
����������
�������

Citation: Liu, W.; Jiang, Y.; Xu, Y. A

Super Fast Algorithm for Estimating

Sample Entropy. Entropy 2022, 24, 524.

https://doi.org/10.3390/e24040524

Academic Editor: Karsten Keller

Received: 27 February 2022

Accepted: 2 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Super Fast Algorithm for Estimating Sample Entropy

Weifeng Liu 1, Ying Jiang 1,* and Yuesheng Xu 2

1 Guangdong Province Key Laboratory of Computational Science, School of Computer Science and
Engineering, Sun Yat-sen University, Guangzhou 510006, China; liuwf27@mail2.sysu.edu.cn

2 Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA; y1xu@odu.edu
* Correspondence: jiangy32@mail.sysu.edu.cn

Abstract: Sample entropy, an approximation of the Kolmogorov entropy, was proposed to characterize
complexity of a time series, which is essentially defined as − log(B/A), where B denotes the number
of matched template pairs with length m and A denotes the number of matched template pairs with
m + 1, for a predetermined positive integer m. It has been widely used to analyze physiological
signals. As computing sample entropy is time consuming, the box-assisted, bucket-assisted, x-sort,
assisted sliding box, and kd-tree-based algorithms were proposed to accelerate its computation.
These algorithms require O(N2) or O(N2− 1

m+1) computational complexity, where N is the length of
the time series analyzed. When N is big, the computational costs of these algorithms are large. We
propose a super fast algorithm to estimate sample entropy based on Monte Carlo, with computational
costs independent of N (the length of the time series) and the estimation converging to the exact
sample entropy as the number of repeating experiments becomes large. The convergence rate of the
algorithm is also established. Numerical experiments are performed for electrocardiogram time series,
electroencephalogram time series, cardiac inter-beat time series, mechanical vibration signals (MVS),
meteorological data (MD), and 1/ f noise. Numerical results show that the proposed algorithm can
gain 100–1000 times speedup compared to the kd-tree and assisted sliding box algorithms while
providing satisfactory approximate accuracy.

Keywords: entropy; sample entropy; fast algorithm; Monte Carlo method

1. Introduction

Kolmogorov entropy is a well-suited measure for the complexity of dynamical sys-
tems containing noises. Approximate entropy (AppEn), proposed by Pincus [1], is an
approximation of the Kolmogorov entropy. To overcome the biasedness of AppEn caused
by self-matching, Richman proposed sample entropy (SampEn) [2] in 2000. SampEn is
essentially defined as − log(B/A), where B denotes the number of matched template pairs
with length m and A denotes the number of matched template pairs with m + 1. SampEn
has prevailed in many areas, such as cyber-physical systems, mechanical systems, health
monitoring, disease diagnosis, and control. Based on AppEn and SampEn, multiscale
entropy [3] and hierarchical entropy [4] were developed for measuring the complexity of
physiological time series in multiple time scales. Since low-frequency filters are involved,
multiscale entropy can weaken the influence of meaningless structures such as noise on
complexity measurement. By adding the sample entropy of the high-frequency component
of the time series, the hierarchical entropy provides more comprehensive and accurate
information and improves the ability to distinguish different time series. Multiscale entropy,
hierarchical entropy, and their variants have been applied to various fields such as fault
identification [5,6] and feature extraction [7], beyond physiological time series analysis.

Computing SampEn requires counting the number of similar templates of time series.
In other words, it requires counting the number of matched template pairs for a given
time series. Clearly, direct computing of SampEn requires computational complexity of
O(N2), where N is the length of the time series analyzed. To accelerate the computation of
SampEn, kd-tree based algorithms for sample entropy were proposed, which reduce the

Entropy 2022, 24, 524. https://doi.org/10.3390/e24040524 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24040524
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040524?type=check_update&version=1

Entropy 2022, 24, 524 2 of 25

time complexity to O(N2− 1
m+1), where m is the template (also called pattern) length [8,9]. In

addition, box-assisted [10,11], bucket-assisted [12], lightweight [13], and assisted sliding box
(SBOX) [14] algorithms were developed. However, the complexity of all these algorithms
is O(N2). Recently, an algorithm proposed in [15] for computing approximate values of
AppEn and SampEn, without theoretical error analysis, still requires O(N2) computational
costs in the worst scenario, even though it requires only O(N) number of operations in
certain best cases. Developing fast algorithms for estimating SampEn is still of great interest.

