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Abstract

Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian
ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast,
Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that
govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the
ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and
Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for
human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the
Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition
compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional
experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140
play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ
binding interaction. The Kd value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 mM,
while the Kd value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 mM. The greater than 50-
fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ.
For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the Kd was 1.4 and 1.2 mM, respectively. These affinities
are 6-fold higher than the WT_ODC Kd, which suggests that residues 119 and 137 play a role in AZ binding.
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Introduction

Ornithine decarboxylase (ODC, EC 4.1.1.17) is a pyridoxal

59phosphate-dependent enzyme that catalyzes the decarboxylation

of ornithine to putrescine [1,2]. This reaction is the first and rate-

limiting reaction in polyamine biosynthesis [3,4], which is essential

for eukaryotic cell growth and differentiation [5–7]. Polyamines and

ODC play important roles in many biological functions, including

the cell cycle, cellular proliferation, differentiation, apoptosis and

embryonic development [8–17]. High levels of polyamines and

ODC have also been associated with human disease and a variety of

cancers [3,18–23]. Because the concentration of ODC and

polyamine is critical for cell proliferation [11], as well as during

the development of neoplastic disease [24–28], ODC is considered

to be an oncogenic enzyme. Regulation of ODC and polyamine

levels is a current target for therapeutic studies involving numerous

types of cancer [13,29–33].

ODC activity in vivo is highly regulated through several pathways

(reviewed in [3,6,18,19]). For instance, the ODC protein has a short

half-life and turns over very rapidly [34,35]. A majority of proteins

are degraded through ubiquitination, but ODC is degraded by the

proteasome in a ubiquitin-independent manner via direct binding to

the antizyme protein (AZ), which is regulated by polyamines

[36–39]. AZ binds to ODC and promotes the dissociation of ODC

homodimers and then forms the AZ-ODC heterodimer which is

ultimately degraded by the 26S proteasome [3,19,40–42]. Several

studies have shown that 37 residues in the C-terminus of ODC are

important for degradation [41,43,44], and deletion of this region

stabilizes ODC, even in the presence of AZ [45]. Moreover,

additional studies have shown that residues 117–140 of ODC may

play a role in AZ binding, which induces a conformational change

in ODC that exposes the C-terminus and leads to recognition/

degradation by the 26S proteasome [35,36,46].

The ODC protein circulates as a homodimer, and dimer

formation is essential for enzyme activity [3,47,48]. The active site

is located at the dimer interface, which is formed by the N-

terminal domain of one subunit and the C-terminal domain of the

second subunit [47]. Disruption of the dimer interface causes a loss

of enzyme activity [42]. ODC can bind to AZ to form a

heterodimer, and the AZ residues Glu-161, Glu-164 and Glu-165

seem to allow, through electrostatic interactions, the binding

between of ODC to AZ to form a heterodimer [49]. The binding

of AZ with ODC causes the ODC dimer to dissociate and thus

inhibits ODC enzyme activity [3,42].
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AZ expression is regulated by cellular levels of polyamine [38].

The AZ mRNA transcript contains two overlapping open reading

frames (ORFs). As the cellular concentration of polyamines

increases, it induces a translational frame-shift of the AZ mRNA,

which produces a longer functional AZ protein [19,50–52].

Moreover, the cellular polyamines and polyamine transporter

are regulated by AZ. AZ not only inhibits ODC activity to

suppress polyamine production but also restrains polyamine

uptake and stimulates polyamine excretion, thus controlling

polyamine levels [38,53–55]. Through this mechanism, ODC

activity is down-regulated by AZ if polyamines are excessively

generated by ODC.

