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Abstract

Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development
process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in
vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of
efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is
imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral
dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late
clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract
important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that
represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class
specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life,
dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of
resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and
maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of
resistance most efficiently.
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Introduction

Since 1996, human immunodeficiency virus (HIV) infection

is treated with a combination therapy, known as highly active

anti-retroviral therapy (HAART) [1,2], which has substantially

improved the clinical management of HIV [3]. Despite the success

of HAART, eradication of HIV can currently not be achieved

[4,5], most likely due to the persistence of virus in very long lived,

latently infected cells [6,7]. For HIV-infected individuals, life-long

therapy is therefore required to prevent progression to the

acquired immunodeficiency syndrome (AIDS) and death.

During therapy, plasma viral load (HIV RNA per mL blood

plasma) is recommended by the National Institute of Health

as a marker of therapy success [8], whereas measurement of

the CD4 cell count is the most important clinical marker of

disease progression [9]. The in vivo potency of novel antivirals is

usually assessed by viral load decline in small clinical trials of

monotherapy, e.g., [10,11], and later evaluated utilizing the

novel agent in combination with an optimized background

therapy, e.g., [12]. The in vitro potency of antivirals is typically

assessed by using phenotypic/single-round infectivity assays

[13–16], which measure the number of offspring after one round

of virus replication.

Investigation of novel drug targets for the treatment of HIV

infection resulted in the development of new drug classes. In 2003

and 2007, the fusion inhibitor (FI) enfuvirtide [17], the CCR5-

antagonist maraviroc [18] and the integrase inhibitor raltegravir

[19] were approved for the treatment of HIV infection. Many

more drugs are in late clinical development [20]. With the

introduction of new drug classes, in particular integrase inhibitors,

a huge discrepancy between the efficacy measured in vitro, using

phenotypic/single-round infectivity assays, and in vivo, using viral

load decline, was observed [14,21]. Although integrase inhibitors

cause a steep initial decline of plasma viral load [21–26], the in vitro

efficacy is amongst the lowest [14].

Mathematical modelling of viral dynamics has lead to many

insights into the pathogenesis and treatment of HIV. It is a

valuable tool to interpret the time course of virological markers

(e.g. viral load) during HIV treatment [27–31] and contributes

much to our current understanding of the in vivo dynamics of HIV.

Sedaghat et al. [32,33] used a mathematical modelling approach

to analyze the rapid decay of plasma viral load after application of

integrase inhibitors. They infer that this characteristic viral decay

is a result of the inhibited stage within the viral life cycle rather

than superior in vivo potency.

Consequently, viral load decay may be misleading for assessing

the potency of integrase inhibitors (and other novel inhibitors) in

comparison to existing drug classes. However, an alternative, more

appropriate measure of drug efficacy, which allows to directly

compare drugs from different drug classes is still missing.
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The objectives of this article are (i) to develop a novel, generic

measure of drug potency that facilitates comparison across

different drug classes; (ii) to develop a novel mathematical model

of the viral replication cycle that incorporates the action of

established and novel drugs in a mechanistic way; and (iii) to analyze

determinants of drug efficacy critical for drug discovery and

development. The proposed measure of drug efficacy, termed

reproductive capacity, extends the established in vivo marker,

plasma viral load, by incorporating additional infectious viral

stages, and the in vitro phenotypic/single-round infectivity assays

by taking into account host specific defense mechanisms. This

enables us to understand the observed discrepancies between

in vitro and in vivo efficacy for integrase inhibitors, and to elucidate

and quantify the role of immune-system related clearance

mechanisms in drug action. The results presented herein are of

particular value to categorize different molecular targets in the

HIV life cycle and are expected to be of significance for guiding

future HIV drug discovery and development.

Results

Development of a detailed model of viral life cycle and
action of anti-retroviral drugs

We derived a detailed virus-target cell interaction model as

depicted in Fig. 1. The model incorporates the mechanisms of

action of all currently approved drugs and some drugs in late

clinical development.

Target cells are produced by the immune system with some

constant rate lT. An infectious virus VI reversibly binds (with effective

rate constants kon and koff ) to a target cell TU, forming a complex

VI : TU. After binding, the virus irreversibly fuses (with rate constant

kfus) with the target cell and the viral capsid containing the viral

genomic RNA is released; this state is denoted by TRNA. During

reverse transcription (with effective rate constant krev), genomic viral

RNA is irreversibly transformed into a more stable DNA. Viral DNA

and viral proteins form the pre-integration complex (PIC), denoted by

T1. In the next step, viral DNA of the PIC is irreversibly integrated

into the DNA of the target cell (with rate constant kT), forming the

provirus T2. After integration, the infected cell cannot return to

an uninfected stage. From the proviral DNA, viral proteins are

amplified and new viruses are released (with effective rate constantbNNT½1=(cells:day)�). Only a given percentage pw0 of the released

viruses are correctly assembled immature viruses VIM, while the

remaining percentage (1{p) are defective virions VD that might e.g.

lack the (gag-pol-polyprotein contained) enzymes. During the final

step, the viral protease, which is packed into the correctly assembled,

immature virions VIM, is responsible for the maturation of the virus.

Author Summary

To guide drug discovery and development, measures of
drug efficacy that are linked to clinical outcome are of key
importance. In HIV treatment, decay of plasma viral load is
typically used as an in vivo measure of drug efficacy,
whereas phenotypic assays are used to assess drug efficacy
in vitro. The recent development of novel HIV drugs
resulted in a huge discrepancy between viral load decay
and in vitro predictions of drug efficacy. We used a
mathematical modelling approach to resolve this discrep-
ancy by introducing a new quantity, the reproductive
capacity, that allows a transfer of the in vitro drug efficacy
measure into the in vivo context, enabling a direct
comparison. We developed a novel model of viral
dynamics that incorporates the mechanism of action of
all established and novel antivirals. Based on the model,
we analyzed the ability of the viral infection to replicate
under different drug treatments, and estimated class-
specific times until virological failure. We conclude that the
half life of the targeted viral stage is an important class-
specific attribute that impacts on the overall success of a
drug in vivo. Our findings have direct implication for the
drug discovery and development process.