The goal of this study is to develop a Monte-Carlo-based algorithm for calculating
SampEn. The most costly step in computing SampEn is to compute the matched template
ratio B/A of length m over length m + 1. Noting that A

N(N−1) (resp. B
N(N−1)) is the proba-

bility that templates of length m (resp. m + 1) are matched, the ratio B/A can be regarded
as a conditional probability. From this viewpoint, we can approximate this conditional
probability of the original data set by that of a data set randomly down-sampled from the
original one. Specifically, we randomly select N0 templates of lengths m and N0 templates
of m + 1 from the original time series. We then count the number Ã (resp. B̃) of matched
pairs among the selected templates of lengths m (resp. m + 1). We repeat this process N1
times, and compute the mean ĀN1 (resp. B̄N1) of Ã (resp. B̃). Then, we use − log(B̄N1 /ĀN1)
to approximate − log(B/A) for the time series to measure its complexity. We establish
the computational complexity and convergence rate of the proposed algorithm. We then
study the performance of the proposed algorithm, by comparing it with the kd-tree-based
algorithm and the SBOX method on the electrocardiogram (ECG) time series, electroen-
cephalogram time series (EEG), cardiac inter-beat (RR) time series, mechanical vibration
signals (MVS), meteorological data (MD), and 1/ f noise. Numerical results show that
the proposed algorithm can gain more than 100 times speedup compared to the SBOX
algorithm (the most recent algorithm in the literature to the best of our knowledge) for a
time series of length 216 − 218, and more than 1000 times speedup for a time series of length
219 − 220. Compared to the kd-tree algorithm, the proposed algorithm can again achieve
up to 1000 times speedup for a time series of length 220.

This article is organized in five sections. The proposed Monte-Carlo-based algorithm
for estimating sample entropy is described in Section 2. Section 3 includes the main results
of the analysis of approximate accuracy of the proposed algorithm, and the proofs are given
in the Appendix A. Numerical results are presented in Section 4, and conclusion remarks
are made in Section 5.

2. Sample Entropy via Monte Carlo Sampling

In this section, we describe a Monte-Carlo-based algorithm for estimating the sample
entropy of a time series.

We first recall the definition of sample entropy. For all k ∈ N, let Zk := {1, 2, . . . , k}.
The distance of two real vectors a := [al : l ∈ Zk] and b := [bl : l ∈ Zk] of length k is
defined by

ρ(a, b) := max{|al − bl | : l ∈ Zk}.

We let u := (ui ∈ R : i ∈ Zn) be a time series of length n ∈ N. For m ∈ N, we let
N := n − m − 1. We define a set X of N vectors by X := {xi : i ∈ ZN}, where xi :=
[ui+l−1 : l ∈ Zm] is called a template of length m for the time series u. We also define a set Y
of N vectors by Y := {yi : i ∈ ZN}, where yi := [ui+l−1 : l ∈ Zm+1] is called a template of
length m + 1 for u. To avoid confusion, we call the elements in X and Y the templates for
the time series u. We denote by #E the cardinality of a set E. We use Ai, i ∈ ZN , to denote
the cardinality of the set consisting of templates x ∈ X \ {xi} satisfying ρ(xi, x) ≤ r, that is,

Ai := #{x ∈ X \ {xi} : ρ(xi, x) ≤ r}.

Likewise, for i ∈ ZN , we let

Bi := #{y ∈ Y \ {yi} : ρ(yi, y) ≤ r}.

Entropy 2022, 24, 524 3 of 25

Letting

B :=
1
2 ∑

i∈ZN

Bi and A :=
1
2 ∑

i∈ZN

Ai,

we define the sample entropy of time series u by

SampEn(u, m, r) :=

− log
(

B
A

)
, if A > 0, B > 0,

− log
(

2
N(N−1)

)
, otherwise.

The definition of sample entropy yields the direct algorithm, which explicitly utilizes
two nested loops, where the inner one computes Ai and Bi, and the outer one computes
A and B. Algorithm 1 will be called repeatedly in the Monte-Carlo-based algorithm to be
described later.

Algorithm 1 Direct method for range counting

Require: Sequence u := (ui : i ∈ ZN+m), subset s ⊂ ZN , template length m and threshold
r.

1: procedure DIRECTRANGECOUNTING(u, s, m, r)
2: Set count = 0,
3: Set L = #s,
4: for i = 1 to L do
5: Set a = [usi+l−1 : l ∈ Zm],
6: for j = i + 1 to L do
7: Set b = [usj+l−1 : l ∈ Zm],
8: if ρ(a− b) ≤ r then
9: count = count + 1,

10: return count

The definition of sample entropy shows that sample entropy measures the predictabil-
ity of data. Precisely, in the definition of sample entropy, B/A measures a conditional
probability that when the distance of two templates a and b is less than or equal to r, the
distance of their corresponding (m + 1)-th component is also less than or equal to r. From
this perspective, we can approximate this conditional probability of the original data set by
computing it on a data set randomly down-sampled from the original one. To describe this
method precisely, we define the notations as follows.

