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Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with severely impaired
mucociliary clearance caused by defects in ciliary structure and function. Although recurrent bacterial
infection of the respiratory tract is one of the major clinical features of this disease, PCD airway
microbiology is understudied. Despite the differences in pathophysiology, assumptions about respiratory
tract infections in patients with PCD are often extrapolated from cystic fibrosis (CF) airway microbiology.
This review aims to summarize the current understanding of bacterial infections in patients with PCD, including
infections with Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrhalis, as it relates to bacterial
infections in patients with CF. Further, we will discuss current and potential future treatment strategies aimed
at improving the care of patients with PCD suffering from recurring bacterial infections.
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Introduction

Primary ciliary dyskinesia (PCD) is an autosomal

recessive disorder associated with defects in ciliary

biogenesis, structure, and function and is character-

ized by chronic oto-sinopulmonary disease.1,2

Although first described in 1936,3 PCD was not attrib-

uted to “immotile cilia” and impaired mucociliary

clearance until 1976.4

One of the clinical features of PCD is persistent or

recurring bacterial infection of the sinuses, ears, and

airways.2,5 The microbiology of the PCD airways is

understudied, and assumptions about colonization

make use of data from cystic fibrosis (CF). However,

the pathophysiology of the two diseases is different.

In contrast to PCD, CF is caused by a defect in the CF

transmembrane conductance regulator (CFTR) pro-

tein which leads to the accumulation of thick sticky

mucus in the airways. Nonetheless, both diseases are

in part characterized by impaired mucociliary

clearance. In PCD, the impaired mucociliary clear-

ance is caused by malfunctioning cilia, which fail to

propel mucus upward.1 In CF, there is increased

secretion of mucus and decreased airway fluid from

the excessive absorption of water by the airway

epithelia. The dehydrated, thick mucous layer com-

presses the cilia, thereby inhibiting their function and

severely impairing mucociliary clearance.6–8

Indeed, the microbiology of the airways in

patients with PCD seems to mirror that of CF
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patients to some extent.2,9–19 In addition, the bacter-

ial colonization patterns in an individual CF patient’s

airways change relatively little over time if the

patient is clinically stable.20,21 Similar trends have

been reported in patients with PCD.9 However, there

are important differences in airway microbiology

between CF and PCD.

Considering the fact that bacterial infections are a

principal cause of morbidity and mortality for patients

with CF,22 and are associated with morbidity and

mortality for patients with PCD, a thorough under-

standing of the airway microbiology of both diseases

is fundamental to improving patient care. This review

aims to summarize the current understanding of bac-

terial infections in patients with PCD as it compares to

bacterial infections in patients with CF.

Pathogens recovered from PCD airways

In contrast to CF, where Pseudomonas aeruginosa

and Staphylococcus aureus are the most common

bacterial pathogens,10,11,14 Haemophilus influenzae

is the pathogen most commonly isolated from patients

with PCD, at least until adolescence/early adult-

hood.2,17,18 P. aeruginosa is also common, especially

in adult patients,2,18,19 but mucoid P. aeruginosa is

not typically isolated from PCD patients until after

age 30.2 Other bacterial species commonly recovered

from sputum samples of patients with PCD include

S. aureus, Streptococcus pneumoniae, and nontuber-

culous Mycobacteria,2,15,17 and species of the genus

Ralstonia, Moraxella catarrhalis, and Achromobacter

xylosoxidans have been isolated as well.9,16,19 Inter-

estingly, Burkholderia cepacia complex (Bcc) organ-

isms, some of which are important bacterial

pathogens in patients with CF,23 have to date not been

isolated from patients with PCD.

Haemophilus influenzae. H. influenzae is a gram-

negative coccobacillus that can grow both aerobically

and anaerobically.24 The strains of H. influenzae can

be subdivided into typeable (polysaccharide capsule

present) serotypes (a through f) and nontypeable

(polysaccharide capsule absent) numbered biotypes.24

H. influenzae is commonly isolated from young

children with CF, with an estimated prevalence of

20% in children under the age of 1 year, and of

approximately 32% in children with CF between the

age of 2 and 5.11,14 After age 5, however, the preva-

lence of H. influenzae declines with age, and its esti-

mated prevalence in adults with CF between the age

18 and 24 is less than 10%.11,14 However, the overall

percentage of people with CF infected with H. influ-

enzae has remained relatively steady (between 15%
and 20%) since 1995.14 The majority of H. influenzae

strains isolated from CF patients are nontypeable,

with biotype 1 being the most prevalent.10,11,25

In patients with CF, H. influenzae infection most

commonly manifests as a chronic lung infection and

may be associated with acute exacerbations.12 Addi-

tionally, H. influenza is speculated to be a cause of

pneumonia in children and adults with CF, although

the available evidence is limited.26 Similar to other

bacterial species, the reasons as to why H. influenzae

has a predilection to infect the CF airway is unknown

and is an area of great research interest. Although H.