Figure 1. Detailed structural model of the viral life cycle and the mechanisms of action of different anti-retroviral drug classes.
doi:10.1371/journal.pcbi.1000720.g001

Drug-Class Specific Impact on HIV
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The maturation of HIV virions has been shown to be dependent on

the highly ordered cascade of cleavages, governed by differences in

the inherent processing rates at each cleavage site [34,35]. We assume

that a fraction (1{q) of the released virus matures abnormally,

contributing to the pool of defective virions VD. Successful

maturation eventually leads to new infectious virus particles VI (with

rate constant kmat and probability q).

Depending on the stage of the life cycle, the host organism has

different abilities to clear the virus. It was assumed that infectious,

immature and defective virions VI, VIM, and VD, respectively, are

cleared with rate constant CL by the host. The uninfected target

cells TU, the TRNA stage and the early infected stage T1 are

assumed to be cleared with rate constant dT, since none of these

stages express viral proteins, while the virus-producing late infected

cell T2 is assumed to be cleared with rate constant dT2&dT. In

addition to cell death, the target cell may fend-off the viral infection

by degrading the viral RNA or parts of the PIC, rendering the cell

uninfected. RNA is very unstable with a half life ranging from

seconds to a maximum of two hours [36,37]. Therefore, through

degradation or, e.g., by hypermutation through APOBEC3G [38],

the viral RNA can be cleared with rate constant dRNA. The cell

might also destroy essential components of the PIC (with rate

constant dPIC,T) to clear the virus.

The system of ordinary differential equations (ODEs) describing

the rate of change of the different viral species and target cells in

the detailed model (depicted in Fig. 1) is given in Supplementary

Text S1, Eqs. (S1)–(S8). As typically done in kinetic studies,

complex aspects of the viral dynamics are subsumed by ‘lumped’

parameters in the model. For instance, the rate constant of the

reverse transcription krev contains all the steps necessary to

transform the viral RNA into a double stranded DNA. The

mechanisms of action of the seven drug classes are based on

interfering with the viral life cycle at different stages. We assumed

that the effect of a drug on the targeted process is specified by

some parameter e(t)[½0,1�, i.e.,

(1{e)~
1

1z
C

IC50

� �n

0BB@
1CCA (conc: dependent efficacy), ð1Þ

assuming some underlying averaged drug concentration C~bCC,

see [39], some fifty percent inhibitory concentration IC50, and

some drug specific Hill coefficient n, see [14]. For the purpose of

the study, this rough approximation is sufficient, however, it is

possible to also use time-varying drug concentration C~C(t)
resulting from some pharmacokinetic model, or to use more

mechanistic effects models [40,41].

The actions of the different drug classes within the viral life cycle

are shown in Fig. 1. CCR5 antagonists inhibit the association of

HIV with the CCR5 receptor in CCR5-tropic virus. They thus

affect the association constant kon. Fusion inhibitors (FI) inhibit the

process of HIV fusion, affecting kfus. Activated nucleoside reverse

transcriptase inhibitors (NRTI) compete with endogenous deox-

ynucleoside triphosphates for prolongation of the growing DNA

chain, while non-nucleoside reverse transcriptase inhibitors

(NNRTI) allosterically inhibit the function of the reverse transcrip-

tase. The effects of both drug classes result in a reduced rate at

which the RNA is reversely transcribed into DNA. Integration

inhibitors affect the integration of viral DNA into the host genome

catalytically [42–45]. In the proposed model, this alters the

transition rate constant kT from early infected cells T1 to the late

infected cells T2. Protease inhibitors (PI) bind to the catalytic pocket

of the viral protease enzyme, which is responsible for the processing

of the viral precursor polyproteins and thus the maturation of viral

particles. In the proposed model (Fig. 1), PIs therefore inhibit

maturation by decreasing the maturation constant kmat. Maturation

inhibitors (MI) bind to the substrate of the viral protease (Gag-

polyprotein) [46] at a specific site. This binding perturbs the ordered

sequence of cleavages that is necessary for proper maturation

[47,48], resulting in defective virus morphology [49]. In the

proposed model (Fig. 1), MIs therefore decrease the probability q
that immature virus matures normally, increasing the proportion of

abnormally matured, defective viruses VD.

Impact of antiviral drugs on relative abundance of
infectious viral stages

We used the detailed virus-target cell interaction model to

predict the effect of the different drug classes on the distinct stages

of the viral life cycle. In order to enable a direct comparison

between the different drug classes, we artificially eliminated the

feedback by keeping the uninfected target cell TU and the

infective virions VI that ‘enter’ the infection cycle constant (the two

leftmost species in Fig. 1), resulting in ‘downstream’ quasi-steady

state numbers T1,ss, T2,ss, VIM,ss, VI,ss, and VD,ss. For a given drug

class and inhibition of the targeted molecular process e, the effect

of the drug on the life cycle was quantified by the four ratios

T1,ss

TU0
,

T2,ss

T1ss

,
VI,ss

VIM,ss
,

VI,ss

VD,ss
ð2Þ

as shown in Fig. 2. As expected, the drugs perturb the ratios of

viral states that encompass their site of action within the viral life

cycle. In the present example, all states that lie downstream of the

drugs’ target site are affected, while the states that lie upstream are

usually not affected. The exception are InIs, which increase the

abundance of the preceding stage T1 (Fig. 2A), while decreasing

the number of the subsequent infectious stage T2 (Fig. 2B).

Interestingly, the effect on the ratios is not always a linear function

of drug efficacy. PIs and MIs also show a different behavior

(Fig. 2D): PIs affect the ratio of infectious-to-defective virions by

decreasing the maturation rate kmat, which lowers the number of

infective virions VI, but also lowers the number of virions that

mature abnormally (contributing to VD). MIs increase the

proportion of virus that matures abnormally and decrease the

proportion of virus that matures normally, thus decreasing VI and

increasing VD, without affecting kmat.

Development of a simplified two stage virus dynamics
model

The detailed model (Fig. 1) contains parameters that are difficult

to measure and currently not available. We therefore reduced the

detailed model based on reasonable quasi-steady state assumptions

to obtain a simplified model of virus-target cell interaction

dynamics that is parameterizable in terms of established and

validated parameter values (see Supplementary Text S1). In

particular, we have eliminated the intermediate stages of the cell-

virus complex TU : VI, the infected cells prior to reverse

transcription TRNA and the immature virus VIM in the original

model (Fig. 1). As a consequence, we derived a lumped infection

rate constant b, which describes the infection of a susceptible cell

towards the stage, where the viral RNA has been successfully

transformed into DNA. We also derived a virus clearance CLT

that is associated with the loss of virus during the intermediate

stages before reverse transcription and the release rate constant of

infectious virus N.

