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Abstract
An area-weighted k-means clustering method based on pattern correlations is proposed

and used to explore the relationship between the Siberian High (SH) and Arctic Oscillation

(AO) during the winter months (December-January-February) of 1948–2014. Five regimes

are identified. Four of these five regimes (comprising 171 of 201 months) show a negative

correlation between the SH and AO indices, while the last regime (30 months) shows a posi-

tive correlation. The location of the SH shifts southward into China under two of the four neg-

ative-correlation regimes (117 months), with pressure variations over the center of activity

for the SH opposite to pressure variations over the climatological center of the SH (which is

used to define the SH index). Adjusting the SH index to account for these spatial shifts sug-

gests positive rather than negative correlations between major variations in the SH and AO

under these regimes. Under one of the two remaining negative-correlation regimes, pres-

sure anomalies are weak over the Arctic Ocean. In total, only one regime comprising 21 of

201 months strictly obeys the negative correlation between the SH and AO reported by pre-

vious studies. The climate regime characterized by an intensified SH is associated with a

greater frequency of cold surges over northern and southeastern China, and the weakening

of the East Asian winter monsoon during the 1980s was accompanied by a sharp reduction

in the occurrence of this regime.

Introduction
The Siberian High (SH) is a surface high-pressure system that covers large portions of the Eur-
asian continent during wintertime [1–3]. The SH is one of the major components of the East
Asia winter monsoon (EAWM), and its variability is closely linked to the variability of cold
surges in East Asia [1, 4, 5]. Given the geographical influence and long duration of the SH, it is
important to consider the coupling between the SH and wintertime Arctic Oscillation (AO).

The AO is the leading mode of climate variability in the Northern Hemisphere [6, 7]. Gong
et al. [8] reported the existence of a significant negative correlation between the SH and AO
during the period 1958–1998; however, Wu and Wang [9] pointed out that the SH and AO
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time series varied out of phase and were even positively correlated over some periods. The
complicated relationship between AO and SH limits the use of AO variability as a potential
indicator for changes in the intensity of the SH and EAWM.

In climate science, Empirical Orthogonal Function (EOF) analysis is the most frequently
used approach for deriving major spatial patterns of variability and their evolution in time
from 3-dimensional spatiotemporal data. One of the biggest weaknesses of this approach is
that the positive and negative polarities for each extracted spatial pattern are assumed to be
symmetric [10]. The AO index used for studying connections between the AO and SH is based
on EOF analysis [11]. Moreover, the most frequently used index for the SH is defined as an
area average of sea level pressure over the climatological center of activity for the SH [8], which
means that this index cannot effectively distinguish variations in the intensity of the SH from
variations in the location of the SH. These shortcomings limit and potentially bias our under-
standing of the coupled relationship between the SH and AO.

Clustering analysis [12] can provide a complementary classification-based perspective that
overcomes the aforementioned shortcoming in the EOF-based approach. It has been used suc-
cessfully to detect climate regimes over the North Atlantic [13] and wintertime circulation
regimes over North America [10]. However, clustering is less popular than EOF analysis
among the climate research community, due mainly to the following two reasons. First, most
clustering algorithms extract centroids based on distances between samples and centroids [12,
14–16]. Most climate studies focus on anomalies relative to a mean field, and prefer to classify
anomalies into categorical types according to their phase (positive or negative) rather than
their amplitude (as distance-based clustering methods do). Second, most climate data are
archived on longitude–latitude grids. The majority of clustering methods are not designed for
such grids, which leads to over-weighting of anomalies at high latitudes.

In this study, we design a new clustering method for use with longitude–latitude anomaly
fields, and then apply it to explore the connection between the SH and AO. The paper is orga-
nized as follows. We introduce the underlying data and the new clustering method in section 2.
We then discuss the non-stationary relationship between the SH and AO revealed by the clus-
tering method in section 3, and use these results to provide new insight on variability in the
EAWM and cold surges over Eurasia. We summarize the conclusions of this work in section 4.

