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Abstract

Background: Gene expression data provide invaluable insights into disease mechanisms. In Huntington’s disease
(HD), a neurodegenerative disease caused by a tri-nucleotide repeat expansion in the huntingtin gene, extensive
transcriptional dysregulation has been reported. Conventional dysregulation analysis has shown that e.g. in the
caudate nucleus of the post mortem HD brain the gene expression level of about a third of all genes was altered.
Owing to this large number of dysregulated genes, the underlying relevance of expression changes is often lost in
huge gene lists that are difficult to comprehend.

Methods: To alleviate this problem, we employed weighted correlation network analysis to archival gene expression
datasets of HD post mortem brain regions.

Results: We were able to uncover previously unidentified transcription dysregulation in the HD cerebellum that
contained a gene expression signature in common with the caudate nucleus and the BA4 region of the frontal cortex.
Furthermore, we found that yet unassociated pathways, e.g. global mRNA processing, were dysregulated in HD. We
provide evidence to show that, contrary to previous findings, mutant huntingtin is sufficient to induce a subset of stress
response genes in the cerebellum and frontal cortex BA4 region. The comparison of HD with other neurodegenerative
disorders showed that the immune system, in particular the complement system, is generally activated. We also
demonstrate that HD mouse models mimic some aspects of the disease very well, while others, e.g. the activation of
the immune system are inadequately reflected.

Conclusion: Our analysis provides novel insights into the molecular pathogenesis in HD and identifies genes and
pathways as potential therapeutic targets.

Keywords: Neurodegenerative diseases, Huntington’s disease, Transcriptional dysregulation, Network analysis,
Therapeutic targets
Background
Huntington’s disease (HD) belongs to the group of poly-
glutamine (polyQ) repeat expansion diseases, which to-
gether comprise the most common form of inherited
neurodegenerative disorders [1]. It can also be categorized
as a proteinopathy, a disorder in which abnormally folded
proteins cause disease by loss- and/or gain-of-function
mechanisms. Many other neurodegenerative diseases also
belong to this category. For example aggregating proteins
include the amyloid-β peptide (Aβ) and tau (MAPT) in
Alzheimer’s disease (AD) [2] and α-synuclein (SNCA) in
Parkinson’s disease (PD) [3]. The major aggregating
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proteins in amyotrophic lateral sclerosis (ALS) are super-
oxide dismutase 1 (SOD1) [4], TDP-43 (TARDBP) [5] and
FUS [6]. However, other diseases that are not associated
with misfolded proteins can also result in major neurode-
generation. Amongst these are brain tumors, e.g. ganglio-
gliomas (GG) [7], which arises from brain ganglion cells,
and inflammatory diseases such as multiple sclerosis (MS)
which can result in a massive loss of neurons [8]. Further-
more, there is evidence that even very heterogeneous
mental illnesses, such as schizophrenia (SCHIZ) are at
least partly associated with neurodegeneration [9].
Whilst many of the above diseases are characterized by

mutations in protein coding regions, mutations can also
exert deleterious effects through RNA molecules. A hexa-
nucleotide repeat expansion in the uncharacterized gene
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C9orf72 is the most common cause of familial and spor-
adic ALS, as well as frontotemporal lobar degeneration
(FTLD) [10,11]. The repeat expansion is located in intron
1 of C9orf72, thereby making it an RNAopathy, i.e. a toxic
gain-of-function of an RNA leading to disrupted protein
and/or RNA homoeostasis [12]. RNA gain-of-functions
also occur in other repeat expansion diseases such as
myotonic dystrophy type 1 (DM1) and type 2 (DM2) [13].
In DM1 the DMPK gene harbors a large repeat expansion
in the 3’ untranslated region [14-16]. In DM2 the repeat
expansion is located in intron 1 of the ZNF9 gene [17].
The splicing factor MBNL1 is recruited to the repeat ex-
pansion in both cases [18], which in turn leads to a disrup-
tion of general mRNA processing resulting in cytotoxicity.
Intriguingly it was recently shown that in HD a short tran-
script of the HTT gene is produced by aberrant splicing,
probably influenced by abnormal binding of the splicing
factor SRSF6 to the CAG repeat expansion [19]. In
addition to the alternative splicing of HTT itself, other ab-
errantly spliced transcripts can be found in HD mouse
model tissue (Gipson TA and Housman DE, unpublished
data).
Transcriptional dysregulation, or a global change in

gene expression is a hallmark of many neurodegenera-
tive diseases, including HD, AD, PD and ALS [20]. For
HD there is some evidence in patients [21-23] and
mouse models [24,25] that these changes occur in the
prodromal stage, which could make them useful to de-
fine disease progression on a molecular level, or even as
potential biomarkers for therapeutics. Intriguingly, mu-
tant huntingtin (HTT) itself was found to exert abnor-
mal DNA binding activities [26]. The authors proposed
that mutant HTT binding could alter DNA structure or
sterically block access by other transcription factors and
therefore be the initial cause of HD transcriptional dys-
regulation. The biggest study to date of human samples
analyzed 44 HD patient and 36 control brains [27]. They
found extensive changes in the caudate nucleus (CN)
and BA4 region (motor functions) of the frontal cortex
(FC-BA4). Almost no changes were found for the BA9
region (association, cognitive functions) of the frontal
cortex (FC-BA9), or the cerebellum (CB). In a follow up
study, the same group showed that the changes seen in
HD patients were largely comparable to changes seen in
HD mouse models [28].
However, standard evaluations of large, multi-

dimensional gene expression datasets need to apply very
strict statistical thresholds to correct for family wise errors
stemming from the very high number of multiple compar-
isons. In doing so, small and/or maybe more heteroge-
neous expression changes may not be detected. Yet these
small changes could contribute to an overall functional
deficit, if they for example are all part of a certain mo-
lecular pathway. Alternatively, they may represent large
changes in a subpopulation of cells. One solution to this
problem is to analyze the data with correlation networks,
which provide a more systemic view, instead of a per gene
assertion. Weighted gene correlation network analysis
(WGCNA) is a package of R functions, which allows one
to construct such networks [29]. In these networks,
groups of genes, which highly correlate in their expres-
sion, are clustered into modules. Next, these modules can
be correlated to external traits, for example disease stage,
age, sex, etc. Because only a small number, usually in the
range of 10 to 30 modules per network, are identified,
multiple comparisons are greatly alleviated. Another huge
advantage is that one can detect “hub genes”, i.e. genes
that are the highest connected genes in a particular mod-
ule and are therefore most likely the biological key drivers.
These hub genes also present bona fide therapeutic targets
and/or biomarkers. WGCNA was successfully used to
analyze many large datasets, noteworthy in the identifica-
tion and cross-species comparison of brain region net-
works [30,31] and in the analysis of gene expression
changes in ALS [32] and AD [33,34].
Here, we used WGCNA to study the transcriptional

dysregulation in HD. To this end we constructed and
compared networks for 4 different regions from patient
brains and analyzed their preservation in gene expres-
sion datasets of other diseases, as well as in mouse
models of HD. We constructed consensus networks of
HD and other diseases to highlight common changes.
These approaches allowed us to identify a common sig-
nature of transcriptional dysregulation in all three brain
regions and to pinpoint potential future therapeutic
targets.

Results
Weighted correlation network construction using WGCNA
in the HD dataset
For a more detailed explanation of the WGCNA package,
the interested reader is referred to the original publication
[29] or the WGCNA homepage: http://labs.genetics.ucla.
edu/horvath/CoexpressionNetwork. As outlined in the
materials and methods section, we constructed weighted,
signed correlation networks from the pre-processed data-
sets. Next, we identified modules that correlated to disease
stage (in the following referred to as correlation with HD).
To this end, we converted the neuropathological stage as-
signment of the samples, as listed in the original publica-
tion [27], to a numerical scale with controls as 1, HD
grade 0 as 2, HD grade 1 as 3 and so forth. ‘Module eigen-
genes’, which represent a summary for all genes within a
module were computed and subsequently correlated with
HD. Negative, or positive correlation indicates that the ex-
pression of the genes in a module is lower, or higher, re-
spectively, in patient compared to control samples. From
here on we focused only on significantly correlated
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modules (Benjamini-Hochberg corrected P-values <0.05).
Using ‘eigengene based connectivity’ (kME) as a measure
of gene co-expression strength in a particular module
(weighted from 0 to 1), we identified the genes with the
highest connectivity in a module (hub genes). We also an-
alyzed the preservation of the significantly correlated
modules in a particular network in the datasets of the
other brain regions. Preservation can be seen as the simi-
larity of co-expression between genes in a module, but
also connectivity patterns of individual modules for the
two data sets. Preservation was calculated using permuta-
tions of the preservation statistics and is represented by a
Z-summary value. High preservation, or high Z-summary
values indicate that modules are densely connected, dis-
tinct and reproducible. Z-summary values tend to be
Figure 1 WGCNA analysis of the HD dataset identifies highly correlat
cerebellum dataset. (C and D) WGCNA analysis of the frontal cortex BA4 re
dataset. (A, C and E) Hierarchical cluster tree of the average linkage in the
a gene. The height is a measure for the dissimilarity based on the topologi
with HD (HD cor) based on the gene significance for each gene. Red is p
(B, D and F) Visualization of modules that are highly correlated with HD. Size
Hochberg corrected significance value of correlation with HD for each mo
FC4 - frontal cortex BA4 region and CN - caudate nucleus), the sign of the co
ordered by Padj with 1 being the most significantly correlated module, follow
higher for larger modules, i.e. small modules are very
often found to be only weakly preserved.
In the cerebellum dataset, 2504 genes (about 20.0% of

all genes in the dataset) were assigned in negatively cor-
related and 2230 genes (about 17.8% of all genes in the
dataset) in positively correlated modules (Padj < 0.05)
(Figure 1A and B). This is in marked contrast to what
was found by Hodges and colleagues, who identified only
340 statistically significantly dysregulated probe sets, cor-
responding to 290 genes (HG-U133A chip; P <0.001). For
gene ontology (GO) enrichment and regulatory factor pre-
diction of the modules in the cerebellum network see
Table 1. The eigengene based connectivity (kME) for all
identified modules showed a significant linear positive or
negative relationship with the gene significance for HD.
ed modules for each brain region. (A and B) WGCNA analysis of the
gion dataset. (E and F) WGCNA analysis of the caudate nucleus
dissimilarity topological overlap matrix. Each vertical line correlates to
cal overlap. The band under the dendrograms indicates the correlation
ositively correlated with HD stage, blue is negatively correlated.
is the number of genes for each module. Padj gives the Benjamini
dule. Modules are labeled according to the network (CB - cerebellum,
rrelation (neg - negatively correlated and pos - positively correlated) and
ed by 2, etc.