influenzae possesses a variety of virulence factors,

biofilm formation by this pathogen, in particular,

appears to contribute to the establishment of chronic

infections in CF airways.12,26,27

In patients with PCD, H. influenzae persists into

adolescence/early adulthood as the organism most

commonly isolated from the airways, with one study

reporting a prevalence of 80% in children under age

18 and a prevalence of 22% in adults.2 More recent

studies, however, reported a prevalence of 32–65% in

children and adolescents,9–19 and of approximately

21–27% in adults.18,19 Therefore, data from these

studies indicate that the prevalence of H. influenza

infection in patients with PCD declines with age,

comparable to what is observed in CF.2,18,19

Interestingly, several studies reported no signifi-

cant impact of H. influenzae infection on lung func-

tion, as measured by forced expiratory volume in

1 second (FEV1), in patients with PCD.2,9,16,17

P. aeruginosa (mucoid and nonmucoid). P. aeruginosa is

a gram-negative, rod-shaped, opportunistic pathogen

that is metabolically diverse.28 Although P. aerugi-

nosa prioritizes aerobic respiration, it is well adapted

to anaerobic conditions.29–31 P. aeruginosa has been

isolated from a variety of environments, including

soil, water, hospitals, and human skin.28–32

P. aeruginosa has long been recognized as an

important pathogen in patients with CF, with an esti-

mated prevalence of approximately 50% in 2014.14 For

patients with CF, acquisition of this pathogen often

occurs early in life. In 2014, approximately 20% of

patients under age 5 were reported to have been

infected with P. aeruginosa.14 In addition, it is esti-

mated that 60–70% of patients with CF are infected

by this organism by age 20,33 and that prevalence
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peaks at approximately 75% in patients between the

age of 35 and 44.14 Interestingly, recent data suggest

that administration of inhaled antibiotics such as tobra-

mycin, colistin, levofloxacin, or aztreonam may

decrease P. aeruginosa density in sputum; and in some

cases, inhaled antibiotics may eradicate it from the

airways of patients with CF in which it has been iso-

lated for the first time or has not been isolated in 2

years or more.34–39 Moreover, the most recent guide-

lines from the CF Foundation recommend the admin-

istration of inhaled tobramycin (without the addition of

oral antibiotics) for 28 days for the eradication of early

P. aeruginosa infection.40 Other strategies for the era-

dication of P. aeruginosa infection in patients with CF

include the administration of oral antibiotics such as

ciprofloxacin, either alone or in combination with

inhaled antibiotics,41 or the administrations of intrave-

nous antibiotics.42 None of these other strategies have

been evaluated in large, randomized clinical trials.

