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Abstract

Motivation: Functional imaging at single-neuron resolution offers a highly efficient tool for study-

ing the functional connectomics in the brain. However, mainstream neuron-detection methods

focus on either the morphologies or activities of neurons, which may lead to the extraction of

incomplete information and which may heavily rely on the experience of the experimenters.

Results: We developed a convolutional neural networks and fluctuation method-based toolbox

(ImageCN) to increase the processing power of calcium imaging data. To evaluate the performance

of ImageCN, nine different imaging datasets were recorded from awake mouse brains. ImageCN

demonstrated superior neuron-detection performance when compared with other algorithms.

Furthermore, ImageCN does not require sophisticated training for users.

Availability and implementation: ImageCN is implemented in MATLAB. The source code and

documentation are available at https://github.com/ZhangChenLab/ImageCN.

Contact: czhang@ccmu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Monitoring the activities of every neuron in a microcircuit is essen-

tial in understanding the working principles of the brain.

Increasingly, functional imaging using two-photon (2p) microscopy

has been used to capture data from neurons that have been labeled

with calcium indicators (Helmchen and Denk, 2005; Svoboda et al.,

1997). This powerful tool provides real-time monitoring of

hundreds of individual neurons in a neural microcircuit using single-

neuron resolution. However, the processing of 2p image data is

challenging due to the enormous volume of data and the low

signal–noise ratio. Many supervised [e.g. convolutional neural network

(CNN)-based classification and the RobustBoost algorithm] and

unsupervised (e.g. PCA/ICA, CNMF, NeuroSeg) methods are gener-

ated to analyze the large amount of data (Guan et al., 2018; Klibisz

et al., 2017; Mukamel et al., 2009; Pnevmatikakis et al., 2016;

Valmianski et al., 2010; Xu et al., 2016). Supervised algorithms re-

quire manually annotated ground truth data to train models, whereas

unsupervised algorithms do not. Different approaches have been

applied to detect the locations of neurons. Morphology-based meth-

ods could extract morphological properties of neurons, whereas
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neurons with low intensity and blurred outlines but clear calcium

spikes are difficult to detect. Activity-based methods detect neurons

based on the localized spatiotemporal activity of each neuron, al-

though the temporarily silent neurons might be easily missed. To

overcome these disadvantages, we developed an analysis pipeline

that combines the fluctuation method and the CNNs model to pro-

cess 2p image data. This system, called ImageCN, has a superior

ability to analyze 2p functional imaging data and requires minimal

user experience.

2 Materials and methods

All imaging experiments were performed as previously reported

(Jiang et al., 2017; Su et al., 2016; Tian et al., 2018; Wei et al.,

2016). A detailed description of the methods is available at

Bioinformatics online.

3 Results

3.1 Workflow for data processing of 2p imaging
The basic strategy of ImageCN is shown in Figure 1A. Briefly, for

this study, the image stack was transformed into a reference image

and an average-projection image, which represent the activity fea-

ture and morphological structure of each neuron, respectively.

Regions of interest (ROIs) were extracted and segmented into

patches by the local adaptive thresholding algorithm and the water-

shed algorithm. Two pre-trained CNN models were used to classify

each patch from the reference image and average-projection image,

respectively. Subsequently, a similar CNN-based strategy was uti-

lized to pick up every spike for every identified neuron.

3.2 The extraction and segmentation of ROIs
To detect neurons from raw imaging data, the reference images and

average-projection images were generated using the fluctuation

method. The fluctuation method was based on the assumption that

the active neurons possessed significantly larger signal fluctuations

than the inactive neurons and the background. Compared to images

from the maximum or average-projection methods, the reference

images generated via the fluctuation method showed rigid delinea-

tions that marked the responsive cells (Supplementary Fig. S1). The

average-projection image was generated to detect the morphological

structure of each neuron. The ROIs of these two images were

detected by local adaptive thresholding algorithm and segmented

using the watershed algorithm (Supplementary Figs S2 and S3).

However, only a portion of the ROIs were actual neurons; therefore,

each ROI was extracted from images and segmented into a small

patch for further classification using pre-trained CNN models

(Fig. 1B).

3.3 Comparison between CNN and classic models
For further classification of each patch, we used CNNs to extract

neurons from the background and neuropils (Supplementary Fig.