Table 1 Gene ontology enrichment for the cerebellum network

Module cor GO-term (DAVID) Potential regulators

CBpos1 up metal binding/zinc-finger (0.84, 0.89) MYOD (0.0314)2, ZIC2 (0.0314)2, E2F1/E2F4 together
with DP1/DP2, or RB (0.0314)2, NFY (0.0314)2

CBpos2 up DNA binding/zinc-finger (3.97, 0.003) miR124 (0.054)1

chromatin binding/remodeling (1.82, 0.096)

CBpos3 up ubiquitin protein ligase binding (1.1, 0.49)

CBpos4 up metal binding/zinc-finger (6.98, 0.000)

chromatin modification (4.8, 0.004)

RNA binding/processing (3.41, 0.03)

CBpos5 up protein folding/chaperones (6.77, 0.000) HSF1 (0.09)1

chromatin assembly (3.19, 0.003) HSF1 (0.000)2, NRF1 (0.001)2, USF1 (0.001)2,
E4BP4 (0.024)2

mRNA processing (2.95, 0.034)

CBpos6 up metallothionein (4.24, 0.003) miR124 (0.027)1, let7 (0.027)1, SOX2 (0.027)1,
MYOG (0.027)1, HSF1 (0.044)1

CBneg1 down synapse (2.14, 0.33)

CBneg2 down mitochondrion (10.44, 0.000) NRF1 (0.108)1

proteasome (3.13, 0.000) E4F1 (0.000)2, PAX3 (0.006)2, ATF (0.007)2,
ELK1 (0.012)2

CBneg3 down mitochondrion (2.77, 0.007) SF1 (0.000)2, ERR1 (0.001)2, PAX4 (0.001)2,
TCF3 (0.002)2, ZBTB14 (0.046)2

CBneg4 down mitochondrion (2.85, 0.005)

CBneg5 down endoplasmic reticulum (1.02, 0.95)

CBneg6 down cytoplasmic vesicle (0.88, 0.99)

HTT down mitochondrion (5.3, 0.000)

Gene ontology (GO) enrichment for the HD cerebellum network. Genes in the identified modules were analyzed using DAVID. The sign of the correlation (cor)
with HD and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the respective fold enrichment, the second number the
adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly enriched GO-term was
identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were identified using 1GO-Elite, or 2WebGestalt. Adjusted
P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted in bold. HTT is part of the CBneg2 module in the
cerebellum network. The GO-term enrichment for 100 genes with the highest correlation with HTT is shown.
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Some genes exhibited high kME values and also high gene
significance values indicating these genes are potential
hub genes (Additional file 1A). The cerebellum modules
CBpos5 and CBneg2 were highly preserved in both the
frontal cortex and caudate nucleus. Modules CBpos4,
CBpos5 and CBneg4 were better preserved in the frontal
cortex, than in the caudate nucleus dataset (Figure 2A
and B). Figure 3A and B illustrate the connectivity be-
tween the top 50 hub genes for the CBpos5 and CBneg2
modules (see also Additional file 2). 33 (66%) of the top 50
hub genes of the CBneg1 module were also statistically
significantly dysregulated, as determined by Hodges and
colleagues. Additionally, only modules CBneg2 (15/50 =
30%) and CBneg3 (14/50 = 28%) showed considerable
overlap of module hub genes and dysregulated genes. In
total, 46 (15.9%) of the statistically significantly dysregu-
lated genes were not sorted into modules that were corre-
lated with HD. The CBneg1 module is highly negatively
correlated with HD (Figure 1B), but GO analysis showed
no significant enrichment (Table 1). However, in depth
analysis of the molecular function of the hub genes in this
module revealed several genes involved in synaptic func-
tion. For example CBLN1 is a cerebellum specific precur-
sor of cerebellin, which is enriched in the post-synapses of
Purkinje cells. Further neuronal related hub genes were
SLC17A7, SCN1B and PDE10A. The other modules that
were negatively correlated with HD in cerebellum are
highly enriched for mitochondrial and proteasomal genes,
indicating an attenuated function of these two processes
(Figure 3A, Additional file 2 and Table 1). The positively
correlated cerebellum modules are enriched for transcrip-
tional regulation, chromatin binding/remodeling/modi-
fication, RNA binding/processing and metallothioneins
(Table 1). Analysis of the CBpos5 module revealed a very
high enrichment in protein folding/chaperone genes, as
well as chromatin assembly and mRNA processing genes
(Table 1). Intriguingly, 14 of the top 50 hub genes of the
CBpos5 module are involved in protein folding, all of
which share very high connectivity (Figure 3A). Notably,
there was no indication that genes involved in inflamma-
tion or the immune response are correlated with HD in
the cerebellum.



Figure 2 Preservation analysis shows only few tissue specific modules. The Z-summary is a measure for module preservation. Values less
than 2 (red lines) indicate no preservation, between 2 and 10 (blue lines) module structures are preserved and above 10 the module structure is
highly preserved. Preservation analysis of cerebellum modules in the caudate nucleus (A) and frontal cortex BA4 region dataset (B). Preservation
analysis of frontal cortex BA4 region modules in the cerebellum (C) and caudate nucleus dataset (D). Preservation analysis of caudate nucleus
modules in the cerebellum (E) and frontal cortex BA4 region dataset (F).
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We could not identify any significantly correlated
modules in the frontal cortex BA9 region dataset, the
same result as obtained by Hodges and co-workers (data
not shown). By contrast, we found significant changes in
the BA4 region of the frontal cortex (Figure 1C and D).
Here, 2939 (23.5%) genes were assigned to negatively
and 1981 (15.8%) genes to positively correlated modules
(Padj < 0.05) (Figure 1D). For gene ontology (GO) enrich-
ment and regulatory factor prediction of the modules in
the frontal cortex BA4 region network see Table 2. As
for the cerebellum network, the modules showed signifi-
cant linear relationships between eigengene connectivity
and gene significance for HD (Additional file 1B). Preser-
vation analysis indicated that most frontal cortex BA4 re-
gion modules were equally well preserved in the caudate
nucleus, or cerebellum dataset, respectively (Figure 2C
and D). However, the FC4neg3 module was slightly less
preserved in cerebellum, compared to caudate nucleus;
modules FC4pos3, FC4pos4 and FC4neg4 were slightly
better preserved in cerebellum (Figure 2C and D). Module



Figure 3 Visualization of hub genes in network modules. (A - F) The 50 most connected genes (nodes) and the 500 strongest gene-gene
interactions (edges) in each module are shown. The width and the color saturation of the lines (edges) correspond to the weight of the interactions.
The orange highlighted nodes correspond to genes that were also statistically significantly dysregulated [27]. Hub genes have a high gene significance
value, as well as high eigengene based connectivity (kME). The correlation of both is shown in Additional file 1. (A) and (B) show hub genes from two
cerebellum modules. (C) and (D) show hub genes from two frontal cortex BA4 region modules. (E) and (F) show hub genes from two caudate nucleus
modules. The remaining hub genes for the other modules of the three networks are shown in Additional files 2, 3 and 4.
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FC4pos4, although it was just short of being significantly
correlated with HD (Padj =0.064) (Figure 1D), is, like the
CBpos5 module in the cerebellum network, highly
enriched for protein folding/chaperone genes (Tables 1
and 2, Additional file 3C and Figure 4F). The GO enrich-
ment analysis of the other positively correlated modules
more or less mirrored the cerebellum network with the
exception of a high enrichment for inflammatory response
and NFκB/IκB genes in the FC4pos1 module (Table 2).
This finding was further supported by the fact that several
transcription factors, which regulate immune response/
inflammatory pathways, were identified as hub genes
(Figure 3C). Amongst these were CEBPB, CEBPD, BCL6,
MT1G, NFKBIA, IFITM1, IFITM2, IFITM3, S100A8, IL4R
and TNFRSF1A. The FC4pos1 module was also enriched
for genes implicated in angiogenesis, e.g. SAT1, ANGPTL4
and JMJD6 (Table 2 and Figure 3C). Notably, as for cere-
bellum, none of the negatively correlated modules was sig-
nificantly enriched for synaptic/neuronal genes (Table 2).
However, hub gene analysis of the FC4neg1 module (GO
enrichment for synapse 1.86, Padj = 0.063) showed several
genes involved in synaptic/neuronal function (GABRG2,
SCN2B, RASGRF1, KCNJ9, GRIN2A, NRXN1, GPR176)
(Additional file 3D). Again, as in cerebellum, mitochon-
drial and proteasomal genes were negatively correlated
with HD. Furthermore, genes implicated in protein trans-
port, glycolysis and another set of protein folding/
chaperone genes were assigned to negatively correlated
modules (Table 2). The overlap of hub genes and statisti-
cally significantly dysregulated genes as determined by
Hodges and colleagues was as follows: FC4pos1 20 of 49 =
40.8%; FC4pos2 3 of 50 = 6.0%; FC4pos3 38 of 44 = 86.4%;
FC4pos4 1 of 50 = 2.0%; FC4neg1 28 of 50 = 56.0%;
FC4neg2 10 of 50 = 20%; FC4neg3 10 of 45 = 22.2%;
FC4neg4 3 of 50 = 6.0%; FC4neg5 28 of 50 = 56.0%. In
total, 217 (28.9% of 750 genes) of the significantly dys-
regulated genes in the frontal cortex BA4 region were
not sorted into modules that were correlated with HD.
As in the original publication, we observed the largest

changes in the caudate nucleus (compare Figure 1A, C
and E), with 3798 (30.4%) genes assigned to negatively
and 5349 (42.8%) genes assigned to positively correlated