Data and Methods

Data
We use the National Centers for Environmental Prediction and the National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis data [17] from December 1948 to February 2015.
The variables taken from the NCEP-NCAR data include monthly sea level pressure (SLP), air
temperature and winds on the pressure levels, monthly surface winds at 10-m height above sur-
face, and daily minimum temperature at 2-m height above surface. We also use a Niño3 index
based on the Hadley Centre Sea Ice and Sea Surface Temperature analysis version 1
(HadISST1) [18] to represent variability in the El Niño–Southern Oscillation (ENSO). In this
study, the winter for each year refers to December of that year and January–February of the fol-
lowing year (DJF).

Description of the clustering method
The new clustering method is designed for application to anomaly fields on longitude–latitude
grids. The main basis of the method is the calculation of area-weighted spatial pattern correla-
tion coefficients (Area-Weighted-PC) between paired spatial patterns. The Area-Weighted-PC
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is estimated using the formula
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where (X, Y) is a pair of spatial patterns, (i, j) are the indices for longitude and latitude, respec-
tively, (n,m) are the numbers of grid points in the longitude and latitude directions, respec-
tively, andW is an area weight coefficient that varies by location. The value of Area-Weighted-
PC ranges from -1 to 1. The absolute magnitude of Area-Weighted-PC increases with the simi-
larity of the patterns X and Y. Negative values indicate anticorrelation rather than dissimilarity.

Given N samples from which we wish to deriveM clusters, the clustering method can be
summarized as follows. First, we calculate Area-Weighted-PCs between all possible pairs of
samples, and use these Area-Weighted-PCs to defineM initial centroids. For every sample, we
evaluate the number of Area-Weighted-PCs with the other N–1 that exceed a critical threshold
for Area-Weighted-PC (a value ranges from 0.3 to 0.8). The first initial centroid is identified as
the sample with the largest number of Area-Weighted-PCs exceeding the critical threshold.
This number is then defined as LN1. The second centroid is found using the same method as
the first centroid, but after removing the LN1+1 samples associated with the first centroid.
These steps are iterated untilM initial centroids are found. The N samples are then classified
intoM clusters by assigning each sample to the centroid with which it has the largest Area-
Weighted-PC. We define the metric Sample Area-Weighted-PC as the Area-Weighted-PC
between a sample and its corresponding centroid. The average Sample Area-Weighted-PC
over the N samples is then used as an indicator for the effectiveness of the clustering method.
TheM centroids are then updated by averaging the samples in each cluster, andM new clusters
are calculated. The difference in average Sample Area-Weighted-PC between the new clusters
and the previous clusters is calculated, and the centroid update step is repeated iteratively until
this difference is small. Here, we use 10−6 as the criterion for deciding whether further updates
are required.

Two key parameters govern the performance of the method, namely the number of the clus-
tersM and the critical threshold for the Area-Weighted-PC. In this study we apply a grid
search technique to identify optimal value for each parameter. Values ofM ranging from 2 to 6
and values of the critical threshold for Area-Weighted-PC ranging from 0.3 to 0.8 (with an
interval of 0.05) are used to test the sensitivity of the results to various choices of parameters
and identify their optimal values. The metric average Sample Area-Weighted-PC is used to
evaluate the overall quality of the classification.

Results and Discussion

Relationship between the SH and AO as revealed by cluster analysis
Fig 1a shows the long-term climatological mean winter SLP and surface winds over the Eur-
asian continent during 1948–2014. The distribution of SLP over this region is dominated by a
pronounced surface high-pressure system centered over north–central Asia: the SH. The clima-
tological center of the SH has a maximum SLP of 1039.39 hPa, located to the west of Lake Bai-
kal. Strong near-surface northerly winds along the east coast of the Eurasian continent bring
cold air from high latitudes to low latitudes, so that temperatures there are colder relative to
the zonal mean (not shown). The climatological wintertime SH is bracketed by the Aleutian
low to its east and the Icelandic low to its west (Fig 1a).
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Fig 1. DJF climatology of SLP and surface winds and composite meanmonthly anomalies of SLP and surface
winds over the Northern Hemisphere associated with each cluster. a. DJF-mean SLP (shading; hPa) and surface
winds (vector; m s–1) at 10-m height above surface. The area within the blue lines indicates the region (20–160°E, 10–
90°N) under consideration by the clustering method. b-f. Composite mean monthly anomalies of SLP and surface
winds for each cluster. Statistical significance is evaluated using the 95% confidence level based on the Student’s t