Drug-Class Specific Impact on HIV
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The infection rate constant is given by

b~
kfus

KD

:rrev,w, ð3Þ

where kfus denotes the fusion rate constant, KD the dissociation con-

stant of the virus-target cell complex, and rrev,w denotes the probability

that reverse transcription is successfully completed (see Supplementary

Text S1). The lumped virus clearance (loss of virus by, e.g., genome

destruction) in the intermediate stages is given by the parameter

CLT~
1

rrev,w

{1

 !
:b: ð4Þ

The number of released, infectious viruses is given by

N~q:p:rPR,w
:bNN, ð5Þ

where p and q are the probabilities that the released virus is correctly

assembled and matures normally, and rPR,w is the probability that the

released virus matures before being cleared by the immune system

(see Supplementary Text S1). The lumped model can be parame-

terized in terms of six unknown parameters (b,bNN,lT,dT,dT2
,CL),

which equals the number of estimated parameters using standard

models [28]. For the remaining parameters, we have provided values

from the literature (see Supplementary Text S1).

In the following, we considered two types of target cells (T-Cells

and a longer lived cell population, which we refer to as macrophages)

and finally incorporated the viral mutation process (resulting from

erroneous reverse transcription) into the overall model. Whether the

longer lived cell population consists solely of macrophages in vivo

remains unknown. There is, however, some evidence that the kinetic

characteristics of the longer lived cell population are similar to those

of the macrophage population [33]. The proposed simplified two-

stage virus dynamics model is shown in Fig. 3. It comprises T-cells,

macrophages, free non-infectious virus (TU,MU,VNI, respectively),

free infectious virus of mutant strain i,VI(i), and four types of

infected cells belonging to mutant strain i: infected T-cells and

macrophages prior to proviral genomic integration (T1(i) and M1(i),
respectively) and infected T-cells and macrophages after proviral

genomic integration (T2(i) and M2(i), respectively). The rates of

Figure 2. Mechanistic effects of drug classes on viral infective compartments. Ratios are affected through treatment with different drug
classes. Predictions are based on the detailed model (see Fig. 1) and mechanistic effect e varying from 0–1. Chosen parameter values:
CL~23, dT~0:02, dT2

~1, kT~0:35, dPIC,T~0:35, dRNA~1440, koff~106, rfusion~1440, rRT~48, rmat~12 in ½1=day�; N~1000 in ½1=(cells :day)�;
l~2:109 in ½cells=day�; KD~1000 in ½cells� and q~p~0:99 (unit less):
doi:10.1371/journal.pcbi.1000720.g002

Drug-Class Specific Impact on HIV
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change of the different species in the reduced two-stage HIV model

are given by the following system of ODEs:

d

dt
TU~lTzdPIC,T

:T1(i){dT
:TU{

X
i

bT(i):V(i):TU

d

dt
MU~lMzdPIC,M

:M1(i){dM
:MU{

X
i

bM(i):V(i):MU

d

dt
T1(i)~bT(i):V(i):TU{(dT1

zdPIC,TzkT(i)):T1(i)

d

dt
M1(i)~bM(i):V(i):MU{(dM1

zdPIC,MzkM(i)):M1(i)

d

dt
T2(i)~

X
k

kT(k)T1(k):pk?i{dT2
:T2(i)

d

dt
M2(i)~

X
k

kM(k)M1(k):pk?i{dM2
:M2(i)

d

dt
VI(i)~NM(i):M2(i)zNT(i):T2(i)

{½CLz(CLT(i)zbT(i))TUz(CLM(i)zbM(i))MU�:V(i)

d

dt
VNI~

X
i

½(bNNT(i){NT(i))T2(i)z(bNNM(i){NM(i))M2(i)�{CL:VNI,

ð6Þ

where lT and lM are the birth rates of uninfected T-cells and

macrophages, and dT and dM are their death rate constants. The

parameters kT(k) and kM(k) are the integration rate constants of

mutant strain k. The parameters dT1
,dT2

,dM1
and dM2

are the

death rate constants of T1,T2,M1 and M2 cells. The parameters

dPIC,T and dPIC,M refer to the intracellular degradation of essential

components of the pre-integration complex, e.g., by the host cell

proteasome within early infected T-cells and macrophages respec-

tively. bNNT(i) and bNNM(i) denote the total number of released

infectious and non-infectious virus from late infected T-cells and

macrophages of mutant strain i and NT(i) and NM(i) are the rates of

release of infective virus (see Eq (5)). The parameters CLT(i) and

CLM(i) denote the clearance of mutant virus i through unsuccessful

infection of T-cells and macrophages respectively (see Eq. (4)) and

the parameters bT(i) and bM(i) denote the successful infection rate

constants of mutant virus i for T-cells and macrophages respectively.

The parameter pk?i denotes the probability to mutate from strain k
to strain i (to be defined below).

The model enabled us to mechanistically incorporate the action

of all drugs that are approved or in late clinical trial. The impact of

a compound on a corresponding (lumped) parameter in the model

is specified by g:

Figure 3. Simplified two stage virus dynamics model. Species (red cycles), reactions (black arrows), drugs and their interference in the life cycle
of HIV (blue dashed box). Target cells (TU,MU) can become successfully infected by infective virus VI with lumped infection rate constants bT and
bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful after the irreversible step of fusion (rate constant CLT

and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 and M1 can destroy essential viral proteins or DNA prior to
integration with rate constants dPIC,T and dPIC,M returning the cell to an uninfected stage. The genomic viral DNA can become integrated with rate
constants kT and kM creating late infected cells T2 and M2 , which can release new infectious- and non infectious virus VI and VNI with rate

constants NT, cNTNT{NT

� �
and NM, dNMNM{NM

� �
, respectively. Phenotypic mutation occurs at the stage of viral genomic integration kT,kM (see

section ‘Development of a simplified two stage virus dynamics model’). All cellular compartments x can get destroyed by the immune system with
respective rate constants dx and the free virus gets cleared with rate constant CL.
doi:10.1371/journal.pcbi.1000720.g003

ð6Þ
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bT,(CCR5,FI,RTI)~(1{gCCR5):(1{gFI)
:(1{gRTI(rrev,w)):bT ð7Þ

CLT,(CCR5,FI,RTI)~(1{gCCR5):(1{gFI)
: 1

rrev,w

{(1{gRTI)