Table 2 Gene ontology enrichment for the frontal cortex (BA4 region) network

Module cor GO-term (DAVID) Potential regulators

FC4pos1 up inflammatory response (6.64, 0.000) MEF2 (0.041)1, NFkB (0.041)1, miR34 (0.050)1, let7 (0.041)1

metallothionein (4.02, 0.04) STAT3 (0.005)2, STAT5B (0.005)2, JUN (0.040)2

regulation of transcription (3.58, 0.018)

regulation of apoptosis (3.25, 0.02)

vasculature development (2.7, 0.021)

cation homeostasis (2.68, 0.014)

IκB/NFκB (2.65, 0.02)

FC4pos2 up RNA binding/splicing (2.36, 0.037) E2F (0.006)2, TLX2 (0.006)2, XBP1 (0.008)2, YY1 (0.011)2,
HSF1 (0.021)2, LEF1 (0.021)2, MYC (0.021)2,
SOX5 (0.025)2, AR (0.031)2

FC4pos3 up amino acid catabolic process (5.52, 0.005) miR155 (0.018)1

fatty acid metabolism (3.25, 0.011) MEF2 (0.038)2

FC4pos4 up protein folding/chaperones (3.75, 0.001) miR1 (0.009)1, HSF1 (0.009)1

HSF1 (0.000)2, NFIL3 (0.033)2, STAT1 (0.037)2,
SF1 (0.037)2, NFY (0.039)2

FC4neg1 down protein transport (2.07, 0.03) EVI1 (0.011)2, E4F1 (0.045)2, XBP1 (0.045)2, ATF2 (0.045)2

FC4neg2 down membrane proteins (1.49, 0.2)

FC4neg3 down fibronectin (1.6, 0.84)

FC4neg4 down zinc-finger (1.74, 0.84)

mitochondrion (6.01, 0.000)

proteasome/ubiquitin system (5.01, 0.000) NRF1 (0.036)1

FC4neg5 down glycolysis (3.5, 0.001) ELK1 (0.000)2, SP1 (0.000)2, SF1 (0.001)2, E4F1 (0.001)2,
TCF11 (0.005)2, ATF (0.007)2, JUN (0.007)2,
NRF1 (0.007)2, CREB (0.028)2protein folding/chaperones (3.04, 0.015)

protein transport (3.0, 0.002)

HTT n.a. cytoskeleton (1.43, 0.18)

Gene ontology (GO) enrichment for the frontal cortex BA4 region network. Genes in the identified modules were analyzed using DAVID. The sign of the
correlation (cor) with HD and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the respective fold enrichment, the
second number the adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly
enriched GO-term was identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were identified using 1GO-Elite, or
2WebGestalt. Adjusted P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted in bold. HTT is part of a module,
which is not correlated with HD in the frontal cortex BA4 region network. The GO-term enrichment for 100 genes with the highest correlation with HTT is shown.
The GO-term enrichment for the frontal cortex network with BA4 and BA9 regions combined is shown in Additional file 11.
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modules (Padj < 0.05) (Figure 1F). While the correlation
of modules in the cerebellum and frontal cortex BA4
networks was largely comparable, the correlation of the
caudate nucleus modules was higher, highlighting the
prominent pathology in the striatum of HD patients
(compare Figure 1B, D and F). For gene ontology (GO)
enrichment and regulatory factor prediction of the mod-
ules in the caudate nucleus network see Table 3. We
again observed a very strong linear relationship between
the eigengene based connectivity and the gene signifi-
cance for HD, indicating approximate scale free topology
of the network and existence of hub genes (Additional
file 1C). Overall, preservation of caudate nucleus mod-
ules was better in the frontal cortex (BA4) than in cere-
bellum (Figure 2E and F). Again, this finding most
probably reflects the degree of pathology in the different
tissues. The CNpos6 module was the only module that
was equally well preserved in both cerebellum and frontal
cortex BA4. This module is highly enriched for inflam-
matory response genes (Table 3). The CNpos5 module
seems to be caudate nucleus specific, as it was only
weakly preserved in both, cerebellum and frontal cortex
BA4 despite being a rather large module with 1388
genes. GO analysis showed enrichment for cilium re-
lated genes (Table 3), while the hub genes were enriched
for genes involved in extracellular matrix organization,
e.g. CYR61, CSGALNACT1, ANXA2, AGT, COL21A1,
EFEMP1 and ECM2 (Additional file 4D). The highly
negatively correlated CNneg1 module was enriched for
genes involved in neuronal function, especially for genes
involved in synaptic function/plasticity and ion channels
(Table 3). This finding was reflected in the hub gene ana-
lysis of the CNneg1 module, in which about 50% of the
identified hub genes are implicated to play a role in synap-
tic function (Additional file 4I). Furthermore, all CNneg1
hub genes were statistically significantly dysregulated as



Figure 4 Network comparisons between different tissues in HD reveal a high number of similarly correlated genes, as well as common
hub genes in all three brain regions. Venn diagrams show the overlap of networks (A) or hub genes (B to F) in the respective modules. Only
modules with an overlap of more than 5 hub genes (10%) with modules from other tissues are shown. (A) Venn diagrams highlight the overlap
of positively or negatively correlated genes in the networks of the three tissues. All positively, or negatively correlated genes of the significantly
correlated modules (Figure 1) for each network were combined and compared to their respective assignment in the other networks. The
intersections show the number of genes that were assigned to modules with the same sign of correlation. Caudate nucleus modules CNpos1
(B), CNpos2 (C) and CNpos6 (D) are positively correlated with HD and have common hub genes with cerebellum and frontal cortex BA4
modules. Caudate nucleus module CNneg2 (E) is negatively correlated with HD and also shares common hub genes with cerebellum and
frontal cortex BA4 modules. The positively correlated frontal cortex BA4 region module FC4pos4 (F) overlaps with cerebellum, but not caudate
nucleus modules.
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determined by Hodges and co-workers. The CNneg2 mod-
ule represented the negatively correlated gene clusters, like
e.g. mitochondrial and proteasomal genes, which we also
observed in cerebellum and frontal cortex (Tables 1, 2, 3
and Figure 4E). In addition, this module was enriched for
chaperone and spliceosome genes and genes required for
DNA repair and translation initiation (Table 3). Conse-
quently, also its hub genes were mostly enriched for mito-
chondrial genes (Figure 3F). Modules that were positively
correlated with HD in the caudate nucleus network were,
amongst others, enriched for transcriptional regulators,
chromatin modifiers and genes involved in mRNA pro-
cessing (modules CNpos1 and CNpos2, Table 3). Espe-
cially genes functioning in the development of blood
vessel, glial cells, epithelial cells and astrocytes clustered in
the hub genes of the CNpos2 module (Additional file 4A).
Also, all hub genes in the CNpos1 and CNpos2 modules
were statistically significantly dysregulated [27] (Figure 3E
and Additional file 4A). Hub gene and GO analysis
showed a very high enrichment for inflammatory
response/immune system genes in the CNpos6 and
CNpos8 modules (Table 3 and Additional file 4E and G).
Noteworthy, 6 complement genes (C1R, C1S, C1QA,
C1QB, C3 and C5AR1) were assigned hub gene status
in these modules including the central component C3
(Additional file 4G). However, only C3 was previously
found to be significantly dysregulated (Additional file 4E
and G). The caudate nucleus network fit the analysis by
Hodges and colleagues very well, as in total only 193
(5.0% of 3825 genes) of the significantly dysregulated
genes were not sorted into modules that were correlated
with HD.

Comparison of the three human brain region networks
To investigate the similarity of transcriptional dysregula-
tion between tissues, we compared the significantly posi-
tively and negatively correlated genes in the three
networks (Figure 4A), as well as the conservation of hub
genes (Figure 4B-F). Using the caudate nucleus network
as the basis, we found that both cerebellum and frontal



Table 3 Gene ontology enrichment for the caudate nucleus network

Module cor GO-term (DAVID) Potential regulators

CNpos1 up regulation of transcription (6.18, 0.000) YY1 (0.000)2, ELK1 (0.001)2, GABPB1 (0.002)2,
SP1 (0.002)2, NRF1 (0.002)2, E2F (0.007)2, IRF1 (0.011)2,
GTF3A (0.032)2, SOX9 (0.033)2chromatin modification (3.85, 0.003)

mRNA processing (3.71, 0.004)

CNpos2 up regulation of transcription (5.94, 0.001) NFAT (0.004)2

cell migration (4.09, 0.004)

lipid metabolism (2.51, 0.001)

CNpos3 up RNA binding (0.65, 1.0)

CNpos4 up chromatin organization (2.45, 0.008) EGR2 (0.010)2, MYC (0.040)2, TCF3 (0.040)2, NR2F2 (0.040)2,
TCF12 (0.040)2, SP1 (0.040)2, EGR1 (0.040)2, EGR4 (0.040)2

CNpos5 up cilium (2.79, 0.003)

CNpos6 up inflammatory response (8.33, 0.000) STAT5A (0.000)2, STAT3 (0.000)2, STAT5B (0.000)2,
BACH2 (0.002)2, NFAT (0.005)2, JUN (0.020)2, NFE2 (0.035)2

CNpos7 up regulation of transcription (3.0, 0.045)

CNpos8 up inflammatory response (14.15, 0.000) ELF1 (0.000)2, STAT1/STAT2 (0.017)2, IRF1 (0.017)2

icosanoid metabolism (1.73, 0.001)