Siberian High and Arctic Oscillation

PLOS ONE | DOI:10.1371/journal.pone.0158122 June 30, 2016 4 / 15



The Area-Weighted-PC-based k-means clustering algorithm is employed to identify differ-
ent climate regimes (clusters) of SLP over Eurasia via the following two steps. First, the winter
climatology of SLP (the long-term DJF mean) during 1948–2014 (Fig 1a) is removed from
monthly mean SLP during DJF, yielding 201 (N = 67 years × 3 months) monthly anomalies for
SLP. Note that the subtracted climatology of SLP is the same for all the winter months, includ-
ing December, January, and February. Second, the clustering algorithm is applied to monthly
pressure anomalies over the Eurasian continent and surrounding oceans (20–160°E, 10–90°N;
hereafter referred to as the regime area) to identify a set ofM clusters. We examine the sensitiv-
ity of the clustering results to various choices of the parameterM and the critical threshold for
Area-Weighted-PC. Table 1 lists the average Sample Area-Weighted-PC for all samples as a
function ofM and the critical threshold for Area-Weighted-PC, while Table 2 lists the mini-
mum of the averages of the Sample Area-Weighted-PC for theM clusters as a function ofM
and the critical threshold for Area-Weighted-PC. Both the average Sample Area-Weighted-PC
for all samples and the minimum of the averages of the Sample Area-Weighted-PC for theM
clusters typically increase withM, with only a few exceptions (see Table 2). However, larger val-
ues of M can overcomplicate further analysis of the regimes by highlighting progressively
smaller differences that play minor roles in the large-scale circulation, and are therefore unde-
sirable. To ensure the quality of the clustering classification while limiting the number of clus-
ters, we set a critical threshold of 0.6 for the minimum of the averages of the Sample Area-
Weighted-PC for theM clusters. Based on this criterion, the optimal parameter values are
M = 5 and the critical threshold for Area-Weighted-PC = 0.55, yielding a minimum of the aver-
ages of Sample Area-Weighted-PC of 0.60 for theM clusters (Table 2). The average pattern
correlation for every cluster exceeds at least 0.6 under this combination of parameters. The cor-
responding average Sample Area-Weighted-PC for all samples is 0.64 (Table 1).

The composited means of SLP anomalies and 10-m near-surface wind anomalies for the
five regimes are shown in Fig 1b–1f. Fig 2 tracks the regime type identified for each month dur-
ing DJF of 1948–2014 (Fig 2a–2c), along with the pattern correlation between each month and

test. Composited SLP anomalies are plotted if they are significant. Wind anomalies are plotted if wind anomalies are
significant in at least one direction (east–west or north–south). The ratio of the number of samples belonging to each
regime to the total number of samples is included at the top left of each panel. The average spatial pattern correlation
coefficient for each regime is shown separately at the top right corner of each panel. All quantities are based on the
NCEP-NCAR reanalysis from December 1948 through February 2015.

doi:10.1371/journal.pone.0158122.g001

Table 1. The average Sample Area-Weighted-PC for all samples for applications of the clustering algorithm to DJF SLP anomalies using different
values of the critical threshold for Area-Weighted-PC (0.3–0.8) andM (2–6). To keep consistence with the criterion (10−6) for iteration during clustering,
results are presented with 6 digits.

Critical threshold M = 2 M = 3 M = 4 M = 5 M = 6

0.3 0.502830 0.548165 0.599375 0.631463 0.651947

0.35 0.502830 0.567451 0.605702 0.635706 0.649095

0.4 0.502830 0.567578 0.604703 0.627313 0.653231

0.45 0.502830 0.567291 0.604806 0.623018 0.640724

0.5 0.502830 0.566611 0.603860 0.635600 0.644347

0.55 0.502847 0.566396 0.603319 0.637058 0.658667

0.6 0.502830 0.566759 0.597342 0.627883 0.654272

0.65 0.502847 0.556093 0.597377 0.627357 0.649956

0.7 0.502847 0.556093 0.603284 0.627185 0.651531

0.75 0.502830 0.556093 0.580383 0.618990 0.653414

0.8 0.502830 0.556093 0.595293 0.634233 0.652030

doi:10.1371/journal.pone.0158122.t001
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its corresponding regime (Fig 2d–2f). The number of months corresponding to each regime
can be used to rank the occurrence frequencies of the five regimes during 1948–2014. Regime 1
(cluster 1; Fig 1b), which comprises 73 months (about 36.32% of the total number of months),
is dominated by negative SLP anomalies in high latitudes (>45°N) peaking over the northwest
coast of the Eurasian continent, and positive anomalies in low and mid latitudes (< 45°N)
peaking in central China. Regime 2 (Fig 1c), which comprises 44 months (21.89%), features
positive pressure anomalies in high latitudes (north of 45°N) peaking over the northwest coast