Although there is general agreement regarding the use

of inhaled antibiotics, particularly 28 days of tobramy-

cin, as the primary management strategy for the eradi-

cation of first isolates of P. aeruginosa, there is no

consensus on the management if this strategy fails to

eradicate P. aeruginosa or if the P. aeruginosa is rei-

solated on subsequent cultures shortly thereafter. In

accordance with these findings, the CF Foundation has

reported a decline in the overall prevalence of P. aer-

uginosa infection.14

P. aeruginosa produces many virulence factors,

including exoenzymes that damage host cells, a fla-

gellum for motility, biofilm formation for protection,

lipopolysaccharides for host cell entry, and pili for

attachment.10,28 Furthermore, studies have indicated

that the sputum environment inside the CF airways

contains hypoxic/anaerobic zones and that P. aerugi-

nosa is well adapted to these conditions.30,31,43,44 Two

important aspects that enable this organism to thrive

in this environment are biofilm formation and anae-

robic respiration/denitrification. These functions

depend on a variety of factors, including nitric oxide

(NO) reductase to decrease the buildup of toxic NO,

the rhl quorum sensing system, and the OprF outer

membrane protein.31,44 Further, P. aeruginosa colo-

nization affects the nitrogen redox ecology in the CF

lungs. Gaston and colleagues showed that sputum

from patients with CF who were exclusively colo-

nized with P. aeruginosa contained more NH4
þ, a

denitrification product, than the sputum from

non-CF control patients.45 In addition, sputum NH4
þ

concentrations decreased after antipseudomonal

therapy.45 Since high NH4
þ concentrations inhibit

chloride transport in the intestinal epithelium,46 elim-

inating P. aeruginosa may attenuate some of the

defects in epithelial chloride transport.45

Another important aspect of P. aeruginosa infec-

tion in patients with CF is (the transition to) the

mucoid phenotype, which is characterized by the

secretion of large amounts of slimy polysaccharide

that surround the bacterial cells.10 Early in the course

of infection, nonmucoid varieties of P. aeruginosa

predominate.47,48 The transition to the mucoid pheno-

type appears to be important for the establishment of

chronic P. aeruginosa infections in CF airways, and

the mucoid phenotype therefore becomes the most

common phenotype later in the course of infec-

tion.10,49,50 Further, the conversion to the mucoid phe-

notype has been associated with an accelerated

decline in lung function.51

In patients with PCD, P. aeruginosa is an important

pathogen as well, with a reported prevalence of

20–36% and 5–7% for nonmucoid and mucoid pheno-

types, respectively, in children and adolescents.2,16,17

Further, Chang et al. recently reported a total preva-

lence of 35% for both P. aeruginosa phenotypes in

pediatric patients.18 In adult patients, the overall pre-

valence of nonmucoid and mucoid P. aeruginosa is

higher and is estimated to be approximately 27% for

each phenotype.2 Accordingly, the total prevalence of

P. aeruginosa infection (nonmucoid and mucoid) in

adult patients has recently been reported at 51%.18

Therefore, the prevalence of P. aeruginosa appears to

increase with age, especially after age 30.2,9,18,19 Per-

haps, after years of progressive bronchiectasis,

impaired mucociliary clearance and lung damage, the

environment inside the airways of patients with PCD is

more suitable for (chronic) P. aeruginosa infection.

Interestingly, it has been suggested that the transi-

tion to the mucoid phenotype occurs typically much

later in patients with PCD, not until after age 30.2 In

patients with CF, the conversion to the mucoid phe-

notype is often the result of a mutation in the mucA

gene, transcription of which normally prevents over-

production of alginate.8,52 This mutation, in turn, may

be induced by mutagenic reactive oxygen species pro-

duced by neutrophils, such as hydrogen peroxide.8,53

In addition, although it is widely recognized that

(chronic) infection with P. aeruginosa is associated

with a decrease in lung function and an increased risk

of death in patients with CF,10,11,51,54 it is unclear to

what extent (chronic) P. aeruginosa infection contri-

butes to the clinical outcomes of PCD patients. In
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2013, Rogers and colleagues reported a negative cor-