CNpos9 up myelination (3.06, 0.002)

oligodendrocyte/glial differentiation (2.4, 0.054)

CNneg1 down synapse (12.23, 0.000) miR16 (0.018)1, NRF1 (0.03)1REST (0.000)2, EGR1 (0.000)2,
SF1 (0.000)2, CREB1 (0.000)2, JUN (0.000)2, EGR4 (0.000)2,
MYOD1 (0.000)2, TCF3 (0.000)2, RORA (0.000)2, ATF1 (0.000)2,
E4F1 (0.000)2, SP1 (0.000)2, ESRRA (0.001)2, TCF11 (0.002)2,
PAX4 (0.002)2, TFAP4 (0.003)2, MAZ (0.003)2, HAND1 (0.006)2,
EGR2 (0.007)2, NRF2 (0.007)2, ATF3 (0.008)2, RFX1 (0.008)2,
POU3F1 (0.008)2, LEF1 (0.011)2, POU1F1 (0.019)2, MYB (0.027)2,
TCF12 (0.041)2, NFE2 (0.041)2, MEIS1 (0.044)2, SREBF1 (0.050)2

ion channels (4.61, 0.000)

regulation of synaptic plasticity (4.58, 0.000)

protein transport (2.89, 0.011)

protein targeting to mitochondrion (2.75, 0.007)

CNneg2 down mitochondrion (20.31, 0.000) YY1 (0.005)1, ETS1 (0.005)1, NRF1 (0.005)1ELK1 (0.000)2

proteasome/protein catabolic process (5.83, 0.000)

mitochondrial ribosome (4.54, 0.000)

chaperones (3.17, 0.012)

spliceosome (3.0, 0.002)

DNA repair (2.47, 0.027)

translation initiation (1.95, 0.007)

CNneg3 down hemoglobin complex (1.74, 0.024)

HTT down neuron projection (1.93, 0.56)

Gene ontology (GO) enrichment for the caudate nucleus network. Genes in the identified modules were analyzed using DAVID. The sign of the correlation (cor)
with HD and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the respective fold enrichment, the second number the
adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly enriched GO-term was
identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were identified using 1GO-Elite, or 2WebGestalt. Adjusted
P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted in bold. HTT is part of the CNneg1 module in the
caudate nucleus network. The GO-term enrichment for 100 genes with the highest correlation with HTT is shown.
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cortex BA4 networks exhibited considerable similarities
of significantly correlated genes (Figure 4A). More than
1200 genes were correlated in the same way in all three
brain regions; the correlations of 1563 genes were con-
served between caudate nucleus and frontal cortex BA4
and 1724 genes were similarly correlated in caudate nu-
cleus and cerebellum (Figure 4A). Gene ontology enrich-
ment analysis showed that metallothioneins and genes
involved in the stress response and angiogenesis were
commonly positively correlated with HD in all three
networks (Table 4). Genes implicated in mitochondrial
function, glycolysis, intracellular protein transport, pro-
teasome and synaptic vesicles were commonly nega-
tively correlated with HD in all three networks (Table 4).
Furthermore, we found extensive conservation of hub
genes in modules that were positively correlated with HD
(Figure 4B to D). However, only one set of modules, which
were negatively correlated with HD, exhibited common
hub genes (Figure 4E). Interestingly, the CNneg1 module
of the caudate nucleus network, which represented the



Table 4 Gene ontology enrichment for conserved genes between HD networks

Overlap GO-term (DAVID) Potential regulators

Positively correlated genes

CN and FC-BA4 inflammatory response (5.6, 0.001) MYC/MAX (0.010)2, STAT3 (0.010)2, ETS2 (0.020)2

epithelial to mesenchymal transition (1.18, 0.026)

CN and CB regulation of transcription (5.2, 0.000)

mRNA processing (3.69, 0.001)

apical junction complex (1.91, 0.027)

FC-BA4 and CB zinc-finger (1.17, 0.44)

all three networks metallothionein (5.1, 0.000) FOXF2 (0.002)2, NFIL3 (0.010)2, LEF1 (0.017)2, HSF1 (0.017)2,
ATF2 (0.022)2, HIF1A (0.026)2, SP1 (0.042)2

stress response/chaperones (2.62, 0.02)

angiogenesis (2.61, 0.039)

Negatively correlated genes

CN and FC-BA4 synaptic transmission (4.8, 0.000) REST (0.004)2, EGR4 (0.015)2, SP1 (0.015)2, ATF1 (0.022)2,
MEIS1 (0.022)2, ELK1 (0.022)2, ESRRA (0.040)2, ATF3 (0.046)2,
E4F (0.046)2, SF1 (0.046)2, LEF1 (0.046)2ion channels (4.65, 0.000)

protein catabolic process (4.23, 0.008)

CN and CB mitochondrion (8.46, 0.000) SF1 (0.002)2, E4F (0.020)2

intracellular protein transport (3.02, 0.023)

vesicle mediated transport (2.19, 0.013)

FC-BA4 and CB coenzyme metabolic process (1.86, 0.98) ELK1 (0.007)2, E4F (0.007)2

all three networks mitochondrion (6.01, 0.000) CREB (0.000)2, ATF3 (0.001)2, SF1 (0.015)2, ERR1 (0.015)2,
TCF11 (0.015)2, ELK1 (0.018)2, ATF4 (0.018)2, SREBF1 (0.018)2,
ATF6 (0.019)2, E4F (0.024)2, JUN (0.026)2, EGR1 (0.039)2, NRF1 (0.049)2glycolysis (2.74, 0.003)

intracellular protein transport (2.59, 0.028)

proteasome (1.97, 0.001)

synaptic vesicle (1.82, 0.018)

Gene ontology (GO) enrichment for conserved genes between HD networks. Genes were analyzed using DAVID and the over-represented GO-terms are shown.
The first number in brackets after the GO-term is the respective fold enrichment, the second number the adjusted P-value, as determined by DAVID. All significantly
enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly enriched GO-term was identified, the GO-term with the highest fold enrichment is
shown. Potential regulators of a module were identified using 1GO-Elite, or 2WebGestalt. Adjusted P-values are given in brackets after the name.
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“neuron/synaptic” module had only 7 hub genes overlap
within several cerebellum modules and only 3 hub genes
overlap in the frontal cortex BA4 region network, indicat-
ing its tissue specific character (data not shown). The
CBpos5 cerebellum module and the FC4pos4 frontal cor-
tex BA4 module were both enriched for chaperone genes
(Tables 1 and 2). Consequently, we identified many
chaperone genes, which had hub gene status in both
networks (Figure 4F).

Meta analysis of the caudate nucleus network with other
disorders
Next, we analyzed the preservation of the caudate nucleus
network modules in gene expression datasets of other dis-
orders (Figure 5). We used our caudate nucleus network,
which was derived from the most affected brain tissue in
HD and compared it to other highly affected tissues
(Table 5). In addition to other neurodegenerative disorders
(Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS), multiple sclerosis (MS), Parkinson’s disease (PD)
and schizophrenia (SCHIZ)), we also included muscle
related diseases (myotonic dystrophy type 1/type 2 (DM1,
DM2) and Duchenne Muscular Dystrophy (DMD)), di-
lated cardiomyopathy (DCM) and cancers (renal cell
carcinoma (RCC) and ganglioglioma (GG)). When we
analyzed the preservation of the caudate nucleus modules
[27] in another HD dataset (HD-II) [35], we observed very
high Z-summary scores for most modules, indicating a
good reproducibility and thus robustness of the HD net-
works. The CNpos3 and CNpos4 modules were only
assigned a few genes (Figure 1F), which most probably
was the reason for their low preservation score (Figure 5A).
The CNpos7 and CNneg3 modules had an average num-
ber of genes assigned to them. However, they appeared to
be rather dataset specific, as we generally observed low Z-
summary scores (Figure 5A). Other diseases that result in
pronounced neurodegeneration, e.g. AD, ALS, MS, PD,
SCHIZ or GG also exhibited high preservation scores for
most modules. As controls for our preservation analysis
we used the RCC, DMD and DCM data. In these datasets,
Z-summary scores were low, apart from the two “inflam-
matory” modules CNpos6 and CNpos8, which were highly



Figure 5 Preservation analysis of HD caudate nucleus network modules in other diseases and in HD mouse models highlights
common transcriptional changes. (A) Preservation analysis of HD caudate nucleus network modules in various diseases. The Z-summary values
are shown as a heat map from white (−1) to brown (75). Colors next to the modules indicate correlation (cor) with HD, as shown in (B), together
with a short summary table of Table 3. HD-II = Huntington’s disease dataset 2; AD = Alzheimer’s disease; ALS = Amyotrophic lateral sclerosis; MS =multiple
sclerosis; PD = Parkinson’s disease; SCHIZ = Schizophrenia; RCC = renal cell carcinoma; GG = ganglioglioma; DM1, DM2 =myotonic dystrophy
type 1, type 2; DMD = Duchenne Muscular Dystrophy; DCM = dilated cardiomyopathy. For details of the datasets see Table 5. (C and D) A HD
caudate nucleus network with only control samples as the input for the preservation analysis was generated (n = 32). (C) Preservation analysis
of these human caudate modules in a dataset of only wild type mouse samples from the R6/2 dataset (n = 9), or all wild type mouse samples,
respectively (n = 22) (excluding the Q80 data, due to the different type of microarray). (D) The median Z-summary values from the analysis in
(C) for modules of certain size ranges were calculated and are shown as a heat map from white (−1) to brown (15). (E) Preservation analysis
of HD caudate nucleus network modules in HD mouse models. The Z-summary values are shown as a heat map from white (−1) to brown (15). Colors
next to the modules indicate correlation with HD, as shown in (B). Q80 = Hdh480Q; Q92 = HdhQ92; Q150 = HdhQ150; mth =months.
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preserved in virtually all datasets (Figure 5A and B).
Interestingly, the highest correlated (with HD) modules
CNpos1 and CNneg1 showed only moderate preserva-
tion in MS. However, the two “inflammatory” modules
again were very highly preserved between the HD and
MS datasets (Figure 5A). For the muscle wasting dis-
ease myotonic dystrophy, type 1 showed higher preser-
vation scores than type 2. But notably both were
characterized by a lack of preservation of the CNneg1
“neuron/synaptic” module, yet high preservation of the
CNneg2 and CNpos1 modules (Figure 5A and B). This
finding once more highlights the aforementioned suc-
cessful separation of the synaptic/neuronal (CNneg1)
transcriptional dysregulation from the more ubiquitous
dysregulated genes (CNneg2) in our networks.