Table 2. The minimum of the averages of Sample Area-Weighted-PC for theM clusters under different values of the critical threshold for Area-
Weighted-PC (0.3–0.8) andM (2–6). Due to the same reason given in Table 1, data are presented with 6 digits.

Critical threshold M = 2 M = 3 M = 4 M = 5 M = 6

0.3 0.488246 0.531226 0.554818 0.596295 0.606109

0.35 0.488246 0.546634 0.546771 0.587312 0.601664

0.4 0.488246 0.519394 0.540843 0.534142 0.597696

0.45 0.488246 0.528112 0.573705 0.590214 0.613969

0.5 0.488246 0.507268 0.581114 0.571365 0.596356

0.55 0.483529 0.526676 0.545872 0.603670 0.614108

0.6 0.488246 0.507268 0.529393 0.582666 0.601516

0.65 0.483529 0.525810 0.590423 0.586959 0.586959

0.7 0.483529 0.525810 0.537852 0.574686 0.620884

0.75 0.488246 0.525810 0.549434 0.590407 0.595715

0.8 0.488246 0.525810 0.582385 0.597281 0.597208

doi:10.1371/journal.pone.0158122.t002

Fig 2. Regime type and area-weighted pattern correlation coefficient for eachmonth during DJF 1948–2014. The pattern correlation coefficients
shown in panels d–f are calculated between the monthly anomalies and their corresponding regimes.

doi:10.1371/journal.pone.0158122.g002
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of the Eurasian continent, and negative anomalies in low and mid latitudes (south of 45°N)
peaking over central China; this cluster contrasts with regime 1. In both of these regimes, the
center of activity for the SH is located over central China. For example, regime 1 reflects an
intensified southern portion of the SH, which leads to stronger northerlies along the southeast-
ern (south of 25°N) coast of China. By contrast, regime 2 reflects a weakened southern portion
of the SH, which leads to weaker northerlies along the southeastern coast of China.

Regime 3 (Fig 1d), which comprises 33 months (16.42%), features a systematic intensifica-
tion of the SH. High SLP within the SH is associated with strong northerlies along the east
coast of the Eurasian continent, which are the strongest northerly anomalies among the five
regimes. Regime 4 (Fig 1e), which comprises 30 months (14.93%), features a reduction of pres-
sure over most of the Eurasian continent, with a few exceptions along the coast of the Arctic
Ocean. This reduction in SLP over the continent is accompanied by a significant increase in
SLP over the Arctic Ocean. Regime 5 (Fig 1f), which comprises 21 months (10.45%), is charac-
terized by an evident reduction in SLP over most parts of the Eurasian continent, with the
exception of the northwestern quadrant. Unlike regime 4, regime 5 includes a significant
reduction in SLP over the Arctic Ocean.

Two indices are adopted to enable quantitative study of the relationship between the AO
and SH. Following Wu and Wang [9], the SH intensity index is defined as the average of SLP
over the climatological center of the SH (80–120°E, 40–60°N). The AO index is defined as the
principal component time series of the leading EOF of monthly SLP anomalies over regions
north of 20°N [11]. The AO is often treated as equivalent to the North Atlantic Oscillation
(NAO); however, Ambaum et al. [19] showed that covariability in surface pressure among all
of the centers of action are captured more effectively by the NAO index than by the AO index.
We therefore also use the NAO index here to supplement the AO index in describing pressure
anomalies in high latitudes. The NAO index is calculated similarly to the AO index, but within
the Atlantic sector (90°W–40°E, 20–80°N) [20, 21]. The time series for all three indices during
the winter months are normalized to have a mean of zero and a standard deviation of one dur-
ing 1948–2014. As expected, the time series of monthly AO index during the winter months of
1948–2014 is highly correlated with that of the NAO index (R = 0.92).