relation between the abundance of Pseudomonas in

PCD airways and lung function.9 In 2004, Noone and

colleagues reported that especially infection with

mucoid P. aeruginosa may be associated with a

decrease in lung function.2 However, more recently,

Maglione and colleagues and Davis and colleagues

reported no significant correlations between P. aeru-

ginosa infection and lung function.16,17

Staphylococcus aureus. S. aureus is a gram-positive,

facultative anaerobic, coccal bacterium that is a per-

manent part of the normal flora of the nostrils of

approximately 20% of the population and is carried

intermittently by approximately 30% of the popula-

tion.55 The most concerning strains of S. aureus are

the methicillin-resistant strains (MRSA). In 2004, the

National Nosocomial Infection Surveillance reported

that more than 60% of S. aureus isolates from US

hospital intensive care units represent MRSA.56

S. aureus was not only the first organism recog-

nized to cause chronic infections in patients with CF,

but it was believed to be the leading cause of mortality

in patients with CF early on as well.10 Currently,

S. aureus is still one of the pathogens most commonly

isolated from patients with CF. More specifically, in

2014, approximately 80% of patients aged 6 to 17

years with CF were reported to be infected by this

pathogen.14 Furthermore, although the prevalence of

S. aureus infection decreases somewhat as patients

reach adulthood, it still remains significant and is

estimated to be between 40% and 50%.14,57

S. aureus employs a variety of virulence factors to

cause disease. Adhesion proteins for attachment to

airway epithelial cells, and a wide array of factors

involved in host immune evasion, are among the most

significant.10,58 Moreover, MRSA strains possess the

mecA gene, which codes for penicillin-binding pro-

tein 2a (PBP2a). This protein is insensitive to the

action of methicillin and thereby confers methicillin

resistance to the organism.59

Both methicillin-resistant and methicillin-

sensitive strains have been associated with a decline

in lung function in pediatric and adolescent patients

with CF. In 2008, Dasenbrook and colleagues

reported that the decline in FEV1 was 43% more

rapid in CF patients (aged 8–21) with a persistent

MRSA infection than in uninfected patients.60 In

2013, Wolter and colleagues reported that pediatric

CF patients infected with methicillin-sensitive S.

aureus experienced a 7.9% decline in FEV1

compared to a 1.9% decline in uninfected patients.61

Interestingly, Ren and colleagues reported a stronger

decline in lung function in CF patients infected with

MRSA in comparison to patients infected with

methicillin-sensitive S. aureus.62

Several studies have not found an association

between persistent infection with S. aureus to a decline

in lung function in patients with PCD.2,9,16,17 Accord-

ing to recent studies, the approximate prevalence of S.

aureus infection in pediatric and adolescent patients

with PCD is 35–46%.16,17 Interestingly, at least accord-

ing to two recent studies, the prevalence of S. aureus

infection peaks during adolescence.18,19 However, the

prevalence of S. aureus tends to decrease as PCD

patients reach adulthood and beyond,2,18,19 with studies

reporting a prevalence of 6–20% in adult patients.2,18,19

Streptococcus pneumoniae. S. pneumoniae is a gram-

positive, facultative anaerobic coccus that is usually

found in pairs, known as diplococci. Currently, there

are 92 known serotypes of this organism, which differ

greatly in prevalence and in their ability to cause dis-

ease.63 S. pneumoniae is commonly carried in the

upper respiratory tract of healthy, young children

under age 6, although the exact prevalence varies

widely depending on the study population.64–66 How-

ever, it is apparent that the prevalence of S. pneumo-

niae carriage decreases with age.64,66 In healthy

infants and children, the serotypes 3, 19F, 23F, 19A,

6B, and 14 are the ones most commonly carried.65

One of the most characteristic virulence factors of S.

pneumoniae is its polysaccharide capsule, which is

unique for each serotype and aids in the protection

against the host’s immune system.67 Studies indicate

that the capsule protects against phagocytosis68 and

that it may influence the amount of antibody that is

able to bind to the organism’s surface antigens.69

For patients with CF, S. pneumoniae is primarily

considered to be a transient pathogen.13,70 In children

with CF, the prevalence of S. pneumoniae infection is

approximately between 5% and 20%.71–73 In adults

with CF, the prevalence (approximately 5%) of this

pathogen is even lower.70 In patients with CF, the

serotypes 19F, 5, 4, 3, 23F, 6A, 6B, and 9V are most

commonly isolated.71–73

The contribution of S. pneumoniae to lung disease

in patients with CF is not clear, in part because

S. pneumoniae is isolated in association with other

bacterial respiratory pathogens approximately 84.1%
of the time.73 In 2005, Del Campo and colleagues

reported that 35% of CF patients with S. pneumoniae
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infection presented with acute exacerbations, but that

only 27% of these patients were not colonized by any

other common CF pathogen.71 Recently, Paganin and

colleagues reported a significant association between

S. pneumonia infection and a decline in lung function

in patients with CF,74 but a different group found no

such correlation.70

S. pneumoniae is commonly isolated from pediatric

and adult patients with PCD as well.9,15,16,18 One

study reports that S. pneumoniae is the second most

commonly isolated pathogen from the airways of

pediatric and adolescent patients with PCD after H.