Meta analysis of the caudate nucleus network with mouse
models of HD
Many models of HD exist, amongst which the murine
models are the best studied [36,37]. However only lim-
ited data on transcriptome wide dysregulation is publicly
available and the cross-species comparison additionally
complicates meta analyses. To gain a first impression
how the species comparison might affect the preserva-
tion analysis we compared only the caudate nucleus sam-
ples from control subjects with the wild type striatum



Table 5 Microarray datasets used in this study

Set Accession ctr/patient Tissue Array Overlap Reference

main HD GSE3790 26/38 cerebellum GPL96 100% [27]

16/18 BA4 region of frontal cortex

12/18 BA9 region of frontal cortex

32/36 caudate nucleus

AD GSE26927 7/11 entorhinal cortex GPL6255 94.2% [35]

ALS 9/10 cervical spinal cord

HD-II 10/9 ventral head of the caudate nucleus

MS 10/8 superior frontal gyri

PD 8/12 substantia nigra

SCHIZ 8/9 temporal cortex left, BA22 region

DM1 GSE7014 5/10 skeletal muscle GPL570 100% [81]

DM2 5/20 skeletal muscle

DMD GSE6011 14/22 quadriceps muscle GPL96 100% [82]

DCM GSE3585 5/7 heart GPL96 100% [83]

RCC GSE781 5/12 kidney GPL96 100% [84]

GG E-MEXP-1690 6/6 brain GPL96 100% [85]

Set Accession WT/HD Tissue Array Overlap Reference

Q80 GSE10263 3/3 striatum GPL81 51.2% [28]

Q150 GSE10263 4/4 striatum GPL1261 81.9%

Q92 GSE7958 3/3 (3 mth) striatum GPL1261 81.9%

3/3 (18 mth)

R6/2 GSE10263 9/9 striatum GPL1261 81.9%

YAC128 GSE19677 4/4 (12 mth) 3/6 (24 mth) striatum GPL1261 81.9% [24]

The abbreviations for the datasets are as follows: main HD =main Huntington’s disease dataset; AD = Alzheimer’s disease; ALS = Amyotrophic lateral sclerosis;
HD-II = Huntington’s disease dataset 2; MS =multiple sclerosis; PD = Parkinson’s disease; SCHIZ = schizophrenia; DM1, DM2 =myotonic dystrophy type 1, type 2;
DMD = Duchenne muscular dystrophy; DCM = dilated cardiomyopathy; RCC = renal cell carcinoma; GG = ganglioglioma; Q80 = Hdh480Q; Q150 = HdhQ150;
Q92 = HdhQ92. Accession is the accession number of the EMBL-EBI ArrayExpress, or NCBI Gene Expression Omnibus (GEO). Ctr/patient and WT/tg gives the sample
numbers after outlier removal for control (ctr) or patient samples and wild type (WT) or HD mouse model samples (HD), respectively. For details of outlier removal
procedure see materials and methods. Array lists the microarray type used for the particular study; for details see the GEO database. Overlap gives the percentage
of genes, which are detected on the particular chip in comparison to the main HD array (GPL96).
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mouse samples. To this end, we computed a network for
the human control samples and calculated the preserva-
tion Z-summary score for its modules in the R6/2 wild
type samples, or all mouse wild type data except the Q80
dataset, respectively (Figure 5C and D). We only included
genes that were conserved between both species. Both
meta analyses of control human caudate nucleus and wild
type mouse striatum data were very comparable and we
obtained median Z-summary values of less than 5 for
the preservation of modules of defined sizes (Figure 5C
and D). This led us to hypothesize that Z-summary
values above this value would indicate high cross-
species preservation and would be correlated to effects
induced by mutant huntingtin. The Q80 dataset was
obtained with a different type of microarray than the
other mouse datasets (Table 5), in which only about 50% of
the genes were conserved and therefore Z-summary values
were very low (Figure 5E). In general, for the other mouse
datasets, preservation was better in fully symptomatic
animals (Figure 5E, compare time points for Q92 and
YAC128), with absolute age of the animals being irrelevant.
Given our data for the control/wild type cross-species
comparison (Figure 5C and D), the negatively correlated
modules of the human HD caudate nucleus dataset were
very highly preserved in the mouse models, while the posi-
tively correlated modules were in general less highly pre-
served (Figure 5E).
To reveal further similarities between gene expression

in the human HD samples and other disorders or the
mouse models, respectively, we computed consensus net-
works. In this type of network, only genes, which are simi-
larly regulated in both disorders or species and which are
assigned to modules that are correlated with the trait of
interest in both datasets, are analyzed. In our preservation
analysis we observed very high Z-summary values for the
PD dataset (Figure 5A). Accordingly, we also identified
consensus modules, which were highly correlated both
with HD and PD disease states (Figure 6A and B). Gene



Figure 6 WGCNA analysis of the HD/PD consensus dataset indicates commonly dysregulated pathways. (A) Visualization of modules that
are highly correlated with Huntington’s (HD) and Parkinson’s (PD) disease state. Size is the number of genes for each module. Padj gives the
Benjamini Hochberg corrected significance value of correlation with HD/PD for each module. (B) Correlations of eigengene based connectivity
(kME) versus the gene significance for HD and PD. The two modules with the highest absolute correlation are shown for each disease dataset.
cor = correlation. (C and D) Visualization of hub genes in HD/PD consensus network modules. The 50 most connected genes (nodes) and the
500 strongest gene-gene interactions (edges) in each module are shown. The width and the color saturation of the lines (edges) correspond to
the weight of the interactions. The PDpos2 module is visualized in Additional file 5. (E - G) Hub gene comparison of HD/PD consensus modules versus
modules of the HD caudate nucleus (CN) dataset. Venn diagrams show the overlap of hub genes in the respective consensus modules with
HD caudate nucleus modules. Only consensus modules with an overlap of 5 or more genes to CN modules are shown. For analysis of a HD/GG
consensus network see Additional file 6; HD/RCC see Additional file 7; HD/DM1 see Additional file 8; HD/DM2 see Additional file 9.
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ontology enrichment and hub gene analysis showed that
these modules, which were positively correlated with HD
and PD, were enriched in genes implicated in NFκB sig-
naling, neurogenesis and lipid synthesis (Figure 6C, Table 6
and Additional file 5). The negatively correlated module
in the HD/PD consensus network was enriched for genes
involved in synaptic and mitochondrial function, as well
as calmodulin binding proteins (Figure 6D and Table 6).
In addition, there was a high overlap of hub genes of con-
sensus network modules with the hub genes that we iden-
tified in the caudate nucleus dataset (Figure 6E-G).
Interestingly, several Alzheimer’s disease related genes
(PSEN1, SORL1, FGFR1, BMP7, FYN, BCL2, SCD, NPC2,
PTBP1, TNFRSF1A, ITGB1, LHPP, LRP2, LRPAP1, LPL,
L1CAM, CNNM1 and HSPA12A) had hub gene status in
this HD/PD consensus network (Figure 6E-G). Next, we
analyzed consensus networks of the HD caudate nucleus
dataset with the datasets of other disorders, the same we
had used in the preservation analysis. We did not find sig-
nificantly correlated modules (with disease) in the consen-
sus networks for HD with AD, ALS, MS and SCHIZ.
However, we could identify significantly correlated
modules with the two cancer datasets (Additional files 6
and 7) and the two types of myotonic dystrophies



Table 6 Gene ontology enrichment for the consensus networks in human datasets

Module cor GO-term (DAVID) Potential regulators

Parkinson’s disease (PD)

PDpos1 up IκB kinase/NFκB (3.59, 0.032)

PDpos2 up lipid synthesis (2, 0.01)

PDneg1 down synapse (5.87, 0.000) miR16 (0.036)1

mitochondrion (4.6, 0.000) ESRRA (0.001)2, SF1 (0.003)2

calmodulin binding (3.12, 0.044)

Myotonic dystrophy type 1 (DM1)

DM1pos1 up regulation of neurogenesis (1.55, 0.99) MEF2 (0.040)2, E2F (0.040)2, NR3C1 (0.040)2,
PITX2 (0.040)2, ATF6 (0.040)2, VDR (0.040)2, ATF1 (0.040)2,
TP53 (0.041)2

DM1neg1 down axon (1.18, 0.98) POU2F1 (0.011)2, POU1F1 (0.034)2, IRF2 (0.048)2

DM1neg2 down enzyme activator activity (2.52, 0.049)

DM1neg3 down synapse (2.29, 0.008) SF1 (0.001)2, REST (0.032)2

Myotonic dystrophy type 2 (DM2)

DM2pos1 up lysosome (3.03, 0.043)

DM2pos2 up regulation of transcription (1.51, 0.99)

DM2pos3 up tubulin binding (1.64, 0.52)

DM2pos4 up sarcomer (1, 1.0)

DM2neg1 down mitochondrion (3.09, 0.01)

DM2neg2 down dendrite (1.91, 0.51) NRF1 (0.009)1, ETS1 (0.054)1

Ganglioglioma (GG)