The linear correlation coefficient between the AO and SH is –0.25 (significant at the 99%
confidence level; 199 degrees of freedom), consistent with previous results [8, 22]. We calculate
composite mean monthly SH, AO, and NAO indices for each climate regime (Table 3). The
significance of each composite mean index is tested against the composite mean for the com-
plementary set of months using a two-sided Student’s t test. The SH index varies considerably
across regimes, with differences that are consistently significant at the 99% confidence level
except for that associated with regime 2 (95% confidence level). Significant changes can also be
identified in the AO index, with all changes significant at the 99% confidence level except for
that associated with regime 3 (90% confidence level), when the mean SH is more than one

Table 3. Composite means of climate indices for different SLP anomaly regimes.

SH AO NAO NP Niño3

Cluster1 -0.28*** 0.71*** 0.51*** 0.03 0.15**

Cluster2 0.29** -0.77*** -0.57*** -0.22* -0.08

Cluster3 1.35*** -0.28* 0.00 -0.14 -0.30*

Cluster4 -0.65*** -0.69*** -0.61*** -0.02 -0.24

Cluster5 -0.80*** 0.58*** 0.30 0.59*** -0.04

One, two and three asterisks (*, ** and ***) indicate that the indices exceed the 0.1, 0.05 and 0.01 significance levels, respectively. Statistical testing is

based on two-sided Student’s t test against the complementary set of months (i.e., the months not belonging to the specified cluster).

doi:10.1371/journal.pone.0158122.t003
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standard deviation above the climatological mean. Regime 3 features the smallest absolute
value of the AO index and an NAO index close to zero, reflecting the weak pressure anomalies
over the North Pole and Arctic Ocean, particularly in the Atlantic sector (Fig 1d). Four of the
five regimes indicate an anti-correlation between the SH and AO, with the exception of regime
4 (Table 3). Regime 4 includes a prominent high pressure anomaly over the Arctic Ocean (i.e.,
the negative phase of the AO), but this high pressure anomaly is restricted to the Arctic Ocean
and affects only the northernmost flank of the SH (Fig 1e). Pressure drops over major parts of
the SH domain during regime 4 (i.e., the negative phase of the SH), contrary to the expected
negative correlation between the SH and AO.

The SH and AO are anticorrelated in regimes 1 and 2; however, the composite mean SH
indices during these two regimes are smaller in absolute magnitude than those associated with
the other three regimes (Table 3). This weakness reflects shifts in the location of the SLP anom-
aly relative to the climatological center of the SH: the SLP anomaly is centered over the north-
west coast of Eurasia, with the climatological center of the SH located to its southeast (Fig 1b
and 1c). Under these two regimes, the SLP anomaly at the climatological center of the SH has
the same sign as the SLP anomaly over the Arctic Ocean, with a negative pattern correlation
between regime 1 and regime 2. Takaya and Nakamura [23] pointed out that an enhanced SH
amplifies the wintertime land–sea pressure contrast and typically induces northerly anomalies
along the east coast of China. However, the monsoonal northerlies do not increase with the
intensity of the SH index in these two regimes; in contrast, the northerlies over the southeastern
coast decrease with the SLP over the climatological center of the SH. The center of action for
the SH is located over central China under both regime 1 and regime 2, far from climatological
center of the SH. A new index reflecting changes in both the intensity and the center of action
for the SH would establish a positive correlation between the SH and AO, in contrast to the
negative correlation found when using the traditional SH index.

The negative correlation between the AO and SH is well established in regime 5, which cor-
responds to an anomalously weak SH associated with the positive phase of the AO. The mon-
soonal northerlies are significantly reduced due to the weaker SH (Fig 1f). The relationship
between the AO and SH revealed by the clustering analysis is therefore rather complicated.
Although four of the five regimes (including 171 months) reveal the expected negative correla-
tions when traditional indices are used to represent the SH and AO, the regime most typical of
the expected relationship (regime 5) includes only 21 months.