influenzae with an estimated prevalence of 52%.17

Davis and colleagues and Chang and colleagues, on

the other hand, recently reported a prevalence of

21–30% in pediatric and adolescent patients.16,18 Fur-

ther, at least one large, recent study suggests that the

prevalence of S. pneumoniae infection declines with

age.18 Currently, no significant relationship between

S. pneumoniae infection and lung function in patients

with PCD has been reported.9,16,17

Moraxella catarrhalis. M. catarrhalis is a nonmotile,

gram-negative, aerobic, diplococcal bacterium.75

Among the general pediatric population, acquisition

of this pathogen is quite common, although the pre-

valence varies widely depending on the population

studied.75 Furthermore, M. catarrhalis is one of the

most common causes of acute otitis media in children,

and it is estimated that 15–20% of the episodes of

acute otitis media are caused by this pathogen.75 In

addition, M. catarrhalis has been associated with oti-

tis media with effusion,76 chronic obstructive pul-

monary disease,77 and sinusitis.78

M. catarrhalis possesses a wide variety of viru-

lence factors that cause disease in the sinuses, ears,

and airways. For example, M. catarrhalis biofilms are

frequently detected in children with chronic otitis

media.79 Other virulence factors include adhesins for

attachment to human epithelial cells,80–82 and the

outer membrane protein OlpA, which serves to pro-

tect M. catarrhalis from the bactericidal effects of

human serum.83 Resistance to antibiotics is of con-

cern as well, with studies reporting that over 95% of

clinical M. catarrhalis isolates are resistant to the

b-lactamase family of antibiotics.84,85 Polymicrobial

biofilms composed of M. catarrhalis and S. pneumo-

niae appear to contribute to antibiotic resistance in

patients with otitis media.86

Interestingly, M. catarrhalis is relatively rarely

recovered from the airways of patients with CF,87–89

with one study reporting a prevalence of 7.40% in

pediatric patients between 3 months and 17 years

of age.90

In patients with PCD, M. catarrhalis is regularly

isolated from the airways. Davis and colleagues report

that M. catarrhalis was isolated at least once in 19%
of the children included in their study.16 In addition,

Alanin and colleagues reported that 19% of the sam-

ples from children younger than 12 years, 9% of the

samples from patients between 13 and 25 years of age,

and 7% of the samples from adults older than 25 years

were positive for M. catarrhalis.19 Therefore, the pre-

valence of M. catarrhalis infection in patients with

PCD appears to be decreasing with age.19 Chang

et al. report a similar trend, although their study indi-

cates that the prevalence of M. catarrhalis infection

spikes during adolescence and then decreases into

adulthood.18 Lastly, Davis et al. reported no associa-

tion between M. catarrhalis infection and lung dis-

ease severity in patients with PCD.16

A. xylosoxidans and Ralstonia species: Emerging
pathogens. A. xylosoxidans is an aerobic, gram-

negative bacillus that is considered to be an emerging

pathogen for patients with CF. The estimated preva-

lence of A. xylosoxidans infection in patients with CF

varies widely, ranging anywhere from 3% to

30%.14,91–94

Unfortunately, little is known about the pathogen-

esis and virulence factors of this organism on a mole-

cular level.91 Some virulence factors, such as a

cytotoxin,95 and biofilm formation,96 have yet to be

characterized. Furthermore, the extent to which A.

xylosoxidans contributes to CF lung disease is cur-

rently unclear, as there are limited data available.91

At least one study, however, has demonstrated that A.

xylosoxidans infection may be associated with a more

rapid decline in FEV1.97 In contrast, De Baets and

colleagues found that infected patients with CF

tended to have lower FEV1s at the time of the first

positive culture but did not exhibit a more rapid

decline in lung function afterward.98 In addition,

Trancassini and colleagues found an increased preva-

lence of biofilm producing strains of A. xylosoxidans

in patients with severely impaired lung function.96

These results, therefore, suggest that patients with

more severe lung disease may be predisposed to A.

xylosoxidans infection. Lastly, as a species capable of

denitrification, A. xylosoxidans isolated from CF

patients has been shown to produce increased nitrous

oxide (N2O) when supplemented with nitrate ion
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(NO3
-).99 A. xylosoxidans, therefore, may affect the

nitrogen redox ecology in the CF lungs.