GGpos1 up inflammatory response (6.32, 0.002) NFκB (0.022)1, miR124 (0.022)1, miR106b (0.022)1, MYOG (0.066)1

cell adhesion/extracellular matrix (4.13, 0.002) ELF1 (0.000)2, IRF8 (0.008)2, MYB (0.008)2, ELK1 (0.010)2,
SPI1 (0.010)2, CEBPA (0.016)2, NFAT (0.029)2, IRF1 (0.034)2,
STAT5A (0.034)2, AHR (0.043)2, SOX5 (0.049)2, TP53 (0.049)2

GGneg1 down axon (11.88, 0.000) REST (0.000)2, SF1 (0.000)2, TCF3 (0.000)2, ESRRA (0.000)2,
MYOD (0.000)2, RFX1 (0.000)2, RORA (0.000)2, EGR1 (0.000)2,
JUN (0.000)2, TCF11 (0.000)2, ATF3 (0.000)2, LEF1 (0.000)2,
PAX4 (0.000)2, E4F1 (0.000)2, CREB (0.000)2, HLF (0.001)2,
MAZ (0.001)2, SP1 (0.001)2, NFIL3 (0.001)2, BACH1 (0.002)2,
ATF2 (0.002)2, ATF1 (0.002)2, TFAP4 (0.002)2, TCF8 (0.003)2,
ZNF238 (0.004)2, NFE2 (0.005)2, HSF1 (0.006)2, MIF (0.010)2,
CUTL1 (0.012)2, SREBF1 (0.016)2, NF1 (0.020)2, MEIS1 (0.020)2,
HSF2 (0.021)2, NFE2L2 (0.021)2, PCAF (0.023)2, GCF1 (0.034)2,
ITGAL (0.034)2, ATF4 (0.035)2, MAF (0.038)2, TAL1 (0.043)2,
NR1H4 (0.044)2, GATA2 (0.044)2, SOX9 (0.046)2

synapse (11.64, 0.000)

microtubuli based transport (5.18, 0.000)

calmodulin binding (4.87, 0.000)

cytoskeleton (3.63, 0.000)

neuropeptide (1.96, 0.012)

signaling from G-protein families (1.49, 0.025)

Renal cell carcinoma (RCC)

RCCpos1 up inflammatory response (12.47, 0.000) NFκB (0.06)1, E2F (0.081)1

regulation of IκB kinase/NFκB (5.54, 0.000) IRF8 (0.000)2, IRF1 (0.000)2, ETS2 (0.000)2, ELF1 (0.000)2,
SPI1 (0.000)2, ELF2 (0.001)2, STAT1 (0.001)2, E2F (0.001)2,
ETS1 (0.007)2, GABPA (0.007)2, ELK1 (0.010)2, STAT5B (0.021)2,
FOXO4 (0.022)2, TP53 (0.024)2, AHR (0.025)2, ETV4 (0.026)2,
STAT3 (0.032)2, SMAD1 (0.037)2, IRF7 (0.037)2, AR (0.040)2

angiogenesis (5.17, 0.004)

caspase recruitment (4.8, 0.002)

regulation of transcription (4.03, 0.003)

regulation of apoptosis (3.09, 0.004)

extracellular matrix (2.81, 0.005)

chromatin (2.6, 0.023)

RCCpos2 up semaphorin/CD100 antigen (1.45, 0.023)
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Table 6 Gene ontology enrichment for the consensus networks in human datasets (Continued)

RCCneg1 down mitochondrion (31.99, 0.000) CREB (0.006)1, NRF1 (0.006)1, miR16 (0.068)1

protein catabolic process/proteasome (2.29, 0.037) SF1 (0.000)2, ESRRA (0.000)2, E4F1 (0.006)2, JUN (0.030)2,
ATF3 (0.030)2, NRF1 (0.047)2

synaptic vesicle (1.34, 0.029)

Gene ontology (GO) enrichment for the consensus network analysis of the HD caudate nucleus dataset with various diseases. Genes in the identified modules
were analyzed using DAVID. The sign of the correlation (cor) and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the
respective fold enrichment, the second number the adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown.
In cases where no significantly enriched GO-term was identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were
identified using 1GO-Elite, or 2WebGestalt. Adjusted P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted
in bold.
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(Additional file 8 and 9). Taken together, in these con-
sensus networks, the negatively correlated modules
were mostly enriched for genes involved in neuronal
and mitochondrial function, the positively correlated
modules were mostly enriched for inflammatory path-
way genes in the two cancers and for regulators of
transcription and neurogenesis in DM1 and DM2
(Additional files 6, 7, 8 and 9 and Table 6). This largely
mirrored the preservation analysis (Figure 5). We also
could identify significantly correlated modules in the
R6/2 and HdhQ150 datasets (Figures 7 and 8). The
negatively correlated modules for both mouse models
were enriched for synaptic genes (Figures 7C and D, 8D
and Table 7) and many of these also had hub genes sta-
tus in the human CNneg1 module (Figures 7F and 8E).
GO analysis of the positively correlated module in the
human HD/R6/2 consensus network showed genes in-
volved in lipid metabolism and regulation of neurogen-
esis (Figure 7E and Table 7). In the positively correlated
module of the human HD/HdhQ150 consensus net-
work, we found an enrichment for extracellular matrix
genes and regulators of cell development (Figure 8C and
Table 7). Furthermore, the positively correlated modules
for both mouse models exhibited extensive overlap of hub
genes with positively correlated modules in the human
caudate nucleus dataset (Figures 7G and 8F).

Discussion
In this study we use weighted correlation networks to
analyze gene expression data from different brain re-
gions of HD patients and compared them to other disor-
ders and HD mouse models. In summary, we found
comparable dysregulation to previously reported changes
[27] in the BA4 and BA9 regions of the frontal cortex
and the caudate nucleus. However, in contrast to previ-
ous findings, our analysis of the cerebellum detected ex-
tensive transcriptional dysregulation, to a similar extent
to that seen in the BA4 region of the frontal cortex. Subse-
quent in depth comparison of the brain region specific
networks revealed an underlying common transcriptional
signature in all three brain regions: a negative correlation
with HD for mitochondrial function, glycolysis, intracellu-
lar protein transport, proteasome and synaptic vesicles
and a positive correlation with HD for metallothioneins
and genes involved in stress response pathways and angio-
genesis. Moreover, meta analyses of the caudate nucleus
network and other disorders showed similarities for these
disorders with HD, in particular with a high enrichment
for inflammatory pathway genes. Lastly, we compared well
studied HD mouse models to the human gene expression
dataset, which implied that whilst the mouse models
mimic some aspects of the disease very well, certain as-
pects, for example induction of the inflammatory re-
sponse, were only poorly reflected.
Yet, there are certain limitations and considerations

for data interpretation of the current study. As with all
post mortem tissues, RNA quality might be a problem.
However, the authors of the original publication used
rigorous standards to ensure comparable RNA quality
and microarray reads [27]. In addition, we used a con-
nectivity based outlier test to remove samples that didn’t
pass our quality control [38] (see also materials and
methods section). A further consideration is that the post
mortem samples provide a snapshot of end stage disease
gene expression, which might not necessarily reflect the
underlying changes at or before disease onset or during
disease progression. We consequently found the best pres-
ervation of human striatal gene expression changes in late
stage mouse models (Figure 5E). Collection of patient
samples, e.g. from peripheral tissues such as muscle at dif-
ferent disease stages might shed more light on the regula-
tion of gene expression during disease progression. What’s
more, the massive amount of neurodegeneration, greater
than 90% in the striatum for grade 4 brains [39], poses the
danger that changes in tissue/cell type composition are
compared rather than changes in gene expression. Hodges
and colleagues addressed this issue with laser-capture
micro-dissection of control and patient tissue (grade 1)
followed by the analysis of the same number of neurons
for both. They found similar trends for gene expression
changes in the captured neurons as compared to the
tissue-based analysis and therefore, concluded that these
changes occurred before cell death [27]. Our preservation
and consensus network analyses showed that the mouse
models very well mirror the “synaptic/neuronal” CNneg1
module of the human caudate nucleus network and in fact
we observed the highest preservation scores for this mod-
ule (Figure 5E). Furthermore, we found high enrichment



Figure 7 WGCNA analysis of the human HD/R6/2 consensus dataset indicates commonly dysregulated pathways. (A) Visualization of
modules that are highly correlated with Huntington’s disease (HD) state and genotype of R6/2 mice. Size is the number of genes for each
module. Padj gives the Benjamini Hochberg corrected significance value of correlation with human HD/R6/2 for each module. (B) Correlations of
eigengene based connectivity (kME) versus the gene significance for human HD and R6/2. The two modules with the highest absolute correlation are
shown for each dataset. cor = correlation. (C - E) Visualization of hub genes in human HD/R6/2 consensus network modules. The 50 most connected
genes (nodes) and the 500 strongest gene-gene interactions (edges) in each module are shown. The width and the color saturation of the lines
(edges) correspond to the weight of the interactions. (F and G) Hub gene comparison of human HD/R6/2 consensus modules versus modules of the
HD caudate nucleus (CN) dataset. Venn diagrams show the overlap of hub genes in the respective consensus modules with HD caudate
nucleus modules. Only consensus modules with an overlap of 5 or more genes to CN modules are shown.
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for synaptic and neuronal genes in the negatively corre-
lated modules in the R6/2 and HdhQ150 consensus net-
works (Figures 7, 8 and Table 7). Given that very little
striatal neurodegeneration occurs in both mouse models
[40-42], the observed gene expression changes in the hu-
man datasets are most probably not due to differences in
tissue composition and could therefore, at least partly, be
the underlying cause for neuronal cell death. As for all
bioinformatic predictions of dysregulated pathways in vivo
validation is the logical next step. Regrettably, we do not
have access to human HD brain tissue in sufficient quan-
tity and quality to test the predictions of our analysis. For
many, although not all of the predicted dysregulated path-
ways, there is an extensive literature that provides evidence
for attenuated function in HD mouse models and HD pa-
tients (reviewed for example in [43,44]). Given that many
of our predicted dysregulated pathways have been corrob-
orated through the research reported by others, we expect
that some of the novel predicted pathways will be con-
firmed in future studies as being affected in HD.
In a previous publication, Horvath and colleagues used

a network based approach to compare the same HD pa-
tient caudate nucleus gene expression dataset to the
modular structure of the transcriptome in normal hu-
man brains [30,38]. The focus of the study was however
on the biologically meaningful relationship between
samples, which can be distinguished with a connectivity
based analysis. Nevertheless, they identified a module