ODC is a ubiquitous enzyme that is conserved in all species

from bacteria to humans. The fatal human disease African

sleeping sickness is caused by the protozoan Trypanosoma brucei. The

disease is currently treated with an irreversible inhibitor, DFMO

(DL-a-difluoromethylornithine), which inhibits the Trypanosoma

brucei ODC enzyme (tODC) [56–58]. tODC is more stable than

hODC, and tODC lacks the C-terminus that appear to be

important for human ODC protein degradation [34,59]. Further-

more, tODC has a low binding affinity toward AZ and thus has a

long half-life in the Trypanosoma brucei [34]. Mutation of mouse

ODC residues 117–140 to match the tODC sequence disrupts

both AZ binding and in vivo regulation, suggesting that this

sequence within mouse ODC is important for AZ binding [34]. In

this paper, we identified several amino acid residues that influence

human ODC (hODC) binding to AZ. Sequence alignments of

residues 117–140 of the hODC and tODC proteins show that

there are seven non-conserved amino acid residues within this

region (Table 1). We therefore mutated these seven amino

acid residues in hODC to match the tODC sequence and

subsequently examined the binding affinity of the mutant human

ODC toward AZ.

Results and Discussion

Previous structural studies of human ODC suggest that residues

117–140 may be the putative AZ-binding site [34,60]. Mutation of

residues 117–140 in mouse ODC to match the tODC sequence

resulted in decreased binding affinity toward AZ, implying that

this region is important for AZ binding [34]. In this AZ-binding

region of ODC, some amino acid residues are diverse and they

may be the factors determining the differential AZ-binding affinity

among these organisms. We aligned and compared the protein

sequences of hODC and tODC and chose seven candidate

residues to further study based on the charge dissimilarities and

hydrophobicity (Table 1). The mutations that were made to the

human ODC protein are Q119H, A124R, N125D, Q129D,

E136V, V137D and M140E.

Analysis of AZ inhibition of the hODC septuple mutant
We initially simultaneously mutated all seven of these residues to

generate a septuple mutant hODC protein, which was named

ODC_7M (ODC_Q119H/A124R/N125D/Q129D/E136V/

V137D/M140E). For ODC_WT, the enzyme activity decreased

with increasing concentrations of AZ. At a molar ratio of 2:1

monomeric AZ to dimeric ODC, the ODC enzyme activity was

approximately 30% (Figure 1A, closed circles). In contrast, the

septuple ODC mutant was much less sensitive to AZ inhibition. At a

molar ratio of 1:1 AZ:ODC, the septuple ODC enzyme activity was

approximately 90% (Figure 1A, open circles), indicating that these

seven residues play a role in AZ binding and regulation of ODC

enzyme activity.

Analysis of AZ inhibition of hODC sextuple mutants
By using ODC_7M as the template, we generated ODC mutant

enzymes that had each possible combination of six point muta-

tions. We created 7 sextuple mutants: ODC_7M(-Q119H), ODC_

7M(-A124R), ODC_7M(-N125D), ODC_7M(-Q129D), ODC_7M

(-E136V), ODC_7M(-V137D) and ODC_7M(-M140E). For ODC_

7M(-Q119H), all of the residues were mutated except for Q119H

(ODC_A124R/N125D/Q129D/E136V/V137D/M140E). The pur-

pose of generating these sextuple mutants was to identify the

essential amino acid residue(s) that govern ODC-AZ binding.

The inhibitory plots for these sextuple mutants are also shown in

Figures 1. ODC_7M(-A124 R) and ODC_7M(-E136V) had a

pattern of inhibition that was similar to ODC_7M (Figure 1B).

These mutants were not significantly inhibited by AZ, which

suggests that AZ is no longer binding and that residues 124 and

136 alone do not play a major role in AZ inhibition/binding. The

ODC_7M(-N125D) and ODC_7M(-Q129D) enzymes were mod-

erately resistant to AZ inhibition (Figure 1C), indicating that

residues 125 and 129 may play a small role in AZ inhibition. The

ODC_7M(-Q119H), ODC_7M(-V137D) and ODC_7M(-M140E)

mutants had very little resistance to AZ inhibition (Figure 1D). This

is especially obvious for ODC_7M(-V137D), which had an

inhibition plot that is similar to ODC_WT, implying that residue

137 may be the most important amino acid residue involved in AZ

binding and inhibition. The inhibitory plots of ODC_7M(-Q119H)

and ODC_7M(-M140E) suggest that residues 119 and 140 may

play secondary roles in human ODC-AZ binding.