 !
:bTð8Þ

kT,(InI)~(1{gInI)
:kT ð9Þ

NT,(PI,MI)~(1{gMI)
:(1{gPI(rPR,w)):NT: ð10Þ

The same quantities are defined for macrophages by replacing
the subscript T by M; see Supplementary Text S1 for details. The

overall viral dynamics model comprises a complete mutagenic

graph. In HIV infection, genomic mutation occurs during the

reverse transcription process [50]. The reverse transcriptase of

HIV lacks a proof reading mechanism in contrast to host

polymerase enzymatic reactions. However, viral proteins from

newly mutated viral genomes are only produced after integration

of the viral genome into the host cell DNA. The proteins required

for the stable integration of the newly mutated viral genome

originate from the founder virus. Therefore, phenotypically, drug

resistance of new mutants will only be observed after integration,

i.e., in the infectious stages T2 and M2. In total, the model includes

2L different viral strains i that contain point mutations in any

pattern of the modelled L possible mutations. For two distinct

mutations L~2, the mutagenic graph is shown in Fig. 4A. Each

mutant i can mutate into every other mutant k in one step. The

probability pk?i to mutate from a strain k into another strain i can

be directly derived from the mutagenic pathways in Fig. 4A, i.e.,

pk?i~mh(i,k):(1{m)L{h(i,k), ð11Þ

where m denotes the mutation probability per base and reverse

transcription process (m&2:16:10{5 [50]), h(i,k) denotes the

hamming distance between strain k and strain i, and L is the total

number of different positions that are considered in our model.

The phenotype of each mutant strain i is modelled by introducing

a selective disadvantage s(i), which denotes the loss of functionality

(e.g., in the activity of some viral enzyme that is affected by the

mutation) relative to the wild type, and a strain specific inhibitory

activity (g(i,j)) of treatment j against the mutant strain i. For

example, the strain specific infection rate i under a certain

treatment j is given by b(i,j)~(1{g(i,j)):(1{s(i)):b(wt,w), where

b(wt,w) denotes the infection rate constant of the wild type wt in

the absence of drug w (given in Table 1). Since some viral strains

are present only in very low copy numbers, we used a hybrid

stochastic deterministic approach [51] to model the overall virus

dynamics model (see Materials and Methods section for details).

Reproductive capacity for predicting drug–specific
impact on viral replication

The production of infectious offspring is crucial for the survival of

a viral population. The phenotypic single-round infectivity assay

measures the amount of infectious offspring after one round of

replication. For a given drug, the assay quantifies the drug’s efficacy

by measuring the reduction in viral offspring relative to the drug-

free situation. We defined a new quantity—termed the reproductive

capacity Rcap—, which transfers the principle of the phenotypic

single-round infectivity assay into a mathematical term. Its

definition involves the quasi-species distribution and the basic

reproductive numbers of all pathogenic sub-stages. The reproduc-

tive capacity characterizes the fitness of a given state of the infection

from the perspective of a potential treatment j by quantifying the

expected total number of offspring under the treatment j.

The basic reproductive number R0 is a well characterized

quantity in epidemiology that denotes the expected number of

Figure 4. Fitness and possible mutational pathways. A: General transition pathways between wild type (00) and a fully drug resistant strain
(11) that involves two partly-resistant intermediates (10,01). B: Fitness in the presence of a drug. C: Fitness in the absence of drugs. Dashed line:
critical fitness that allows the strain to survive, i.e, R0(i)w1.
doi:10.1371/journal.pcbi.1000720.g004

Table 1. Model parameters generally used in simulations.

Parameter Value Reference Parameter Value Reference

lT 2:109 [57] lM 6:9:107 [33]

bT 8:10{12 [32] bM 1:10{14 }

bNNT
1000 [33] bNNM

100 [33]

dT,dT1
0.02 [33] dM,dM1

0.0069 [33]

dT2
1 [73] dM2

0.09 }

CL 23 [73] p:q:rPR,w 0.67 {

rrev,w 0.33 [74,75] m 2:16:10{5 [50]

kT 0.35 [75] kM 0.07 }

dPIC,T 0.35 [75,76] dPIC,M 0.0035 }

kmat 12 [34] - - -

All parameters in units [1/day], except p:q:rPR,w (unit less) and m in
½1=(rev:trans::base)�. } parameters chosen to reproduce clinical data. { chosen
according to the assumption that p~q~1 and utilizing parameters kmat and
CL to determine rPR,w~kmat=(kmatzCL)~0:67.
doi:10.1371/journal.pcbi.1000720.t001

Drug-Class Specific Impact on HIV
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secondary infections caused by a single infected cell/virus [52]. If

R0w1 then the infection will spread, while for R0v1 the infection

will die out. The strain associated reproductive number R0(i,j)
characterizes the fitness of a viral strain i in a pharmacologically

modified environment, specified by a drug treatment j. We used

the ‘survival function’ approach [53] to calculate the reproductive

numbers for mutant strains i under treatment j. In our context, the

survival function is of particular value, since it captures the

possible event of mutation for all infective classes.

Based on the two-stage virus dynamics model, the basic

reproductive number RV(i,j) of a single virus of strain i under

treatment j is given by

RV(i,j)~
bT(i,j)TU:kT(i,j):NT(i,j)

ru(i,j):rT (i,j):dT2

z
bM(i,j)MU:kM(i,j):NM(i,j)

ru(i,j):rM (i,j):dM2

ð12Þ

with constants

ru(i,j)~CLz CLT(i,j)zbT(i,j)½ �TUz CLM(i,j)zbM(i,j)½ �MUð13Þ

rT (i,j)~dTzdPIC,TzkT(i,j) ð14Þ

rM (i,j)~dMzdPIC,MzkM(i,j): ð15Þ

Since infected cells are also pathogens, which can lead to a

rebound of the disease even in the absence of any virus, we also

determined their basic reproductive numbers under a given

treatment j. The basic reproductive numbers RT1
(i,j) and

RM1
(i,j) of the infectious stages T1 and M1, associated with the

viral strain i, are given by

RT1
(i,j)~

kT(i,j):NT(i,j)

rT (i,j):dT2

: bT(i,j)TUzbM(i,j)MU

ru(i,j)
ð16Þ

RM1
(i,j)~

kM(i,j):NM(i,j)

rM (i,j):dM2

: bT(i,j)TUzbM(i,j)MU

ru(i,j)
: ð17Þ

Finally, the reproductive numbers RT2
(i,j) and RM2

(i,j) of the infec-

tious stages T2 and M2, associated with the viral strain i, are given by

RT2
(i,j)~

NT(i,j)

dT2

: kT(i,j)TU:bT(i,j)

ru(i,j):rT (i,j)
z

kM(i,j)MU:bM(i,j)

ru(i,j):rM (i,j)