We further examine the relationships between the SH and the Aleutian Low and between
the SH and the ENSO during each regime. The intensity of the Aleutian Low is represented by
the North Pacific index (NP), defined as the area-mean SLP over 160°E–140°W and 30–65°N
[24]. ENSO variability is represented by the Niño3 index based on HadISST1 data [18]. As
with the other indices, the NP index for the winter months of 1948–2014 is normalized to have
a mean of zero and a standard deviation of one. Since the data for Niño3 index available to us
has been normalized, a further normalization is not taken.

The loading pattern of the AO (the leading EOF of SLP northward of 20°N) indicates that
SLP anomalies associated with the Aleutian Low vary in the opposite phase to those in the
Arctic Ocean, which implies a positive correlation between the NP and AO indices [25].
Visual inspection reveals that this positive correlation is well captured by regimes 1, 2 and 5
(Fig 1b, 1c and 1f), for which the linear correlation coefficient is 0.26 (significant at the 99%
confidence level). However, only the composite mean NP index for regime 5 exceeds the 99%
confidence level. During regime 5, southerly anomalies along the eastern coast of the Eurasian
continent induced by the reduced Aleutian Low reinforce the weakening of the SH and mon-
soonal northerlies (Fig 1f). Most regimes do not include strong preferences for the positive or
negative phases of ENSO. Regime 1 is associated with a composite mean Niño3 index of 0.15
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that is significant at the 95% confidence level; however, this index is too small to conclusively
link this regime to the positive phase of ENSO. Regime 3 is associated with a mean Niño3
index of –0.30 that is significant at the 90% confidence level, as well as the largest SH index
(1.35; 99% confidence). Previous studies have suggested that the intensified SH during the
negative phase of ENSO can be partially explained by the Pacific–East Asia teleconnection
[26], which generates a cyclonic anomaly in the lower troposphere over the North Pacific dur-
ing La Niña years. This cyclonic anomaly favors the southward displacement of the SH and
an accompanying southward incursion of cold air. The southward incursion of cold air
induces an anti-cyclonic anomaly, which reinforces and intensifies the positive anomaly in
the SH.

A comparison with two existing clustering methods
Two commonly used clustering methods, i.e., the distance-based k-means clustering and Self-
Organizing Map (SOM), are adopted here to make a comparison with the Area-Weighted-PC-
based k-means clustering method. Both of the two clustering methods are applied to the same
data under consideration by the Area-Weighted-PC-based k-means clustering method, i.e., the
winter monthly SLP anomalies during 1948–2014 over the region of 20–160°E, 10–90°N. The
clusters in SOM are connected to the adjacent clusters via the rectangular topology. Table 4
lists the average Sample Area-Weighted-PC for all samples as a function of the number of clus-
tersM, which ranges from 2 to 6. It is worth noting that there are two possible SOM grids
when the number of clustersM equals 4 or 6. WhenM is set to 4, the SOM grids could be 1×4
and 2×2. WhenM is set to 6, the SOM grids could be 1×6 and 2×3. The results of the Area-
Weighted-PC-based k-means method for a specifiedM are estimated as the column-averages
of Tables 1 and 2, i.e., the averages of the results for different values (from 0.3 to 0.8 with an
interval of 0.05) of the critical threshold for the Area-Weighted-PC. The average Sample Area-
Weighted-PC of all samples for both the distance-based k-means and SOMmethods increase
with the number of clustersM, which are similar to those of the Area-Weighted-PC-based k-
means method. For all the values ofM (2–6), an increase ranging from 0.02 to 0.07 can be iden-
tified in the average Sample Area-Weighted-PC of all samples based on the Area-Weighted-
PC-based k-means method, compared to those based on the distance-based k-means and SOM
methods. However, in both the distance-based k-means and SOMmethods, the minimum of
the averages of Sample Area-Weighted-PC for theM clusters does not increase with the num-
ber of the clustersM (Table 5). Evident improvements can also be identified in the minimum
of the averages of Sample Area-Weighted-PC based on the Area-Weighted-PC-based k-means
method, compared to those based on the distance-based k-means and SOMmethods, for all
the values ofM (ranging from 2 to 6) except forM = 3 at which the minimum of the averages
of Sample Area-Weighted-PC for both the Area-Weighted-PC-based k-means and SOM

Table 4. The average Sample Area-Weighted-PC for all samples for theM clusters under different values ofM (2–6) based on the distance-based
k-means, Area-Weighted-PC-based k-means, and SOM clustering methods. Note that result for the Area-Weighted-PC-based k-means method is esti-
mated as the column-average of Table 1. In the SOM, when the number of clusters is set to 4 or 6, there are two possible configurations of the SOM grids, i.e.,
1×4 and 2×2 forM = 4, and 1×6 and 2×3 forM = 6. Data are presented with 2 digits.