Analysis of AZ inhibition of hODC double and triple
mutants

To further confirm the significance of residues 119, 137 and 140

in AZ binding, double and triple hODC mutants were created.

The triple mutant ODC_Q119H/V137D/M140E had an

inhibitory plot that is very similar to ODC_7M (Figure 1E, closed

squares), again suggesting these three amino acid residues play a

role in ODC binding to AZ. However, the ODC_Q119H/V137D

double mutant was also resistant to AZ inhibition, similar to the

triple mutant (Figure 1E, open circles), which suggests that residues

Table 1. Amino acid residues at the putative AZ-binding site
of human ODC (hODC), Trypanosoma brucei ODC (tODC) and
human AZI (hAZI).

hODC tODC hAZI hODC tODC hAZI

Residue Non-conserved Residue Conserved

119 Q H Q 120 I I I

124 A R A 122 Y Y Y

125 N D K 123 A A A

129 Q D N 127 G G G

136 E V E 128 V V V

137 V D I 131 M M M

140 M E K 132 T T T

Residue Similar 133 F F C

121 K R K 134 D D D

126 N S V 138 E E E

130 M V I 139 L L L

135 S C N

doi:10.1371/journal.pone.0026835.t001
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119 and 137 mediate AZ binding. Compared to the triple mutant

ODC_Q119H/V137D/M140E, ODC_V137D/M140E displayed

moderate AZ inhibition (Figure 1E, open triangles); absence of the

Q119H mutation decreased the AZ inhibitory resistance. ODC_

Q119H/M140E displayed minor AZ-inhibition resistance (Figure 1E,

closed triangles), which again suggests that residue 137 plays a key

role in hODC binding to AZ.

Dissociation constant of the hODC-AZ heterodimer
To quantify the effect of hODC mutations on the AZ binding

affinity, dissociation constants (Kd) were determined for the human

WT and mutant ODC proteins (Table 2). Sedimentation velocity

(SV) experiments with increasing AZ concentrations were

performed, and the data were globally fitted to determine the

dissociation constant of the ODC-AZ heterodimer (Table 2).

Figure 2 shows the distribution plots of the WT and mutant ODC

proteins. In the absence of AZ, ODC formed a stable dimer with

an S-value of approximately 6; when AZ was present, ODC was

dissociated. The ODC dimer peak shifted left and an ODC-AZ

complex was formed, which had an S-value of approximately 4.1

(Figure 2A). The Kd value of the [ODC_WT]-AZ heterodimer is

approximately 0.22 mM, while the [ODC_7M]-AZ heterodimer

Kd is approximately 12.4 mM. The greater than 50-fold increase in

the [ODC_WT]-AZ complex Kd indicates that the ODC-7M

enzyme really has an extremely low binding affinity toward AZ.

The triple mutant ODC_Q119H/V137D/M140E had an AZ-

binding affinity that is similar to ODC_7M. The Kd for the

[ODC_Q119H/V137D/M140E]-AZ heterodimer was about

9.9 mM, which is approximately 45-fold greater than the

WT_ODC one. The Kd values for ODC_7M(-Q119H) and

ODC_7M(-V137D) were 1.4 and 1.2 mM, respectively, and are 6-

fold higher than the WT_ODC. These data again suggest that

residues 119 and 137 play a key role in AZ binding.

Kinetic properties of human WT and mutant ODC
enzymes

The kinetic parameters of the WT and mutant ODC enzymes

were determined (Table S1). There were no obvious differences in

Km for ornithine substrate and PLP cofactor; additionally, the kcat

values for the WT and mutant enzymes were similar. These data

suggest that the putative AZ-binding site mutations do not affect

ODC enzymatic activity and may not induce a significant change

in enzyme conformation.