� �
ð18Þ

RM2
(i,j)~

NM(i,j)

dM2

: kT(i,j)TU:bT(i,j)

ru(i,j):rT (i,j)
z

kM(i,j)MU:bM(i,j)

ru(i,j):rM (i,j)

� �
:ð19Þ

We defined the reproductive capacity Rcap(j) of the entire quasi-

species ensemble under treatment j as the weighted sum of the basic

reproductive numbers of all pathogenic stages of mutant strain i,

i.e., free virus, infected T-cells and infected macrophages, where the

weights are the abundance of the corresponding pathogenic stage:

Rcap(j)~
X

i

½VI(i)RV(i,j)zT1(i)RT1
(i,j)zM1(i)RM1

(i,j)

zT2(i)RT2
(i,j)zM2(i)RM2

(i,j)�:
ð20Þ

The reproductive capacity Rcap(j) can be interpreted as the

expected total number of infectious offspring that the infection

produces in one round of replication under a certain treatment j,
given the current state of the infection.

Relation to viral load and phenotypic/single-round

infectivity assay. The viral load considers the total

concentration of free virus, consisting of non-infectious virus VNI

and infectious virus VI(i), belonging to all mutant strains i. In

contrast to the reproductive capacity, viral load does not assess the

ability of distinct viral strains i to replicate (in terms of RV). In

mathematical terms, the viral load is given by

Vload~
X

i

VI(i)zVNI: ð21Þ

The in vitro reproductive capacity, corresponding to the read-out of

the phenotypic assay RpA(j) (under treatment j) is conceptionally

similar to Eq. (20). However, in comparison to the above defined in

vivo measure, the in vitro measure would not take into account: (i)

the clearance of any infective stage by the immune system (relating

to the parameters CL,CLT(i,j),CLM(i,j),dT,dM,dT2
, and dM2

),

and (ii) the abundance of the different infected cell types (e.g., T-

cells and macrophages). The assay measures one round of

replication, denoted by R̂RT̂T2
, starting from a late stage infected

cell T̂T2. Mathematically expressed, the primary output is given by

RpA(j)~
X

i

T̂T2(i):R̂RT̂T2
(i,j): ð22Þ

Drug-class specific decay of viral load and reproductive
capacity

Application of drugs/drug classes changes the total size and the

composition of the viral population. The impact of this change is

typically evaluated in terms of the decay of the viral load over

time. We used the reproductive capacity Rcap(j) to also evaluate

viral replication under various hypothetical treatments j. In Fig. 5,

we predicted the impact of the different drug classes on the decay

of the plasma viral load and the reproductive capacity Rcap(w), i.e.,

the fitness of the whole virus population, evaluated in the absence

of drugs. As typically done, we assumed 100% drug efficacy g.

In terms of the plasma viral load decay (Fig. 5A), we observe a

faster initial decay for InIs in comparison to all other compound

classes, in agreement with clinical data [21] and theoretical

analysis [32,33]. The onset of viral load decay is delayed for all

other compound classes as observed clinically [12,27], see also

Figure S1. In agreement with clinical data [21], in the case of InI

treatment, the second phase of viral decay starts earlier after

treatment initiation and exhibits &70% less viremia in compar-

ison to other drug classes, but shows the same decay. Notably, the

change of the ratio of infective virus-to-total virus (see Fig. 5, inset)

upon PI or MI administration is not reflected by the total viral

decay in the blood plasma.

Most noticeable, the reproductive capacity (Fig. 5B) discrimi-

nates between RTIs, FIs and CCR5-antagonists vs. InI vs. PIs and

MIs. It can be seen, that protease and maturation inhibitors

reduce Rcap most efficiently initially and shift it to an overall lower

level. Integrase inhibitors cause a slightly faster initial decay in

Rcap, in comparison to RTIs, FIs and CCR5-antagonists, which

consistent with the rapid decay in viral load (Fig. 5A). However, in

contrast to viral load decay, the initial fast decay of Rcap levels off

and the second phase decay is flatter for InIs in comparison to

ð12Þ
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RTIs, FIs, CCR5-antagonists, PIs and MIs. The effect of NRTIs,

NNRTIs, CCR5 inhibitors and FIs on Rcap is comparable

(Fig. 5B). Remarkably, these inhibitors induce an initial increase

in Rcap (see next section for details), followed by a slow first phase

decay, followed by a second phase decay that is parallel to the

decay of Rcap in the case of PI- and MI-treatment, sustaining

overall higher levels of Rcap in comparison to PIs and MIs. In the

next section, we further elucidate the reasons for these class-

specific differences.

Immune-system related clearance is critical determinant
of drug-class specific decay

In view of the analysis performed in Fig. 5B, Rcap is

directly correlated to the overall abundance of viral infectives

(VI,T1,T2,M1,M2).

PIs and MIs primarily act on infectious virus VI (see Fig. 5, inset),

by reducing the proportionality factor (NT=CL and NM=CL) that

determines the abundance of infectious virus in the first- and second

phase decay (see Eq. (10)). The infectious virus VI is rapidly cleared

by the immune system [54]. Therefore, application of highly efficient

PIs and MIs leads to a rapid reduction of infectious virus VI, as

illustrated in Fig. 6D and Fig. 5 (inset). This reduction is also reflected

by the initial drop of Rcap in Fig. 5B. In the case of PI and MI

treatment, infected T-cells are quickly becoming the most abundant

infectious compartment (Fig. 6D) and subsequently dominate the

decay characteristics of Rcap in Fig. 5B. In the final phase, late

infected macrophages (M2) are becoming the most abundant

compartment and thus dominate the decay of Rcap in the final phase.

Integrase inhibitors prevent the integration of the viral genome

and thus prevent the transition of early infected cells (pre-integration,

T1 and M1) to late infected cells (post-integration, T2 and M2), see

Fig. 3. By inhibiting the transition from early to late infectious cells,

integrase inhibitors increase the decay of late infected T2-cells (see

Fig. 6C). In the case of InI treatment, infectious virus VI is initially

proportional to T2, explaining the observed more rapid first-phase

decline in Rcap in Fig. 5B. However, blocking the transition from T1

to T2 can also slow the decay of the T1-compartment, which might

become more abundant than VI after the initial decay. In the final

phase both T1 and VI become proportional to- and remain more

abundant than M2, which explains the overall higher levels of Rcap

in the final phase (see Fig. 5B).