Species from the gram-negative genus Ralstonia

have been identified as an emerging pathogen in

patients with CF over the past decade or so.100–103

Coenye and colleagues isolated at least 5 different

Ralstonia species from patients with CF: R. mannito-

lilytica, R. respiraculi, R. pickettii, R. basilensis, and

R. metallidurans, with R. mannitolilytica being the

most common, representing 46% of the Ralstonia iso-

lates.101 The exact prevalence of Ralstonia infection

in patients with CF is unclear, in part because the

organism is difficult to isolate but is likely very

low.102 Coenye and colleagues found only 42 Ralsto-

nia isolates in 38 patients out of 4000 total speci-

mens.101,103 In addition, the contribution of

Ralstonia infections to lung disease in patients with

CF is currently unclear.102

Both pathogens have also been isolated from the

airways of patients with PCD.9,19 Alanin and col-

leagues recovered A. xylosoxidans from 1% of the

samples from children between 0 and 12 years of age,

2% of the samples from patients between 13 and 25,

and 6% of the samples from adults older than 25 years,

suggesting that A. xylosoxidans is more common in

adults.19 Rogers and colleagues detected Ralstonia

species in 17 out of 24 patients with PCD, of which

R. pickettii was by far the most common.9 Rogers and

colleagues found no association between lung func-

tion and Ralstonia infection,9 and currently no data

are available on the contribution of A xylosoxidans to

lung disease in patients with PCD.

Nontuberculous mycobacteria

Nontuberculous mycobacteria (NTM) are a group of

rod-shaped bacilli of the mycobacterial genus of

Actinobacteria that are specifically not associated

with tuberculosis or leprosy. The incidence of

NTM infection in the general population is esti-

mated at 1–1.8 in 100,000,104 but NTM is a far more

common cause of disease in susceptible patients

such as patients with CF.11 The prevalence of NTM

infection in patients with CF is estimated to be

anywhere between 6% and 13%105 and appears to

be increasing.105,106

The vast majority of NTM infections in patients

with CF in the United States are caused by one of two

species complexes: Mycobacterium avium complex,

which accounts for approximately 72% of the NTM

infections, and Mycobacterium abscessus complex,

which accounts for 16–68% of the NTM infections.105

Other species, such as Mycobacterium simiae and

Mycobacterium kansasii, have been isolated as

well.11,105 Interestingly, in CF, NTM infection

appears to be associated with older age.105,107–109

Previously, there was no consensus on the risks and

clinical outcomes associated with NTM infections for

patients with CF.105 At least two studies reported that

NTM infection had no impact on the progression of

disease in patients with CF.107,110 However, it is

becoming more clear that NTM infections present a

major threat to the lung health of people with CF. More

recent studies have reported that NTM infection may

be associated with a decline in FEV1.111,112 In addition,

the prevalence of NTM is increasing in CF.14 Further,

NTM infection appears to be relatively common in

patients with end-stage CF referred for lung transplan-

tation, with one study reporting a prevalence of

19.7%.113 The NTM may be associated with severe

complications in lung transplant recipients and there-

fore may be considered a contraindication by some

centers.114 Nonetheless, there is evidence that post-

transplant NTM infection can be treated successfully

and that favorable survival can be achieved.115

In order to cause disease, NTM species such as

M. avium complex species must penetrate the airway

epithelium. They appear to do so at damaged

sites,116 and fibronectin attachment proteins appear

to play an important role in bacterial attachment and

invasion.117,118 In addition, the cellular envelope

appears to be important for NTM intracellular sur-

vival.119 Lastly, it appears as though some NTM

species are able to acquire virulence genes from

other bacterial CF pathogens such as P. aeruginosa

and B. cepacia.120

The NTM is also more commonly isolated from

adult than pediatric PCD patients, with one study

reporting prevalences of 18% and 0%, respectively.2

One recent study reported that NTM was isolated from

only 3 of 118 pediatric and adolescent patients with

PCD.16 On the other hand, Alanin and colleagues and

Chang and colleagues reported that NTM was isolated

from only 1 of 107 and 11% of patients (pediatric and

adult), respectively.18,19 Unfortunately, although

Noone and colleagues point out that NTM may require

an aggressive multidrug treatment regimen.2 However,

much knowledge regarding NTM infections in patients

with PCD remains to be further investigated.

