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LETTER TO EDITOR

Whole-genome sequencing of cell-free DNA yields
genome-wide read distribution patterns to track tissue of
origin in cancer patients

Dear Editor,
Somatic mosaicism is widespread among tissues and

could indicate distinct origins for circulating cell-free DNA
(cfDNA) fragments, which are released by lytic cells in
the tissues into the blood plasma.1,2 We hypothesized that
whole-genome sequencing reads of different tissues could
form type-specific patterns in some regions as a result of
somaticmosaicism.Whether this hypothesis could be used
to construct a tissue-of-origin mapping model for cfDNA
samples remains unknown.
To develop the model using read distribution patterns

for tracking the tissue of origin of circulating tumor DNA
(ctDNA), we first investigated the alignment patterns of
sequencing reads from whole-genome sequencing with
the genomic DNA of 1545 tissue samples associated with
13 cancer types from the Pan-Cancer Analysis of Whole
Genomes (PCAWG) project of the International Cancer
Genome Consortium (ICGC) and The Cancer Genome
Atlas (TCGA).3,4 Each cancer type included more than 60
donors (Table S1). Our technology includes the following
four major steps (Figure 1, Supporting Information Mate-
rials andMethods): (a) Compute the number of reads (NR)
aligned with each fixed-width window.We divide each ref-
erence into a series of fixed-width windows; the typical
window length is 10 kbp, an empirically obtained value.
For simplicity, we join all the chromosomes together (Y
excluded) and obtain a chain of 257 973 windows (exist-
ing windows spanning two adjacent chromosomes). Then,
we count the reads mapped inside each window for each
sample to obtain the NR. (b) Search for frequently occur-
ring read distribution patterns among the samples. This
step attempts to summarize the landscape of samples of the
same type based on frequently occurring patterns, where
a pattern refers to the relationships among the windows
according to their NRs (higher/equal/lower) (Figure 2a).
We considered that onlywindows in close proximitywould
influence each other effectively. Notably, one pattern could

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics

include several windows if their relationships are com-
mon among samples. As an example, consider the pat-
tern “D, C, A, B,” in which the letters indicate the window
indexes. This patternmeans that formany samples, theNR
of window D is higher than that of window C, which is
higher than that of window A, which is higher than that
of window B. In other words, we rank windows by their
NRs to describe their relationships simply (Figure 2b).
(c) Extract type-specific patterns from frequently occur-
ring patterns. The previous step yields a large number
of frequently occurring patterns by type. A pattern found
often in one type of sample could also occur frequently in
other types, and we need to extract those type-specific pat-
terns to construct amodel. Here, we transform the Fisher’s
exact test P-value to measure how “specific” a pattern is
for one type compared to another. The transformed value
is used as the weight of pattern, and more highly signif-
icant P-values are always associated with higher weight
values. Then, we extract patterns with weights above a
calculated threshold. Obviously, when describing a type-
specific pattern, we must note from which type the pat-
tern is frequently and fromwhich type the pattern is rarely.
(d) Identify the type of sample according to the type-
specific patterns. Two types of samples generate a paired
type-specific pattern sets that are extracted together. Here,
a pattern “matches” a sample if theNR relationship among
the windows described by the pattern is also valid for
the sample. When we try to determine the possible type
of a type-unknown sample based on these two types, we
observe how many patterns from each type-specific pat-
tern set match the sample. For each type, we accumulate
the weights of the sample-matching patterns to calculate
a score. The type-unknown sample will have two scores,
one for each of the two types, and the type with the higher
score would be considered the possible type of the sam-
ple. Obviously, if we have three or more types, we need to
repeat step 3 for each pairwise combination of types and
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F IGURE 1 Schematic of model construction and prediction. a, Pattern mining. We searched for frequently occurring patterns in the NR
curve for each type of sample. A pattern is considered frequent if its shape (the order of windows ranked by their NRs) is the same for most (e.g.,
60%) of the samples’ NR curves. b, Type-specific pattern extraction. For each pattern, we calculated the Fisher’s exact test P-value by checking
howmany samples werematched by the pattern in each type and then transformed the P-value to derive the weight of pattern.We applied these
operations to each pattern and retained patterns with a P-value ≤ .01 as type-specific patterns. c, Pattern balancing. We mined for frequently
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integrate all the results to obtain a final answer. After
employing this method, we executed fivefold cross-
validation on the tissue samples and found that our model
achieved an average accuracy of 81.38% (95% CI: 73.32-
89.45) (Figure 2c, Table S2).
To evaluate our model’s identification of tissues of ori-

gin for cfDNA samples, a total of 30 cfDNA samples from
lung cancer and liver cancer patients and healthy con-
trols were analyzed (Table S3). The cfDNA samples were
sequenced on a BGISEQ-500 with an average 3× depth
of coverage. To explore the samples sufficiently, we per-
formed 10-fold cross-validation on the cfDNA samples
(rather than fivefold, which was used for the tissue sam-
ples, as 13 types of tissue samples had to be distinguished
and the cost of 10-fold cross-validation would have been
excessive). We found that our model achieved an average
accuracy of 83.33% (95% CI: 68.99-97.68) (Figure 2d, Tables
S2 and S4). Therewere four erroneous results among the 30
samples: one healthy control sample was misidentified as
liver cancer, one lung cancer sample was misidentified as
liver cancer, and two liver cancer samples were misiden-
tified, one as healthy control, and one as lung cancer.
Notably, our model distinguished healthy control samples
with high accuracy, which is very important in early tumor
screening.
In summary, this study presents a newmodel that using