The effects of NRTIs, NNRTIs, CCR5 inhibitors and FIs on

Rcap are comparable (Fig. 5B), as they primarily act on pre-

integrative early infected cells (T1 and M1). The difference between

entry inhibitors and reverse transcriptase inhibitors is marginal,

because the clearance of virus by infection is negligible compared to

the clearance by the immune system (CLTvCL and CLMvCL). A

positive result of entry inhibitors (FI/CCR5) and RTIs (NRTIs/

NNRTIs) is an increased number of uninfected cells, which also

results in an initial increase in the reproductive capacity Rcap (see

Fig. 5B). During treatment with NRTIs, NNRTIs, CCR5 inhibitors

and FIs, infective virus VI is the most abundant compartment. The

decay in the first phase is proportional to the decay of the late

infected cells, T2. Once the abundance of T2 falls below M2, the

decay of VI and thus Rcap in Fig. 5B is proportional to the decay of

late infected macrophages M2.

The pattern of virological removal influences the time to
virological rebound after treatment application

In the following, we predict how the distinct viral dynamics after

drug application affect drug efficacy in vivo. The long-term in vivo

efficacy of an antiviral drug depends on many different factors,

Figure 5. Decay of viral load and reproductive capacity after treatment initiation. A: Plasma virus load decay after treatment initiation.
Integrase inhibitors (InI) produce a faster decay of virus load than all other compound classes. Red solid-, black dotted-, green dash-dotted- and blue
dashed lines indicate simulation results with different inhibitor classes and parameters from Table 1. Black diamonds indicate median viral load data
from [27] (PI monotherapy), numerically available in [70]. Black squares and black bullets indicate median viral load data from [21] (NRTI + background
therapy and InI+background therapy, respectively). The horizontal dashed black line indicates the limit of detection of current assays (50 copies of
HIV RNA per mL). Inset: Protease- and maturation inhibitors (PI and MI) change the ratio of infectious to total virus (VI : Vtot). B: The evolution of the
reproductive capacity (evaluated at the drug free state Rcap(w)) after treatment with different drug classes. Model parameters are as indicated in
Table 1. The initial infection was assumed to consist of wild type only. Drug efficacy g was assumed to be 100%. Total body virus has been converted
to plasma viral load by assuming that the virus distributes into the plasma (Vplas:~3:1 liters, which surrounds 2% of infected cells) and the interstitial
space (Vint:~9:6 liters [71], which surrounds 98% of infected cells). The volume of distribution with reference to the plasma concentration has been
calculated using the well-known formula vol. distr ~Kint::plas:

:Vint:zVplas:, see e.g. [72], where Kint::plas:~98%=2%~50. Finally, we assume that on
average each virus contains 2 viral RNAs (which are measured [viral RNA/mL] plasma).
doi:10.1371/journal.pcbi.1000720.g005
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including the ability of the virus to adapt to the pharmacological

challenge by developing resistance mutations. The ability to

develop drug resistance is strongly dependent on the induced

pattern of resistance mutations against a particular drug, but also

on the velocity at which replication competent compartments

(VI,T1,T2,M1,M2) are removed from the body. Since anti-

retroviral drug classes target different stages in the viral life cycle,

they are likely to induce different patterns by which viral

compartments are removed from the body (see Fig. 6) and might

therefore exhibit different long-term in vivo efficacies.

To illustrate the sole impact of virological removal

(VI,T1,T2,M1,M2) on resistance development and therefore on

drug efficacy, we have intentionally chosen a simplistic, unified

mutational landscape and considered the time to viral rebound as

a long-term measure of efficacy. We denoted virological rebound,

if the viral load reaches 90% of the pre-treatment viral load. We

assumed that the drugs inhibited their targeted (lumped)

parameter (see Eqs. (7)–(10)) by 90% in the wild type (g~0:9),

by 45% in a one-mutation strain (g~0:45) and are entirely

inefficient in the double-mutant (g~0). Drug-specific and more

realistic mutational landscapes are possible, but in view of the

current analysis (elucidating the impact of class-specific virological

removal), they would blur the results.

In Table 2, the time to virological rebound for the different drug

classes based on the above simplistic mutation model is reported.

The virus generally rebounds to 90% of pre-treatment levels after

1–2 month of monotherapy, which is in the same order of

magnitude as clinically observed rebound times [55–57]. Although

inhibition g was assumed to be identical across all drug classes, the

Figure 6. Decay of infective compartments after initiation of drug treatment. A: Decay of infective compartments after treatment with FI
and CCR5-antagonists. B: Decay of infective compartments after treatment with NRTIs and NNRTIs. C: Decay of infective compartments after
treatment with InIs. D: Decay of infective compartments after treatment with PIs.
doi:10.1371/journal.pcbi.1000720.g006

Table 2. Virological rebound times resulting from distinct
virological removal.

Drug/Selec.
Disadvantage 30% 25% 20% 15% 10% 5% 1%

InI 48.13 44.44 41.33 38.70 36.43 34.65 33.25

FI/CCR5-antag. 53.71 47.81 43.09 39.57 36.47 33.77 32.06

NRTI/NNRTI 55.51 48.76 43.86 39.99 36.61 33.94 32.11

PI/MI 55.28 49.03 43.74 39.84 36.66 33.95 32.15

The time to virological rebound depends on both the cost of resistance
(‘selective disadvantage’, s) and the choice of drugs. Each table entry shows the
time to virological rebound in [days] in an ensemble of 1000 hybrid stochastic
deterministic simulations, where we assumed that the efficacy of the drugs
against the wild type was 90%. The drug was 45% effective against an one-
mutation strain and completely inefficient against the double-mutant. The
fraction of non-infectious viruses (1{p:q:rPR,w) was set to one-third and the

initial population was assumed to be all wild type. The viral load was said to be

rebounded, if the viral load reached 90% of the pre-treatment viral load.
doi:10.1371/journal.pcbi.1000720.t002
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times to virological rebound differed. In particular, when

resistance confers a marked loss in fitness (i.e. selective disadvan-

tage = 30%), PIs show the longest time to virologically rebound,

and the InIs the shortest.