Charge effect in the putative AZ-binding site for
differential AZ-binding affinity

Mutation of residues 117–140 in mouse ODC to mimic the

Trypanosoma brucei ODC protein sequence abolished AZ

binding [34], which suggests that several or all of these amino

acid residues play a role in AZ binding. Our data clearly show that

residues 137 and 119 in human ODC play key roles in AZ binding

and influence the differential AZ-binding affinity of hODC and

tODC. Mutation of Val137 to Asp and Gln119 to His (ODC_

Q119H/V137D) may introduce a new charge to the AZ-binding

element that may repel AZ and prevent binding. Whether Val137

and Gln119 in hODC directly contact with AZ or simply stabilize

the conformation in the AZ-binding site of hODC cannot be

clearly elucidated at this time. Crystal structural analysis of hODC-

AZ interaction may show the binding of these residues to their

counterparts in AZ, however, this complex structure is not

available.

Residues 125 and 129 are both aspartic acids, and residue 140 is

glutamic acid in tODC; however, in hODC these positions are

amino acid residues with neutral side chains (Table 1). Introduc-

tion of these negatively charged amino acid residues with the

mutant hODC decreases the binding affinity between ODC and

AZ. The structural superimposition of hODC and tODC

demonstrates a perfect overlapping with a RMSD value of 0.81,

and the Ca positioning highlights the conserved AZ-binding

element. The inability of tODC to bind AZ and the weak binding

affinity of the [ODC_7M]-AZ complex may result from the

mutated charged amino acid residues at positions 119, 125, 129,

137 and 140 of the ODC enzyme.

The putative AZ-binding residues of ODC
Sequence alignments at the putative AZ-binding site of hODC,

tODC and human antizyme inhibitor (hAZI) is shown in Table 1.

The AZI protein structure is homologous to ODC, and AZI

has a higher binding affinity toward AZ [42]. Gln119 is highly

conserved in all of the ODC and AZI enzymes, except in

trypanosomes, suggesting that residue 119 may be crucial for the

differential AZ-binding affinity between hODC and tODC but not

between ODC and AZI. In contrast, residues 125 and 140 are not

strictly conserved; in a majority of the ODC sequences, residue

125 is a neutral Asn or Ser and 140 is Met or Ser; however, in

tODC these residues are negatively charged Asp and Glu,

respectively, while in AZI, they are a positively charged Lys.

Our previous report has suggested that the differences in residues

125 and 140 between human ODC and AZI are responsible for

the differential AZ-binding affinities [61]. Here we suggest that

electrostatic effects are responsible for the differential AZ-binding

affinities among hODC, hAZI and tODC. Furthermore, residue

129 is Asn or Gln and residue 137 is Val or Ile in a majority of the

ODC and AZI sequences, while these residues are Asp in tODC.

Based on the sequence comparisons and the mutagenesis analyses,

we hypothesize that repulsive effect may occur in tODC-AZ

binding. The ODC_7M mutant, which has the tODC sequence

Figure 1. AZ inhibition of the wild type and ODC mutant proteins. A: inhibition plots for the ODC_WT and ODC_7M septuple enzymes; B:
inhibition plots for the ODC_7M(-A124R) and ODC_7M(-E136V) sextuple mutant enzymes; C: inhibition plots for the ODC_7M(-N125D) and ODC_7M(-
Q129D) sextuple mutant enzymes; D: inhibition plots for the ODC_7M(-Q119H), ODC_7M(-V137D) and ODC_7M(-M140E) sextuple mutant enzymes;
E: inhibition plots for the ODC_Q119H/V137D, ODC_Q119H/M140E, ODC_V137D/M140E and ODC_Q119H/V137D/M140E mutant enzymes. The
enzyme concentration was kept constant at 20 mg/mL, while the AZ concentration ranged from 0 to 28 mg/mL.
doi:10.1371/journal.pone.0026835.g001

Table 2. Dissociation constants of the human ODC-AZ
complex.

hODC-AZ complex Kd (mM)*

[ODC_WT]-AZ 0.2260.03

[ODC_Q119H/V137D/M140E]-AZ 9.9560.36

[ODC_7M]-AZ 12.4360.43

[ODC_7M(-Q119H)]-AZ 1.4260.02

[ODC_7M(-V137D)]-AZ 1.2060.02

*The Kd value was derived from global data fitting of the sedimentation velocity
at three different protein concentrations of AZ (0.03–0.09 mg/mL, Fig. 2). The
protein concentrations of human ODC were fixed at 0.3 mg/mL.
doi:10.1371/journal.pone.0026835.t002
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with Asp125, Asp129, Asp137 and Glu140, has a 50-fold smaller

AZ-binding affinity than hODC, suggesting the differences in

charge properties of these residues play a key role in AZ-binding

affinity of ODC.