the type-specific reads distribution patterns caused by
tissue-specific somatic mosaicisms to track tissues of ori-
gin for ctDNA with high accuracy, suggesting the poten-
tial application of our model to early cancer detection and
diagnosis. In the future, we will investigate more sam-
ples from different cancer types, inflammation, benign,
and different centers to evaluated the robustness of the
model.
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occurring patterns in type A samples, excluded the patterns found in type B samples and then repeated these steps by exchanging types A and
B to obtain two type-specific pattern sets. However, the resulting pattern sets were not necessarily balanced in weight. To resolve this problem,
we used an optimization algorithm to derive Xa and Xb and retained the top Xa highest weight patterns for type A and the top Xb for type
B to balance the weights. d, Sample prediction. To determine the type of a type-unknown sample based on two type-specific pattern sets, we
checked whether the patterns matched the sample and summed the weights of the sample-matched patterns for each type to obtain two scores,
one per possible type. The type with the higher score would be considered the sample’s possible type. e, We divided the tissue samples equally
into five subsets and the plasma samples into 10 subsets. For each subset, we combined the remaining subsets into a discovery set to train a
model and then predicted the original subset as the verification set. Then, we combined all the predicted results to analyze the performance of
the model.

https://db.cngb.org/cnsa/
https://db.cngb.org/cnsa/
https://github.com/lianghan-bgi/Reads-Distribution-Pattern
https://github.com/lianghan-bgi/Reads-Distribution-Pattern
https://orcid.org/0000-0002-2085-1457


4 of 5 LETTER TO EDITOR

F IGURE 2 The read distribution pattern of a reference and predicted results. a, The generation of read distribution patterns. As shown, we
divided the reference into four fixed-width windows labeled A-D, counted the number of reads (NR) mapped to each window, and performed
pairwise comparisons of the windows based on their NRs to obtain their relationships (higher/equal/lower). In this example, the NR of window
A is lower than that of window B, indicated by a blue square, and higher than those of C and D, indicated by red squares. To discuss the
relationships between two windows in the context of multiple samples, we can assume that the two windows are labeled A and B. Then, we
use a percentage to represent the difference between samples for which the NR of A is higher than that of B (n = Na) and those for which the
NR of B is higher than that of A (n = Nb): the percentage value = (Na − Nb)/(Na + Nb) × 100%. b, The read distribution patterns of three
types of tissue samples. We joined all the chromosomes (Y excluded) together and obtained a long chain of 257 973 windows (for hg19). The
relationships among the windows ranked 105 400-105 500, 100 windows in total, are shown for three cohorts. Each windowwas compared with
its 10 downstream windows. The x-axis represents the window index, the y-axis represents the distance of the downstream windows from the
current window, and the colors represent the percentages calculated with the method described in (a). c, The results of the tissue samples.
This test involved 13 types of tissue samples, and the figure shows the integration of the fivefold cross-validation results. The rows represent the
different types of samples, the y-axis labels (at the right) represent the real sample types, the columns represent the predicted results, and the
x-axis labels (at the bottom) represent the predicted types; the numbers inside the cells represent the percentages of samples predicted as each
x-axis label among the samples marked with each y-axis label. d, The results of the cfDNA samples. This test involved three types of cfDNA
samples, and the figure shows the integration of the 10-fold cross-validation results.



LETTER TO EDITOR 5 of 5

Sitan Qiao1
Xinlan Zhou1
Guoyun Xie1
Xin Zhao1

Yongwei Zhang1
Kui Wu1,2

1 BGI-Shenzhen, Shenzhen 518083, China
2 Guangdong Provincial Key Laboratory of Human Disease

Genomics, Shenzhen Key Laboratory of Genomics,
BGI-Shenzhen, Shenzhen 518083, China

Correspondence
Fuqiang Li, Yongwei Zhang, and Kui Wu, BGI-Shenzhen,

Shenzhen 518083, China.
Email: lifuqiang@genomics.cn,

zhangyongwei@genomics.cn, wukui@genomics.cn

∗Both the authors contributed equally to this work.

ORCID
FuqiangLi https://orcid.org/0000-0002-2085-1457

REFERENCES
1. Freed D, Stevens EL, Pevsner J. Somatic mosaicism in the human

genome. Genes (Basel). 2014;5(4):1064-1094.
2. Yizhak K, Aguet F, Kim J, et al. RNA sequence analysis reveals

macroscopic somatic clonal expansion across normal tissues. Sci-
ence. 2019;364(6444). https://doi.org/10.1126/science.aaw0726.

3. Campbell PJ, Getz G, Stuart JM, Korbel JO, Stein LD. Pan-cancer
analysis of whole genomes. bioRxiv. 2017. https://doi.org/10.1101/
162784.

4. Zhang J, Bajari R, Andric D, et al. The international cancer
genome consortium data portal. Nat. Biotechnol. 2019;37(4):367-
369.

5. Liang H, Li F, Qiao S, et al. Whole genome sequencing of cell-
free DNA yields genome-wide read distribution patterns to track
tissue of origin in cancer patients. bioRxiv. 2020. https://doi.org/
10.1101/772657.

SUPPORT ING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

mailto:lifuqiang@genomics.cn
mailto:zhangyongwei@genomics.cn
mailto:wukui@genomics.cn
https://orcid.org/0000-0002-2085-1457
https://orcid.org/0000-0002-2085-1457
https://doi.org/10.1126/science.aaw0726
https://doi.org/10.1101/162784
https://doi.org/10.1101/162784
https://doi.org/10.1101/772657
https://doi.org/10.1101/772657

	Whole-genome sequencing of cell-free DNA yields genome-wide read distribution patterns to track tissue of origin in cancer patients
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	CONSENT FOR PUBLICATION
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