For integrase inhibitors, the difference between the decay of

plasma viral load and their predicted long-term efficacy is quite

pronounced. Their comparably shorter times to virological

rebound are in strong contrast to their steep initial decrease of

plasma viral load (see Fig. 5A), but consistent with the decay

pattern of the reproductive capacity (Fig. 5B). For the EIs, RTIs,

PIs and MIs, the predicted time to virological rebound is also

much more consistent with the decay characteristics of the

reproductive capacity (Fig. 5B) than with the decay pattern of

total viral load (see Fig. 5A).

Discussion

In clinical studies, the first approved integrase inhibitor,

raltegravir, induced an extremely rapid decline in viral load when

applied both as monotherapy [10] and in combination with an

optimized NRTI background therapy [21–24]. While it was

initially speculated that the observed decline might be a result of

superior potency of raltegravir, it is now emerging that the viral

decline in InI-based therapy could be a class-specific phenomenon

[25,26]. Moreover, superior potency of InIs (in terms of g) was not

confirmed by single-round infectivity assays [14]. The mechanisms

underlying the decay dynamics are still not clear [58] and

controversially discussed [21,32].

In [32], a two stage model of the viral replication cycle is presented,

which explains the differences between the decay of viral load

between RTIs and InIs based on the stage at which the drugs affect

the dynamics of viral replication. The model explicitly distinguishes

two viral stages, early-stage infected cells and late-stage infected target

cells, which are specifically defined for a pair of drugs under

examination. The authors further conclude that the viral dynamics

produced by drugs from different anti-retroviral classes should not be

directly compared to infer drug potency [33]. An alternative measure,

as it is imperative for guiding drug discovery and prioritizing drug

candidates in later development stages, is still lacking.

All currently approved antivirals exert their effect by inhibiting

the replication of HIV. The extent at which replication is

inhibited, is therefore a unifying indicator for drug efficacy across

all drug classes. Replication assays, e.g., phenotypic assays [15] or

replication capacity assays [59], analyze drug efficacy in terms of

viral replication in vitro. The replicative fitness of HIV in vivo,

however, depends on the interaction of a multitude of viral and

host factors. Replication assays represent the dynamics of HIV

under the assay conditions, which lack many host factors, in

particular the immune responses to the infection. However, since it

is particularly useful to compare compounds in terms of replication

inhibition, we adopt the dynamic approach of replication assays to

define the reproductive capacity Rcap. In silico, we are able to

consider the host response to the viral infection and can thus

extrapolate the replication approach from in vitro to in vivo. In [60],

the authors used a similar approach to compare the effect of

distinct antiviral classes utilizing age-structured models.

We derived a single detailed model of the viral replication cycle

and deduced a reduced two stage model, which incorporates the

action of all approved HIV drugs. Our two-stage model allows to

predict the action of any number of drugs simultaneously, including

common HAART cocktails, potentially belonging to different drug

classes. In contrast, in [32], the stages of the two-stage model of

viral replication are not specified a priori and have to be

determined by the two drugs that are analyzed and compared.

Based on the proposed detailed and reduced model, we identify

the following effects of currently approved drugs: EI and RTIs

decrease the infection rate and thus the number of new infections.

The impact on the release of new virus (and virus decline) is

therefore delayed by the viral life cycle. MIs and PIs do not

interfere with the total amount of virus that is being released, but

rather shift the ratio of infective to total virus, VI : Vtot (see Fig. 5,

inset), which is not directly reflected by total plasma viral load.

Since the kinetics of the free virus are rapid [54], this has an

immediate impact on the number of new infections. Subsequently,

this impact on the number of new infections affects the total viral

release (and thus total plasma virus load) in a similar manner as

EIs and RTIs, creating a ‘shoulder’ phase. Hence, we obtain

new infections~ b
z}|{EI,RTI

:TU: VI|{z}
PI,MI

{?
life{cycle

total virus release:ð23Þ

In our model, EIs, RTIs, PIs and MIs produce an identical decay

of plasma viral load (see Fig. 5A), when assuming 100% inhibition,

respectively. In particular, the onset of viral load decay is similarly

delayed (‘shoulder phase’) with these inhibitors (see Figure S1), in

agreement with clinical observations [12,27]. Previously discussed

theoretical differences in the viral response between RTIs and PIs

(see Eq. (5.7) vs. Eq. (5.16) in [61]) yield similar dynamics when

more recent (higher) estimates of viral clearance are used [54].

In contrast to other inhibitor classes, InIs decrease the amount

of late infected cells (T2,M2) (see Fig. 2), which has an immediate

impact on total virus release, i.e.,

total virus release~bNN: T2|{z}
InI

: ð24Þ

The impact of InIs on viral load decay is immediate and not

delayed by the viral replication cycle as in the case of all other

compounds [12,27]. Thus, the onset of observed total viral decay

is faster for InIs than for other compounds, irrespective of their

potency (which was set equal for all compounds in Fig. 5A).

Furthermore, the decay of viral load in the first phase is steeper for

InIs in comparison to other inhibitor classes (see Fig. 5A). The

viral load decline in the first phase is proportional to the decay of

the late infected T-cells T2 (see Fig. 6). Sedaghat et al. [32] derived

analytical solutions for the viral decay dynamics after InI and RTI

treatment (see Eqs. (9) and (10) in [32]), which demonstrate that

the viral decay after InI treatment is determined by the death rate

of late infected cells (dT2
), while in the case of RTI treatment, the

decay is determined by the ‘‘flushing-out’’ of the early infected

cells (T1) and the death rate of the late infected cells dT2
, leading to

overall faster viral declines in the case of InI treatment in the first

phase.

The long-term in vivo efficacy of an antiviral drug depends on

many different factors, particularly the ability of the virus to adapt

to the pharmacological challenge by developing resistance

mutations. The ability to develop drug resistance is strongly

dependent on the induced pattern of resistance mutations against a

particular drug, but might also be influenced by the velocity at

which replication competent compartments are removed from the

body. However, viral load decay focusses on only one single

variable, namely the total output of virus, whereas other infectious

stages (e.g. T1,T2,M1,M2) remain ‘hidden’. Furthermore, the ratio

of infective virus-to-total virus (VI=Vtot) is not resolved, which

might underestimate the long-term efficacy of PIs and MIs that

target this ratio (see Table 2 in relation to Fig. 5A). In the section
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‘The pattern of virological removal influences the time to

virological rebound after treatment application’, we have com-

pared the impact of drug-class specific removal patterns on the

long-term efficacy of antivirals (in terms of resistance develop-

ment). We showed that although inhibition g was assumed to be

identical across all drug classes, the times to virological rebound

(used as a measure of long-term efficacy) differed, with PIs showing

the longest time to virologically rebound, and InIs the shortest.