Figure 8 WGCNA analysis of the human HD/HdhQ150 consensus dataset indicates commonly dysregulated pathways. (A) Visualization
of modules that are highly correlated with Huntington’s disease (HD) state and genotype of HdhQ150 mice. Size is the number of genes for each
module. Padj gives the Benjamini Hochberg corrected significance value of correlation with human HD/HdhQ150 for each module. (B) Correlations of
eigengene based connectivity (kME) versus the gene significance for human HD and HdhQ150. The two modules with the highest absolute
correlation are shown for each dataset. cor = correlation. (C and D) Visualization of hub genes in human HD/HdhQ150 consensus network
modules. The 50 most connected genes (nodes) and the 500 strongest gene-gene interactions (edges) in each module are shown. The width
and the color saturation of the lines (edges) correspond to the weight of the interactions. (E and F) Hub gene comparison of human
HD/HdhQ150 consensus modules versus modules of the HD caudate nucleus (CN) dataset. Venn diagrams show the overlap of hub genes in
the respective consensus modules with HD caudate nucleus modules.
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that had considerable similarity with the salmon “neur-
onal, synaptic and signal transduction” module of the
normal human transcriptome and which was altered in
HD. This is in very good agreement with our data, where
we identified a homologous module (CNneg1) in the
caudate nucleus network.
It is noteworthy to mention that a linear relationship

between the correlation of a gene with disease and dif-
ferential expression analysis does not necessarily exist.
Therefore, although a gene can be highly correlated with
a particular trait, the change in expression level can be
relatively small. With standard dysregulation analysis,
gene expression changes in a subpopulation of cells might
be lost in a background of non-affected cells. With network
analysis, we were able to find highly comparable GO en-
richments and hub gene structures for the frontal cortex
BA4 region even when analyzed together with the un-
affected BA9 region. This implies that a weighted gene net-
work approach can detect gene expression changes in a
sub-population of cells, even against a huge background of
expression signals of the same genes in unaffected tissue.
The only major difference in analysis of the combined tis-
sues was a reduction in the correlation of the modules with
HD (Figures 1C and D, Table 3 and Additional files 10
and 11). We observed relatively small, yet statistically
significant correlations of modules in the cerebellum
with HD when compared to caudate nucleus, a finding,
which is similar to that found in an HD mouse model



Table 7 Gene ontology enrichment for the consensus
networks in mouse datasets

Module cor GO-term (DAVID) Transcription
factor

HdhQ150

Q150pos1 up extracellular matrix (1.71, 0.65)

Q150neg1 down synaptic transmission/synapse
(8.81, 0.000)

CREB (0.045)1

neuron projection/axon
(2.4, 0.019)

mitochondrion (2.1, 0.007)

R6/2

R6/2pos1 up fatty acid metabolism
(1.98, 0.13)

SOX9 (0.049)2

R6/2neg1 down synaptic transmission
(6.77, 0.000)

gated channel activity
(2.3, 0.02)

neurotransmitter transport
(2.08, 0.005)

R6/2neg2 down ion transport (1.68, 0.64)

Gene ontology (GO) enrichment for the consensus network analysis of the HD
caudate nucleus dataset with HD mouse models. Genes in the identified
modules were analyzed using DAVID. The sign of the correlation (cor) and the
over-represented GO-terms are shown. The first number in brackets after the
GO-term is the respective fold enrichment, the second number the adjusted
P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05)
GO-terms are shown. In cases where no significantly enriched GO-term was
identified, the GO-term with the highest fold enrichment is shown. Potential
regulators of a module were identified using 1GO-Elite, or 2WebGestalt.
Adjusted P-values are given in brackets after the name.
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[45]. One explanation for this effect could be that only
a sub-population of cells in the cerebellum, yet to be
determined, is affected.
In all three brain regions, we found genes involved in the

function of mitochondria, glycolysis, intracellular protein
transport, proteasome and synaptic vesicles to be com-
monly negatively correlated with HD, and metallothioneins
and genes involved in stress response pathways and angio-
genesis to be commonly positively correlated with HD
(Table 4). This led us to hypothesize that the HD mutation
causes a common transcriptional signature (Figure 5). Fur-
thermore, the preservation of modules between each of the
three brain region networks was generally very high, with
only a few tissue specific modules (Figure 2). The CNpos5
module, specific to the caudate nucleus network, is poten-
tially very interesting by virtue of its large size and correl-
ation with HD (Figure 2E and F) and provides a good
example of the drawbacks of gene ontology enrichment
analysis. Historically driven, the gene ontology databases
do not include the central nervous system specific func-
tions of genes and are, as all large databases, plagued with
incompletion, imprecision and a bias towards certain, well
studied pathways [46]. So the only enriched functional
cluster for this module contained genes implicated in
cilium function (Table 3). Also, most probably because of
the same aforementioned reasons, an upstream regulator
was not identified. Yet, one of the advantages of connectiv-
ity based network analysis is the ranking of genes accord-
ing to their co-regulation with other genes. This allows one
to identify hub genes, which often are the biological key
players in a particular module [47]. And indeed, 7 of the
top 50 hub genes of the CNpos5 module have a probable
function in extracellular matrix organization (CSGAL-
NACT1, CYR61, ANXA2, AGT, COL21A1, EFEMP1 and
ECM2).
In addition to the newly identified transcriptional signa-

ture in the cerebellum, we found highly positively corre-
lated modules enriched for genes involved in inflammation
for both the cortex BA4 region and caudate nucleus
(Tables 2 and 3). This is probably not surprising given
the widespread gliosis that occurs in the brains of HD
patients [48], however it was not identified in the ori-
ginal analysis [27]. A gene expression network study in
late-onset AD identified an immune system/microglia
module that was highly correlated with AD pathology
[49]. In our comparison of HD with other disorders, the
two “inflammatory” modules CNpos6 and CNpos8 were
largely preserved in most disorders (Figure 5A) raising the
possibility that treatments available for some of these
could also be applied to HD [50-52]. Recently, mutant
HTT was found to induce a cell-autonomous response in
microglia [53] and astrocytes [54], which are first indi-
cations that neuroinflammation in HD is a potential
contributing factor and not purely the consequence of
neurodegeneration. Especially in the caudate nucleus
network, we identified components of the complement
system as being positively correlated with HD and many
of these also had hub gene status (Additional file 4E
and G). It has been previously reported that the com-
plement system is abnormally activated in the brains of
HD patients [55]. The complement system is regulated
by the innate, as well as the adaptive immune system
and is expressed in most cell types of the brain, thus it
might be an important factor in neurodegenerative dis-
eases [56]. Taken together, our data and previous findings
suggest that targeting neuroinflammation, in particular ac-
tivation of the complement system could be beneficial to
slow down disease progression in HD.
Whether the abnormal folding of mutant HTT and/or

the appearance of aggregates are sufficient to induce a
cellular stress response, in particular through induction
of steady state levels of molecular chaperones, is a long-
standing question. To the best of our knowledge, our
network analysis is the first indication that the expres-
sion of mutant HTT is correlated with higher levels of
molecular chaperones in humans. We identified a sig-
nificantly positively correlated module in the cerebellum
network (CBpos5, Figures 1B and 3A, Table 1), which is
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highly enriched for protein folding/chaperone genes. We
also found a similar module in the cortex BA4 network,
that was just short of being significantly correlated
(FC4pos4, Figure 1D, Table 2 and Additional file 3C). In
contrast, we did not detect a similar module in the caud-
ate nucleus network. It is tempting to speculate that the
higher levels of these chaperones counteract the patho-
genic effects of mutant HTT and protect these tissues
(correlation P-value of chaperone modules CB < FC-
BA4 <CN; pathogenesis CB < FC-BA4 <CN). We of course
appreciate that further studies are needed, e.g. to inves-
tigate whether changes at the mRNA level are trans-
lated to changes at the protein level by assessing the
protein levels of certain chaperones in different brain
regions. In the frontal cortex BA4 region network we
also identified a chaperone gene containing module that
was negatively correlated with HD (FC4neg5, Table 2)
highlighting the complex regulation of the proteostasis
network and its potential suppression through other
mechanism caused by mutant HTT. Together these
data support the therapeutical avenue of drugs that boost
the proteostasis network, which was shown numerous
times in animal models to antagonize the progression of
HD pathogenesis [57]. Given that the proteostasis net-
works in mammals does not seem to be impaired during
aging [58], this approach might prove beneficial even in
older patients.
As briefly addressed in the introduction, aberrant

binding of an mRNA processing factor to the mutant
HTT transcript results in the production of a HTT exon
1 fragment [19]. It might be expected that such an RNA
toxicity based mechanism would have additional wide-
spread consequences on global alternative splicing, simi-
lar to sequestration of MBNL1 in myotonic dystrophy.
In fact, an unpublished study has identified various alter-
natively spliced transcripts in HD mouse model tissue
(Gipson TA and Housman DE, unpublished data) and
an increase of the 4R/3R tau mRNA ratio has been ob-
served [59]. Intriguingly, we identified at least one mod-
ule that was significantly enriched for genes involved in
RNA binding/mRNA processing in all three brain region
networks (Tables 1, 2 and 3), which had not been discov-
ered in the original publication. In all cases the modules
were positively correlated with HD indicative of an up-
regulation of some parts of the RNA processing machin-
ery. It will be very interesting to see in future studies,
which splicing factors are mis-regulated and the conse-
quences this has on general RNA processing in HD.
The similarities between HD and other neurodegener-