Materials and Methods

Site-directed mutagenesis
Site-directed mutagenesis was performed with a Quik-

ChangeTM kit (Stratagene, USA) to generate plasmids with the

mutated human ODC (hODC). Purified hODC DNA was used as

the template, which was PCR amplified with high-fidelity Pfu

DNA polymerase and specific primers with the appropriate codon.

The primers with the desired mutations were between 25 to 45

bases in length, which is necessary for specific binding to the

template DNA. The sequence was amplified for 16–18 cycles. The

PCR products were then treated with DpnI to cleave the wild-type

hODC template. The mutant PCR amplicons were cloned into a

plasmid vector and transformed into XL-1 E. coli. The mutant

plasmid DNA sequence was confirmed by autosequencing.

Recombinant hODC expression and purification
Human ODC or AZ was sub-cloned into the pQE30 vector

(Qiagen, Hilden, Germany), which carries a N-terminal His6?Tag

sequence for purification. This ampicillin-resistant vector was

transformed into the JM109 strain of Escherichia coli. Recombinant

protein expression was induced with 1.0 mM isopropyl-1-thio-b-

D-galactoside (IPTG), and the cells were harvested at 25uC
overnight. The recombinant protein was purified with a Ni-NTA

Sepharose column (Sigma). The lysate-Ni-NTA mixture was

washed with buffer that contained 10 mM imidazole, 500 mM

NaCl and 30 mM Tris-HCl (pH 7.6). Recombinant ODC or AZ

was eluted with buffer comprised of 250 mM imidazole, 500 mM

NaCl, 2 mM b-mercaptoethanol and 30 mM Tris-HCl, pH 7.6.

The purified ODC enzyme was buffer-exchanged and concen-

trated with 30 mM Tris-HCl (pH 7.6) and 2 mM b-mercapto-

ethanol with a 30 kDa molecular weight cutoff centrifugal filter

device (Amicon Ultra-15, Millipore). The purified AZ protein was

buffer-exchanged and concentrated with 250 mM NaCl, 30 mM

Tris-HCl (pH 7.6) and 2 mM b-mercaptoethanol with a 10 kDa

cutoff centrifugal filter device. The protein purity was verified by

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), and the protein concentration was determined with the

Bradford method [62].