B. cepacia complex species. The B. cepacia complex

(Bcc) is a group of similar species of gram-negative,
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metabolically diverse bacilli.121 Some members of the

B. cepacia complex are opportunistic pathogens that

may cause disease in susceptible patients, such as

patients with granulomatous disease122 and patients

with CF.123

The Bcc species most commonly isolated from the

airways of patients with CF are B. multivorans,

B. cenocepacia, and B. vietnamiensis, accounting for

approximately 37%, 31%, and 5% of Bcc infections,

respectively, between 1997 and 2007.11 Overall, the

prevalence of Bcc infection in patients with CF is

relatively low, ranging from less than 3% to approx-

imately 8%, and appears to be higher in adult

patients.11,14,124,125

Despite their low prevalence, the clinical conse-

quences of Bcc infection may be severe. For example,

Bcc infection has been associated with increased mor-

bidity and mortality in patients with CF.126,127

Although some infected patients will exhibit a gradual

decline in lung function,123 others (approximately

20%)128 may suffer from fatal “cepacia syndrome,”

which is characterized by necrotizing pneumonia and

sometimes septicemia, and may result in death in less

than 1 year.123,128,129

Research into the virulence factors of Bcc species,

particularly over the last decade, has increased our

understanding of how Bcc species cause disease.130

Notable virulence factors include biofilm formation

for protection,130 flagella for motility and host cell

invasion,131 and RpoE, an alternative sigma factor

that allows B. cenocepacia to delay phagolysosomal

fusion.132 Another distinctive virulence factor is the

cable pilus, which allows for bacterial binding to the

epithelium of CF airways.133 This particular viru-

lence factor is associated with certain strains such

as J2315, a multidrug-resistant strain associated with

patient-to-patient transmission.134,135 Furthermore,

Bcc species may affect the nitrogen redox ecology

in the CF lungs, as Kolpen and colleagues have

demonstrated that B. multivorans, isolated from CF

patients, produced increased N2O, when supplemen-

ted with NO3
-.99

Another intriguing attribute of Bcc species is that

they are able to “communicate” with P. aeruginosa

through quorum sensing. Riedel and colleagues

demonstrated that B. cepacia is able to utilize N-acyl-

homoserine lactone (AHL) signals produced by

P. aeruginosa,136 and, indeed, Bcc species are able

to form mixed biofilms with P. aeruginosa.137,138

Schwab and colleagues even suggest that Bcc species

may inhibit the growth of P. aeruginosa biofilms.139

Interestingly, Bcc species have not been isolated

to date from the airways of patients with PCD.

Rogers and colleagues, using quantitative polymer-

ase chain reaction (PCR), did not find Bcc isolates

from the airways of patients with PCD.9 Therefore,

it remains to be investigated whether Bcc member

species are able to infect the airways of patients

with PCD, and if not, the reasons should be

investigated.

Anaerobic bacteria

Although not routinely screened for in sputum, anae-

robic bacterial species have been isolated from the

lungs of patients with CF using specific anaerobic

culture and culture-independent methods.140,141 Tun-

ney and colleagues detected anaerobic bacteria in

64% of sputum samples from patients with CF.142

In addition, Bittar et al., using molecular techniques,

reported that 30% of the bacterial species isolated

from the sputum of patients with CF were anae-

robes.143 Overall, species from the genera Prevotella,

Veillonella, Propionibacterium, and Actinomyces are

among the anaerobes most commonly isolated from

CF airways.140,144

The role that anaerobic bacteria play in CF lung

disease is unclear. For example, one study indicates

that the Streptococcus milleri group is associated with

pulmonary exacerbations and thereby contributes to

CF lung disease.145 However, Worlitzsch and col-

leagues reported that after therapy with antibiotics,

lung function improved without a reduction in the

number of obligate anaerobes.146 The latter study,

therefore, may suggest that anaerobes play little to

no role in CF lung disease.141

While conventional microbiological practices fail

to detect anaerobic bacteria, at least one study has

reported the isolation of anaerobic bacteria from the

airways of patients with PCD using quantitative

PCR.9 The isolated anaerobes include species from

the genera Prevotella, Neisseria, Porphyromonas,

Actinomyces, and Veillonella,9 some of which have

been isolated from the lungs of patients with CF as

well.140,142,144 The anaerobic genus Provotella was

considered to be dominant in two patients included

in their study.9 Although Rogers et al. did not find

any negative correlations between the presence of

anaerobic bacteria such as Provotella and lung func-

tion as determined by FEV1,9 the contribution of

anaerobic bacteria to lung disease in PCD remains

unclear.
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Current and potential treatment
strategies for bacterial infections
in PCD

Recently, Shapiro et al. published extensive consen-

sus guidelines on the diagnosis, monitoring, and treat-

ment of PCD, including the treatment of (recurring)

bacterial infections.147 In addition to antibiotics and

other treatment options reviewed by Shapiro and col-

leagues,147 other strategies to combat bacterial infec-

tions in patients with CF and PCD may be available in

the future.