ative diseases point towards common pathogenic mecha-
nisms (Figures 5, 6 and Additional files 6, 7, 8 and 9).
Apart from the previously mentioned inflammatory
component, we observed very high preservation scores
for the CNneg2 module of the caudate nucleus network
(Figure 5A). This module likely represents the commonly
down-regulated genes in HD, rather that changes in tissue
composition due to a loss of neurons (see Results section).
GO enrichment analysis showed that processes like mito-
chondrial function, the proteasome, stress response, etc.
are probably affected (Table 3). There is extensive litera-
ture in PD about mitochondrial dysfunction and the in-
volvement of parkin and PINK1 in quality control and
maintenance of mitochondria [60]. Interestingly, PINK1 is
a hub gene in the frontal cortex BA4 module that was
enriched for genes involved in mitochondrial function
(FC4neg5, Figure 1F and Table 2). As already mentioned
in the results section, several genes altered in Alzheimer’s
disease are hub genes in the HD/PD consensus network
(Figure 6). Collectively these data suggest that some key
proteins could underpin the functional deficits observed
in various disorders.
The in depth analysis of the hub genes in the different

networks, in particular the common ones in all three
brain regions uncovered previously identified therapeutic
targets (Figure 5). In model systems of HD, for example
subcutaneous administration of FGF2 increased neuro-
genesis [61] and overexpression of metallothioneins con-
ferred neuroprotection against polyglutamine induced
excitotoxicity [62]. Furthermore, predicted upstream regu-
lators of the identified network modules e.g. HSF1 [63],
NFAT [64], XBP1 [65], ELK1 [66], JUN [67], REST [68],
or CREB1 [69] were all shown to modulate neurotoxicity
in HD. This clearly shows the power of weighted cor-
relation network analysis for the prediction of thera-
peutic targets. Therefore, modulation of transcription
factors, not yet implicated in HD, like certain members
of the STAT transcription factor family (immune response),
TCF3 (immune response), TCF12 (lineage-specific gene ex-
pression, initiation of neuronal differentiation), EGR1
(differentiation, mitogenesis), EGR2/4 (immune response),
IRF1 (immune response, apoptosis), GABPB1 (mitochon-
drial function), or PAX4 (development, tumorigenesis)
could lead to new strategies towards slowing down patho-
genesis in Huntington’s disease.

Conclusions
Using weighted gene correlation network analysis we dem-
onstrate that the Huntington’s disease mutation causes a
common signature of gene expression changes in patient
brain tissue. We have identified as yet unknown extensive
transcriptional dysregulation in the cerebellum of HD pa-
tients, similar to that which we have observed in the
frontal cortex and caudate nucleus. Additionally, we found
that yet unassociated pathways, e.g. global mRNA process-
ing, were dysregulated in HD. Meta analyses of the HD
networks and other disorders showed similarities for these
disorders with HD, in particular with a high enrichment
for inflammatory pathway genes. Lastly, we compared well
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studied HD mouse models to the human gene expression
dataset, which implied that whilst the mouse models
mimic some aspects of the disease very well, certain as-
pects, for example induction of the inflammatory response,
were only poorly reflected. Taken together, these ap-
proaches allowed us to gain novel insights into the mo-
lecular pathogenesis of HD and to pinpoint potential
future therapeutic targets.

Methods
Microarray datasets and data pre-processing
All datasets were obtained from the EMBL-EBI ArrayEx-
press [70], or NCBI Gene Expression Omnibus (GEO)
[71] websites. Accession numbers for the datasets and ex-
perimental details can be found in Table 5. Microarray
raw intensity files were MAS5 normalized (Affymetrix
Expression Console, Affymetrix, CA, USA) [72] and log2
transformed to obtain the raw data datasets. We used only
the HG-U133A data for the main HD dataset [27]. For the
neurodegenerative diseases dataset [35], the array files
were normalized using the Rosetta error model (Rosetta
Biosoftware, WA, USA) and log2 transformed to obtain
the raw data dataset. All raw datasets were collapsed to
a one probe per gene level using the R function collap-
seRows [73]. Microarray probes were matched to gene
names and Entrez gene IDs (NCBI) of homo sapiens
genome build hg19 (Consensus CDS, NCBI), if the anno-
tation was not provided by the affymetrix array annotation
file (Affymetrix Expression Console, Affymetrix, CA,
USA). Probes with ambiguous gene annotations were
removed. Outlier samples were removed by a completely
unbiased method, which ignores phenotypic traits. To this
end the Euclidian distance between samples in a network
and their connectivity was calculated. Subsequently, sam-
ples with a standardized connectivity of less than −2.5
were removed.

Weighted gene co-expression network analysis (WGCNA)
All networks were independently constructed from the
log2 transformed, pre-processed datasets. In principle, the
workflow of the original publications was used [29].
Briefly, the pair wise weighted Pearson correlations be-
tween all pairs of genes across all samples were calculated.
A signed adjacency matrix was calculated by raising the
co-expression matrix to a soft-threshold power to reach
approximate scale free topology of the network (R2 > 0.9).
The powers used were: 15 for cerebellum, 9 for caudate
nucleus, 13 for frontal cortex (BA4), 17 for frontal cortex
(BA9) and 13 for frontal cortex (BA4 and BA9 combined).
A signed topology overlay matrix was calculated based on
the transformed connection strengths, which gives a bio-
logically meaningful measurement of the similarity of the
co-expression of two genes with all other genes in the net-
work. Highly similarly expressed genes were grouped by
applying average linkage hierarchical clustering on the
topology overlay matrix. Modules were subsequently iden-
tified by the dynamic hybrid tree cut algorithm [74]. Mod-
ule eigengenes can be seen as representing the first
principal component of a module. Modules with highly
correlated module eigengenes were merged (r >0.8). To
identify biological meaningful modules, we correlated the
module eigengenes to the HD stage assignment of the
samples [27]. Raw P-values were adjusted for multiple
comparisons with the Benjamini and Hochberg correction
using the Bioconductor package multtest [75].

Consensus network construction
Consensus networks were essentially constructed with the
same methodology as described above for weighted gene
co-expression network analysis. Briefly, outlier samples
were removed from the collapsed raw datasets. Networks
were constructed only from genes that were detected by
both array types, if applicable. Powers for transformation
of the co-expression matrices were (see Table 5 for abbre-
viations): 10 for AD, 19 for ALS, 28 for DM1, 8 for DM2,
23 for GG, 12 for MS, 16 for PD, 15 for RCC, 9 for
SCHIZ, 32 for YAC128, 20 for R6/2 and 20 for HdhQ150.
Modules with highly correlated module eigengenes were
merged (r >0.6). Module eigengenes were subsequently
matched to external traits as described before and cor-
rected for multiple hypotheses testing.

Module preservation statistics
The WGCNA package includes statistical tests to analyze
module preservation across different datasets [76]. Preser-
vation is the similarity of interconnections between genes
in a module, but also connectivity patterns of individual
modules for the two data sets, i.e. high preservation is evi-
dence for densely connected, distinct, and reproducible
modules. We calculated 200 permutations of the preserva-
tion statistics and generated a Z-summary value by aver-
aging them. The Z-summary indicates if a module is
strongly preserved (Z-summary score >10), moderately
preserved (Z-summary score 2 < × <10), or not preserved
(Z-summary score <2).

Identification and visualization of hub genes
We used the eigengene based connectivity kME as a
measure of module membership. Genes with a high mod-
ule membership measure are referred to as intramodular
hub genes. These genes are representative for the entire
module and most likely are biological key players in the
respective module. To visualize module structures, we ex-
tracted the 50 genes with the highest module membership
(nodes) and the strongest 500 gene-gene connections
(edges) amongst these from the signed topology overlay
matrix. We used Cytoscape [77] to visualize the networks
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with the strength of the gene-gene correlation as a co-
factor.
Enrichment of upstream regulators and pathway analysis
To analyze enrichment of upstream regulators, like e.g.
transcription factors or micro RNAs, we used GO-Elite
[78], or WebGestalt [79]. For both, we used the gene
lists for the identified network modules as input and all
genes in a network as the denominator for the analysis
with GO-Elite. The EnsMart65Plus database for homo
sapiens was used in the GO-Elite analyses.
Gene ontology analysis
Gene ontology analysis was carried out with the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) Bioinformatics Resource [80]. A list of all genes
in the network analysis was used as a custom background
for the gene ontology enrichment analysis. We summa-
rized all gene ontology terms (GO-term) of similar sub-
terms into an overarching term. Fold enrichment and
Benjamini-Hochberg corrected P-values are shown for the
respective GO-term cluster.
Availability of data files
The raw datafiles used in this study [24,27,28,35,81-85]
were obtained from the EMBL-EBI ArrayExpress [70], or
NCBI Gene Expression Omnibus (GEO) [71] websites.
All WGCNA network files, module associations, preser-
vation statistics and consensus data files generated in
this publication are available upon request (andreas.
neueder@kcl.ac.uk or andreas.neueder@web.de).
Additional files

Additional file 1: Illustrates the correlation between gene significance
and eigengene based connectivity (kME).

Additional file 2: Figure illustrating the remaining cerebellum
network modules.

Additional file 3: Figure illustrating the remaining frontal cortex
BA4 network modules.

Additional file 4: Figure illustrating the remaining caudate nucleus
network modules.

Additional file 5: Figure illustrating the remaining module of the
consensus network analysis of HD and PD.

Additional file 6: Figure illustrating the consensus network analysis
of HD and GG.

Additional file 7: Figure illustrating the consensus network analysis
of HD and RCC.

Additional file 8: Figure illustrating the consensus network analysis
of HD and DM1.

Additional file 9: Figure illustrating the consensus network analysis
of HD and DM2.

Additional file 10: Figure illustrating the WGCNA analysis of the HD
frontal cortex dataset with BA4 and BA9 regions combined.
Additional file 11: Table describing the gene ontology enrichment
and upstream regulator analysis of the frontal cortex network with
BA4 and BA9 regions combined.
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