The reproductive capacity has been monitored over time in

Fig. 5B to depict class-specific long-term efficacy of antivirals

based on the hosts’ ability to clear the targeted infectant in the

viral life cycle. The main conclusion is that the long-term efficacy

is larger for compounds that target viral life-stages that are cleared

at a fast rate. It is generally assumed that the free virus is cleared at

the fastest rate [27,54]. Since MIs and PIs reduce the production

of infective virus VI (see Fig. 2), they reduce the virus’ ability to

produce offspring faster than all other drug classes. Furthermore,

since resistance development is correlated with the extent of

replication, we infer that PIs and MIs, based on their viral target,

are the most efficient drug classes in terms of reducing the

probability of resistance development. This assumption correlates

well with the observed rebound times in Table 2 and is also

supported by the fact that the introduction of PIs marked the

success of HAART [1].

During drug discovery, the pre-clinical- and the clinical

development process, in vitro surrogate measures or in vivo drug

efficacy measures are important to prioritize drug candidates.

The mechanistic mode of action of a compound at its target site

can be elucidated by cell free assays that use purified viral protein,

e.g. reverse transcriptase for RTIs. The influence of viral

mutation, the immune system and pharmacokinetics are absent

in this type of assay. However, it is possible to deduce the

pharmacodynamic mode (e.g. Eq. (1), see also [41]) and thus the

parameter e from these types of assays, which denotes the extent of

inhibition of the molecular process by the compound. Mathemat-

ical models of HIV dynamics use a minimal number of

parameters, making them suitable for parameter fitting and

comparison with clinical data. The parameters used in the models

are often lumped, summarizing many viral processes. For

example, binding, fusion and reverse transcription are part of

the infection rate b (see Eq. (3)). Inhibition of lumped model

parameters (denoted by g) might therefore differ from inhibition of

the molecular process e, which is measured by cell-free in vitro

assays. We have provided equations (Eqs. (S24) and (S31),

Supplementary Text S1) that enable the use of pharmacodynamic

information e, derived from cell free assays (inhibition of the

targeted molecular process), in a (lumped) mathematical model of

HIV dynamics (utilizing g).

The presented model can be extended to incorporate drug-

specific escape pathways [62,63] or realistic time-varying drug

pharmacokinetics [41]. If in vivo pharmacokinetic data is available

(in terms of time-varying concentrations C(t) in Eq. (1)), then

extrapolation from in vitro to in vivo is possible and the mechanistic

understanding of drug effects, its parametrization and extrapola-

tion is facilitated. For RTIs and PIs, we found a nonlinear

relationship between e and g (see Eqs. (S24) and (S31),

Supplementary Text S1). Utilization of Eqs. (S24) and (S31)

allows to simulate drug effects based on their mechanistic

understanding in a lumped model, that can be compared with

clinical data.

The model can also be extended to include latently infected cells

(very long lived infected cells). We did not consider them in this

study, since they are expected to contribute little to the dynamics

analyzed herein (the first and the second decay phase).

The reproductive capacity is a useful concept to analyze and

monitor drug efficacy in silico. In its current form, the reproductive

capacity requires detailed knowledge about (i) the composition of

the viral population, and (ii) the fitness of the different viral strains

under a given treatment (reproductive numbers, Eqs. (12) and

(16)–(19)).

The fitness of certain viral strains can be assessed in vitro, e.g., by

phenotypic assays. We model strain specific fitness i under

treatment j, in terms of two parameters: the selective disadvantage

s(i), which denotes the loss in replication of mutant i, relative to

the wild type; and the efficacy of treatment j against mutant i in

terms of the parameter g(i,j). The selective disadvantage can, e.g.,

be estimated by performing a phenotypic assay with a certain

mutant virus i in the absence of drug and then comparing it to the

assay with the wild type. The parameter g(i,j) is already being

assessed in practice (e.g., [15]), usually in terms of a fold increase in

IC50.

Acquisition of detailed knowledge about the composition of the

viral population might, due to recent advances in sequencing

technology [64–67], become feasible in the future. However, novel

sequencing technology requires large amounts of viral RNA,

which cannot be derived when the viral load is below the limits of

detection.

Materials and Methods

Realization of hybrid simulations
The overall virus dynamics in our model comprise different viral

strains with copy numbers that can vary over several orders of

magnitude. For this reason we have chosen a hybrid (stochastic

deterministic) setting for numerical simulation. This approach (i)

takes stochastic fluctuations in the slow reaction processes into

account; and (ii) reduces the computational costs for the simulation

of the fast (deterministic) system dynamics. We used the direct

hybrid method proposed in [51]. Elementary reactions were

treated stochastically whenever their propensity function or the

quantity of at least one of their reactants was below a certain

threshold (for all numerical simulations this threshold was set to 5).

For the numerical integration of the deterministic part of the

system, we implemented a solver in C++ that is based on

numerical differentiation formulas [68] and uses strategies for

error control and step size control comparable to ode15s in Matlab

[69]. To generate the data for Table 2, we performed 1000 hybrid

simulations for each condition. With realization start (t = 0), the

effects of the drug treatment were simulated until the viral

population size reached 90% of its pre-treatment value, i.e.,

virological rebound occurred. During a simulation, the stochastic

partitioning of the reaction system was dynamically updated and

stochastic reaction events were realized accordingly. Every

numerical calculation was computed with a relative error tolerance

of 10{6 and an absolute error tolerance of 10{9. The hybrid

simulations for Table 2 were performed on two Intel Quad-Core

Xeon E5345 processors with 2.33 GHz and 32 GB RAM, which

took nearly 46 hours in total or approximately 6 seconds per

simulation, respectively.

Supporting Information

Text S1 This file contains the derivation of the simplified model

(Fig. 3) from the detailed model (Fig. 1).

Found at: doi:10.1371/journal.pcbi.1000720.s001 (0.30 MB PDF)

Figure S1 Delay in the onset of viral load decay, exemplified for

PI treatment. Simulation results (red line) using the novel two stage

virus dynamics model and simulating 100% effective PI treatment
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are shown together with median clinical data (black diamonds)

from PI (RTV) monotherapy.

Found at: doi:10.1371/journal.pcbi.1000720.s002 (0.91 MB EPS)
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