Distance-based k-means Area-Weighted-PC-based k-means SOM

M = 2 0.48 0.50 1x2 0.48 / /

M = 3 0.51 0.56 1x3 0.54 / /

M = 4 0.56 0.60 1x4 0.55 2x2 0.55

M = 5 0.59 0.63 1x5 0.57 / /

M = 6 0.62 0.65 1x6 0.58 2x3 0.60

doi:10.1371/journal.pone.0158122.t004
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methods equals 0.52. When the number of clustersM equals 5, the minima of the averages of
Sample Area-Weighted-PC for theM clusters are 0.49 and 0.47 for the distance-based k-means
and SOMmethods, respectively, which are significantly less than the value (0.58) for the Area-
Weighted-PC-based k-means method.

Cold surges under different regimes
Cold surges are among the main climate-related disasters during winter months over the Eur-
asian continent [4, 5, 27]. Here, we discuss how the distribution and duration of cold surges
over Eurasia change under the five SH regimes identified by the cluster analysis. We adopt the
cold spell duration index (CSDI) [28] to represent the temporal and spatial variations in cold
surges. The CSDI is defined as the monthly count of days included in stretches of at least five
consecutive days with daily minimum surface air temperatures at 2-m height below the 10th

percentile for that 5-day calendar window. The 10th percentile is defined relative to the base
period 1961–1990. Days belonging to a cold surge event that spans two months are appor-
tioned to their respective calendar months.

Fig 3a shows the spatial distribution of the long-term climatological mean CSDI for winter
months during 1948–2014. Climatologically, cold surges occur most frequently in northern
and central China. Monthly anomalies of the CSDI are obtained by removing this climatology.
Fig 3b–3f shows composited means of monthly anomalies of the CSDI for the five SH regimes
identified using the clustering method (Fig 1b–1f). Mean values of the CSDI associated with
regimes 4 and 5 are similar to or smaller than the climatological mean CSDI over most parts of
Eurasia. We therefore use a variance ratio-based test method (the two-sided F test) to test the
significance of the CSDI anomalies associated with each regime.

Under regime 1 (Fig 3b), the CSDI is reduced to near zero over large portions of Siberia.
This change can be explained by a reduction in the occurrence of cold air outbreaks from polar
regions due to southerly anomalies in near-surface winds (Fig 1b). Despite the high SLP anom-
aly along the southern edge of the SH, the CSDI over China does not increase substantially.
This lack of increase can be attributed to the reduction in cold surges in Siberia. Under regime
2 (Fig 3c), the CSDI over Siberia increases remarkably due to enhanced northerlies over this
region (Fig 1c). Anomalously low SLP along the southern flank of the SH constrains this
increase to high latitudes, leaving the CSDI slightly reduced over most parts of China. Under
regime 3 (Fig 3d), the powerful northerlies associated with the sharply enhanced SH result in
dramatic increases in the CSDI over northern and southeastern China. Under regimes 4 and 5
(Fig 3e and 3f), the CSDI is reduced over most parts of China. This change is mainly attribut-
able to the weaker monsoonal northerlies associated with the reduced intensity of the SH. By
contrast, the enhanced northerlies over the north coast of Siberia under regime 4 and the
enhanced northerlies over western Eurasia under regime 5 result in significant increases in the
CSDI over these regions (Fig 3e and 3f).

Table 5. Same as Table 4, except for the minimum of the averages of Sample Area-Weighted-PC for theM clusters. Note that result for the Area-
Weighted-PC-based k-means method is estimated as the column-average of Table 2.