S7). The two CNN models were trained with two datasets, one con-

taining 3403 patches (1885 neurons and 1518 non-neurons) and the

other containing 3247 patches (1802 neurons and 1445 non-

neurons). The F1 score (balanced F score) was calculated as the har-

monic mean of recall and precision, which has been widely used to

assess the performance of a binary classifier, and it was used to

quantify the performance of the neuron-detection. We compared the

performance of CNNs with other classic algorithms, such as ex-

haustive grid search, the back propagation neural network (BPNN)

and the genetic algorithm (GA), and our results indicated a higher

performance of CNNs (Fig. 1C). The F1 scores of the BPNN algo-

rithm increased with the training data and converged when the

training number exceeded 100; the recall and precision rates reached

86.58 6 0.43% and 85.12 6 0.31%, respectively (Supplementary

Fig. S6). In contrast, the F1 scores of the CNN algorithm continually

increased; the recall and precision rates reached 91.03 6 0.22% and

90.44 6 0.16%, respectively (Supplementary Fig. S7). The GA F1

scores increased rapidly during optimization but remained relatively

low once the optimization process reached a plateau; the recall and

Fig. 1. Schematic workflow and performance tests of ImageCN. (A) The flowchart of cell detection and spike extraction based on CNNs. (B) A set of 48 manually

labeled cell and non-cell patches from the reference image received using the CNNs. (C) The receiver operating characteristic curve and area under curve of ex-

haustive grid search, the GA, the BPNN and the CNNs. (D) Comparison of ImageCN performance with manually annotated data. Scale bar, 50 lm

ImageCN 3209

Deleted Text: convolutional neural networks (
Deleted Text: )
Deleted Text: ethods
Deleted Text: M
Deleted Text:  (LATA)
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data
Deleted Text: LATA
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (EGS)
Deleted Text: ,
Deleted Text: &hx0025; 
Deleted Text:  
Deleted Text: &hx0025; 
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data
Deleted Text: &hx0025; 
Deleted Text:  
Deleted Text: &hx0025; 
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz055#supplementary-data


precision rates reached 85.54 6 0.48% and 75.41 6 0.34%, re-

spectively (Supplementary Fig. S6).

3.4 Comparison between ImageCN and other

algorithms
To evaluate the detection performance of our model, we manually

annotated the ground truth of nine different sets of imaging

data and compared the detection performance of ImageCN to other

algorithms: deep-calcium, a fully convolutional networks-based

algorithm, and CNMF, a spatiotemporal processing algorithm. As

demonstrated in Table 1, ImageCN showed a significantly higher

performance than the other two algorithms. Moreover, when we

evaluated the ability to detect morphology and activity features sep-

arately, deep-calcium and CNMF showed advantages in one aspect

but not the other. These results showed the necessity of combining

these two significant features of 2p imaging data.

3.5 Detection of calcium spikes
After the detection of the neurons, the fluorescence trace of

each neuron was extracted and processed using the piecewise

linear representation method, which is a type of high-level, time-

series representation used to detect turning points (peaks or

troughs) of time-series data by extracting important points (Fink

and Pratt, 2004) (Supplementary Fig. S8). We constructed another

CNN model to pick the spikes, Figure 1A shows an example of

the final output of our analysis pipeline processing in the typical

3D (x, y and time) functional imaging data format. Compared

with manually annotated ground truth of nine different sets of

imaging data, the recall rate, precision and F1 score of calcium

transient detection reached 88.82 6 1.03%, 78.64 6 0.76% and

82.58 6 0.45%, respectively.

4 Conclusions

We developed a semiautomatic analysis pipeline for 2p imaging data

with ImageCN. This pipeline offers a valuable tool for mining the

calcium signals from time-lapse 2p imaging data and converting

them to digitalized data. Both active and inactive neurons are

detected automatically, and our results demonstrated that the

combination of activity features and morphological structures sig-

nificantly boosts the performance of detection (Fig. 1D). ImageCN

also offers a spike detection-function, which generates spike trains

for further analysis.
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Table 1. Comparison of the performance of different algorithms

Method Recall Precision F1 score

ImageCN 0.8960.02 0.8260.02 0.8560.01

Deep-calcium 0.7160.02 0.7260.04 0.7060.02

CNMF 0.6860.05 0.5460.06 0.5960.04
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