One such strategy is bacteriophage therapy. Bac-

teriophages are viruses that exclusively infect bac-

teria, and one of the major advantages in utilizing

them as a treatment strategy is their high specificity

to target bacteria.148

Various studies have demonstrated the ability of

phages to eliminate common CF pathogens in vitro.

Alemayehu and colleagues showed how two phages

are able to drastically reduce the amount of P. aeru-

ginosa cells growing in a biofilm on CF airway

cells.149 More recently, Saussereau and colleagues

demonstrated that a cocktail of 10 bacteriophages is

effective at reducing the levels of P. aeruginosa in

sputum samples from patients with CF.150 However,

there is also substantial evidence demonstrating that

P. aeruginosa biofilms may develop phage resistance

in as little as 24 hours,151,152 which may limit the

clinical utility of phage therapy to treat P. aeruginosa

infections. Clinical data on the safety or efficacy of

phage therapy for patients with CF are scarce and are

limited to case reports.153 Therefore, larger, rando-

mized clinical trials are necessary.153

Conclusion and future directions

As demonstrated in this review, there is overlap in

types of respiratory infections between patients with

CF and PCD (Table 1). H. influenza, P. aeruginosa,

and S. aureus are all commonly found in the airways

of both patient groups. In addition, there exist similar

trends in airway microbiology in both patient groups.

For instance, many bacterial species, such as H. influ-

enza, S. pneumoniae, and S. aureus, tend to decrease

in prevalence with age, after which P. aeruginosa

becomes the dominant airway pathogen (Table 1).

These similarities have enabled the extrapolation

of information from CF airway microbiology to PCD

airway microbiology. However, likely in part due to

the differences in pathophysiology and underlying

etiology, the airway microbiology in patients with

PCD is unique and significantly different from the

airway microbiology in patients with CF. Although

S. aureus is the most common pathogen during child-

hood for patients with CF, H. influenza and S. pneu-

moniae appear to be the most common pathogens

during early childhood in patients with PCD (Table

1). In addition, although many pathogens tend to

decrease in prevalence with age in patients with PCD,

this decrease appears to occur at a slower rate than in

patients with CF.

Table 1. Summary of airway microbiology in patients with CF and patients with PCD.

Airway pathogen

Common in
pediatric patients

Common in
adult patients

Associated with lung disease/
decline in lung function

PCD CF PCD CF PCD CF

Haemophilus influenzae þþa þ þ + Unclear Y
Pseudomonas aeruginosa þ þþ þþa þþa Unclear Y
Staphylococcus aureus þþ/þ þþa þ/+ þþ Unclear Y
Streptococcus pneumoniae þþ/þ +/- þ – Unclear Unclear
Moraxella catarrhalis þ/+ +/- +/- – Unclear Unclear
Achromobacter xylosoxidans – þ/+/- – þ/+/- Unclear Unclear
Ralstonia sp. Unknown – Unknown – Unclear Unclear
NTM –/- +/- +/- +/- Unclear Unclear
Burkholderia cepacia complex species b +/- b +/- Unclear Y
Anaerobes Unknown þþ Unknown þþ Unclear Unclear

PCD: primary ciliary dyskinesia; CF: cystic fibrosis; NTM: nontuberculous mycobacteria; sp.: species.
aPathogens most commonly isolated from patients with this disease at this stage (pediatric/adult);þþ indicates very common pathogens
(prevalence *50% or greater); þ indicates common pathogens (prevalence *25%); + indicates relatively common pathogens
(prevalence *10%); - indicates rare pathogens (prevalence *5%); – indicates very rare pathogens (prevalence *1% and less).
bPathogen has to date not been isolated from the airways of this patient population.
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Because of the observed differences in airway

microbiology between patients with CF and

patients with PCD (Table 1), it is important that

bacterial infections in patients with PCD be further

investigated both on a clinical and a basic science

level. A PCD patient registry database, like the one

managed by the CF Foundation for patients with

CF, may facilitate such microbiological research in

PCD.
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