Distance-based k-means Area-Weighted-PC-based k-means SOM

M = 2 0.46 0.49 1x2 0.45 / /

M = 3 0.35 0.52 1x3 0.52 / /

M = 4 0.52 0.56 1x4 0.47 2x2 0.48

M = 5 0.49 0.58 1x5 0.47 / /

M = 6 0.54 0.60 1x6 0.31 2x3 0.52

doi:10.1371/journal.pone.0158122.t005
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Fig 3. DJF Climatology of CSDI (a; units: days) and composited means (b-f) of monthly CSDI anomalies for different regimes during DJF over
1948–2014. In b-f, only composited means that meet the 95% confidence level of the F test are plotted.

doi:10.1371/journal.pone.0158122.g003
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Relationships with variability in the EAWM
In this section, possible connections between different SH regimes and variability in the
EAWM are briefly explored. An isentropic potential vorticity (PV) intrusion-based EAWM
index [29] is adopted, calculated as

IEAWM ¼ PV300Kð90� 150oE; 20� 50oNÞ � PV300Kð0� 360oE; 20� 50oNÞ ; ð2Þ

where the overbar indicates an area average, the first term on the right side is the area-mean
PV at 300 K potential temperature level over the East Asia (90–150°E, 20–50°N), and the sec-
ond term is the area-mean PV at 300 K averaged over the entire 20–50°N latitudinal band. This
index can be considered as the PV anomaly in the East Asia with respect to the zonal mean.
This PV-based EAWM index captures the key climatological aspects of the EAWM, including
the dynamical relationships between the EAWM and the AO [8], ENSO [26, 30] and SH [22],
and the weakening trend in EAWM intensity during the 1980s [31, 32]. The major advantage
of this PV-based EAWM index is its physical basis: based on the technique of PV intrusion, a
year with stronger PV intrusion will lead to an enhanced SH, intensified northerlies over the
coastal regions of East Asia and its surrounding oceans, and more severe cold surge. We calcu-
late the winter (DJF) mean EAWM index (Fig 4f), in contrast to the composited means used
above, and evaluate its variability relative to the number of months per year belonging to each
of the five SH regimes discussed above (Fig 4a–4e).

Linear correlations between the DJF-mean EAWM index and the count of months in each
regime are –0.49 for regime 1 (99% confidence), 0.34 for regime 2 (99% confidence), 0.37 for
regime 3 (99% confidence), –0.02 for regime 4, and –0.10 for regime 5. Variations in the

Fig 4. Time series of the number of DJFmonths belonging to each regime (a-e) and the normalized DJF-mean PV-based EAWM index (f). The
EAWM index is normalized to have a mean of zero and a standard deviation of one during 1948–2014.

doi:10.1371/journal.pone.0158122.g004
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EAWM are closely related to regimes 1, 2 and 3, which suggests that occurrences of regimes 1,
2 and 3 can be good indicators for variability in the EAWM. Among the most evident features
in the time series of the EAWM index is the continued weakening after 1985. Before 1985, the
average occurrence frequencies of regimes 2 and 3 were 0.70 and 0.59 months per year, while
the average occurrence frequency of regime 1 was 0.89 months per year. During 1985–2000,
the average occurrence frequencies of regimes 2 and 3 were decreased markedly to only 0.38
and 0.25 months per year, while that of regime 1 was increased significantly to 1.75 months per
year. Understanding this shift from regimes 2 and 3 to regime 1 may help to illuminate the
mechanisms behind the weakening of the EAWM during the 1980s.

Conclusions
A new clustering algorithm is designed for use with climate anomaly data on longitude–lati-
tude grids. Applying the clustering method to monthly SLP anomalies during winter, we obtain
five climate regimes that reflect variability in the SH. The average pattern correlations between
the samples and the centroids for the five regimes all exceed 0.6, indicating that the classifica-
tion is successful.

The results of the clustering reveal that only a small ratio of the winter months (21 of 201)
strictly obey the expected anti-correlation between the SH and AO. The non-stationary rela-
tionship between SH and AO based on the five regimes may be more helpful for monitoring
and understanding variations in the SH. Different regimes correspond to different likelihoods
and locations of cold surges over the Eurasian continent. This framework may therefore help
to inform meteorological predictions of cold surges via simple judgments regarding which
regime a weather system belongs to. Moreover, the clustering analysis provides a potentially
useful perspective on the continuous weakening of the EAWM around the 1980s.
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