005
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to obtain reproducible results. This permutation method can be used

to establish and evaluate signature performance of any derived gene

set within single or multiple datasets by comparing its performance

to the performance distribution of thousands of randomly generated

signatures. However it will be of most interest for cases where limited

data is available.

Methods

Random signature testing
A method to test the prognostic value of random gene signatures

of a predefined size on a microarray dataset was developed in

Matlab (Matlab 7.1, The Mathworks, Natick, MA, USA). Unless

indicated otherwise, analyses were performed using this program.

The program creates a user-specified number of random gene sets,

consisting of a user-specified number of genes. For a given dataset

all genes on the respective microarray were used to create the

random signatures. This batch of random signatures was then

tested on a dataset by means of a signature score calculation.

Datasets
Patient microarray and clinical follow-up data were collated to

test the random gene sets. Datasets are publicly available in the

microarray databases Gene Expression Omnibus (GEO: http://

www.ncbi.nlm.nih.gov/projects/geo/) and Stanford Microarray

Database (SMD: http://genome-www.stanford.edu/microarray)

and elsewhere. Accessory clinical and follow-up data were also

given or provided by the authors on request. Table 1 provides an

overview of the datasets and the databases, where these are

accessible. Data filtering and pre-processing is explained in

Supplementary File S1.
Signature score calculation. Expression data of the genes in

a signature was extracted from the dataset. The following step was

used to calculate a signature score for each patient included in the

dataset. This score was defined as the average expression value of

the genes in the signature (equation (1)). When a gene was

represented by more than one reporter on an array, the expression

of the reporters was averaged before signature calculation. The

signature scores for each patient were then coupled to the survival

data of the patients.

Score~

XN

i~1

expi,m

N
ð1Þ

Where: Score, signature score; N, number of genes in the

signature; expi,m, gene expression of gene i in sample m.

The signature score was used to median dichotomize the patient

cohorts.

In a second setup expression of the genes in the signature were

used for K-nearest neighbor classification (KNN) combined with

leave-one-out-cross validation (LOOCV). With this method one

patient is withheld and the class membership of this patient is

predicted using the KNN model (knnclassify function in Matlab)

built on the remaining patients. The event parameter of the

survival data was used as training class. This procedure was

repeated for each patient, resulting in a class prediction for the

whole cohort.

Analysis
The signature scores, median dichotomized groups or KNN

classifications were evaluated with the area under the curve (AUC)

of the receiver operator curve (ROC). Definitions for AUC

calculations are as follows:

– True positive: patient in the high score group that died from

disease

– False positive: patient in the high score group that is alive

– True negative: patient in the low score group that is alive

– False negative: patient in the low score group that died from

disease

A signature score was considered prognostic when the AUC is

#0.4 or $0.6. This cut-off value was based on the AUCs of

several published gene signatures evaluated in the study of Ntzani

et al. [26] (further details are given in the results section and

Supplementary File S1).

Supporting Information

Figure S1 Effect of number of genes, number of probes
per gene, filtering and signature evaluation procedure
on AUC distribution. A: Percentages of signatures that pass the

criteria of AUC#0.4 or AUC$0.6 for the 5 batches of 10,000

runs for the Miller dataset, groups consisting of half of the

UnigeneIDs of the Miller dataset. B: Percentages of signatures that

pass the criteria of AUC#0.4 or AUC$0.6 for the 5 batches of

10,000 runs for the Miller dataset, taking only one or multiple

reporters per gene into account. C: Percentages of signatures that

pass the criteria of AUC#0.4 or AUC$0.6 for the 5 batches of

10,000 runs for the Miller dataset, taking two different filtering

methods. D: Percentages of signatures that pass the criteria of

AUC#0.4 or AUC$0.6 for the 5 batches of 10,000 runs for the

Miller dataset, taking three different signature evaluation proce-

dures (KNN LOOCV: K-nearest neighbor classification with

leave-one-out cross validation).

(TIF)

Figure S2 Evaluating random gene sets in multiple
datasets. Percentages of signatures that pass the criteria of

AUC#0.4 or AUC$0.6 for the 5 batches of 10,000 runs for the

van de Vijver and Beer datasets separately and combined.

(TIF)

Figure S3 Kaplan-Meier survival analysis of 4 pub-
lished gene signatures. Kaplan-Meier survival curves for the

Miller dataset for 4 published signatures (A: Wound signature, B:

IGS, C: early hypoxia 0% and D: early hypoxia 2%).

(TIF)

File S1 The supplementary material contains a section with

supplementary materials and methods and a section supple-

mentary results. The supplementary materials and methods is a

more detailed description of the data analyses. The supplemen-

tary results describe the analyses to check the influence of

several parameters on the random signature AUC distribution

that had minimal to no effect. Further additional tables are

included.

(DOC)
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