ODC enzyme assays
The decarboxylation of ornithine by ODC was measured with a

CO2-L3K assay kit (DCL, Charlottetown, Canada) at 37uC. A

continuous measurement of ODC enzyme activity was coupled

with the decarboxylation of ornithine to the carboxylation of

phosphoenolpyruvate (PEP) to form oxaloacetate (OAA), which

becomes malate following NADH oxidation according to a

previously published protocol [42]. The assay reaction mixture

for spectrophotometry contained 30 mM Tris-HCl (pH 7.8),

10 mM ornithine, 0.2 mM PLP and 0.4 mL of CO2-L3K assay

buffer containing 12.5 mM phosphoenolpyruvate, 0.4 unit/mL

microbial phosphoenolpyruvate carboxylase, 4.1 units/mL mam-

malian malate dehydrogenase and 0.6 mM NADH analog in a

final volume of 0.5 mL. ODC enzyme was added to initiate the

reaction and the decrease of absorbance at 405 nm was

continuously recorded with a Perkin-Elmer Lamba-25 spectro-

photometer. In this coupled assay method, 1 mol of CO2 was

formed and 1 mol of NADH analog was oxidized under the assay

conditions. An absorption coefficient of 2,410 m21 was used for

Figure 2. The continuous sedimentation coefficient distribu-
tions of human ODC mutant enzymes in the presence of AZ. The
concentration of ODC was fixed at 0.3 mg/mL with an AZ concentration
of 0.03, 0.06 or 0.09 mg/mL (the molar ratio of AZ/ODC was 0.24, 0.47 and
0.71, respectively). The sedimentation velocity data were globally fitted
with the SEDPHAT program to calculate the Kd values of the ODC-AZ
heterodimer (Table 2). A: ODC_WT; B: ODC_Q119H/V137D/M140E; C:
ODC_7M; D: ODC_7M(-Q119H); E: ODC_7M(-V137D).
doi:10.1371/journal.pone.0026835.g002
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the NADH analog in the calculations. All of the calculations were

performed with the Sigma Plot 10.0 software program (Jandel, San

Rafael, CA).

Size-distribution analysis by analytical ultracentrifugation
Sedimentation velocity experiments were performed using a

Beckman Optima XL-A analytical ultracentrifuge. Buffer (400 ml)

and sample solutions (380 ml) were loaded into the double sector

centerpiece individually and built up in a Beckman An-50 Ti

rotor. The sedimentation velocity experiments were performed at

20uC with a rotor speed of 42,000 rpm. The protein samples were

followed by continually monitoring UV absorbance at 280 nm

with a time interval of 420 s and a step size of 0.002 cm. Multiple

scans at different time points were fitted to a continuous size

distribution model with the SEDFIT software [63,64]. All of the

size distributions were worked out at a confidence level of p = 0.95,

a best fit average anhydrous frictional ratio (f/f0), and a resolution

N of 250 sedimentation coefficients between 0.1 and 20.0 S.

To determine the dissociation constant (Kd) for human ODC

binding toward AZ, sedimentation velocity experiments were

carried out at three different concentrations of AZ (0.03, 0.06 or

0.09 mg/mL) with a constant concentration of human ODC

(0.3 mg/mL). All of the sedimentation data were globally fitted

into the AB hetero-association model using the SEDPHAT

program [65,66] to calculate the Kd value for the ODC-AZ

heterodimer. The partial specific volumes of the proteins, the

solvent densities and the viscosity were calculated by the

SEDNTERP program [67].

Supporting Information

Table S1 Kinetic parameters of the wild-type and
mutant ODC enzymes.

(DOC)
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structural insights to antizyme binding. J Mol Biol 295: 7–16.

61. Liu YC, Liu YL, Su JY, Liu GY, Hung HC (2011) Critical Factors Governing

the Difference in Antizyme-Binding Affinities between Human Ornithine

Decarboxylase and Antizyme Inhibitor. PLoS ONE 6(4): e19253. doi:10.1371/

journal.pone.0019253.

62. Bradford MM (1976) A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.

Anal Biochem 72: 248–254.

63. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Size

distribution analysis of proteins by analytical ultracentrifugation: strategies and

application to model systems. Biophys J 82: 1096–1111.

64. Schuck P (2003) On the analysis of protein self-association by sedimentation

velocity analytical ultracentrifugation. Anal Biochem 320: 104–124.

65. Brown PH, Balbo A, Schuck P (2008) Characterizing protein-protein

interactions by sedimentation velocity analytical ultracentrifugation. Curr

Protoc Immunol Chapter 18, Unit 18 15.

66. Dam J, Schuck P (2005) Sedimentation velocity analysis of heterogeneous

protein-protein interactions: sedimentation coefficient distributions c(s) and

asymptotic boundary profiles from Gilbert-Jenkins theory. Biophys J 89:

651–666.

67. Laue TM, Shah BD, Ridgeway TM, Pelleter SL (1992) Analytical Ultracen-

trifugation in Biochemistry and Polymer Science. Cambridge, UK: The Royal

Society of Chemistry.

Regulation of Ornithine Decarboxylase Activity

PLoS ONE | www.plosone.org 7 November 2011 | Volume 6 | Issue 11 | e26835