We choose a positive integer N0, randomly draw N0 numbers from ZN without
replacement, and form an N0-dimensional vector. All of such vectors form a subset Ω of
the product space

ZN0
N := ZN ⊗ZN ⊗ · · · ⊗ZN (N0-folds),

that is,
Ω := {s := [s1, . . . , sN0] ∈ ZN0

N : si 6= sj for all i 6= j}.

Suppose that F is the power set of Ω (the set of all subsets of Ω, including the empty
set and Ω itself). We let P be the uniform probability measure satisfying P(s) = 1/(#Ω)
for all s ∈ Ω and define the probability space {Ω,F , P}. The definition of Ω implies
#Ω = N!

(N−N0)!
, and thus the probability measure satisfies P(s) = (N−N0)!

N! for all s ∈ Ω.
The definition of F means all events that may occur in the sample space Ω are considered
in the probability space {Ω,F , P}. We randomly select N0 templates of length m and N0
templates of length m + 1 from the original time series. We then count the number Ã (resp.
B̃) of matched pairs among the selected templates of lengths m (resp. m + 1). That is,

Ã(s) :=
1
2

#
{
(i, j) : i, j ∈ ZN0 with i 6= j, and ρ(xsi , xsj) ≤ r

}
, s ∈ Ω,

Entropy 2022, 24, 524 4 of 25

and
B̃(s) :=

1
2

#
{
(i, j) : i, j ∈ ZN0 with i 6= j, and ρ(ysi , ysj) ≤ r

}
, s ∈ Ω.

We repeat this process N1 times.
Note that Ã and B̃ are random variables on the probability space {Ω,F , P}. Let ĀN1

and B̄N1 be the averages of random variables Ã and B̃, respectively, over the N1 repeated
processes. That is,

ĀN1 :=
1

N1

N1

∑
k=1

Ã(sk), and B̄N1 :=
1

N1

N1

∑
k=1

B̃(sk),

where {sk : k ∈ ZN1} is a subset of Ω. With ĀN1 and B̄N1 , we can estimate the sample
entropy − log(B/A) by computing − log(B̄N1 /ĀN1). We summarize the procedure for
computing − log(B̄N1 /ĀN1) in Algorithm 2 and call it the Monte-Carlo-based algorithm for
evaluating sample entropy (MCSampEn). In MCSampEn, sk, k ∈ ZN0 , are selected by the
Hidden Shuffle algorithm proposed in [16].

Algorithm 2 Monte-Carlo-based algorithm for evaluating sample entropy

Require: Sequence u = (ui : i ∈ ZN+m), template length m, tolerance r ∈ R, sample size
N0 and number of experiments N1, probability space {Ω,F , P}

1: procedure MCSAMPEN(u, m, r, N0, N1)
2: Set ĀN1 = 0 and B̄N1 = 0,
3: for k = 1 to N1 do
4: Select sk ∈ Ω, randomly, with uniform distribution,
5: Compute Ã(sk) by calling DirectRangeCounting(u, s(k), m, r),
6: Compute B̃(sk) by calling DirectRangeCounting(u, s(k), m + 1, r),
7: ĀN1 = ĀN1 +

1
N1

Ã(s(k)),

8: B̄N1 = B̄N1 +
1

N1
B̃(s(k)),

9: entropy = − log
B̄N1
ĀN1

,

10: return entropy

We next estimate the computational complexity of MCSampEn measured by the
number of arithmetic operations. To this end, we recall Theorem 3.5 of [16] which gives the
number of arithmetic operations used in the Hidden Shuffle algorithm.

Theorem 1. The Hidden Shuffle algorithm generates a random sample of size N0 sequentially from
a population of size N with O(N0) arithmetic operations in total.

Theorem 2. The total number of arithmetic operations needed in Algorithm 2 is O(N1(N2
0 + N0)).

Proof. For each k ∈ ZN1 , according to Theorem 1, the number of arithmetic operations
needed for selecting s(k) on line 4 of Algorithm 2 is O(N0). Moreover, from Algorithm 1 we
can see that for each k ∈ ZN1 , the number of arithmetic operations needed for computing
Ã(sk) and B̃(sk) on lines 5 and 6 is O(N2

0). Thus, by counting the number of arithmetic
operations needed for lines 7, 8, and 9 of Algorithm 2, we obtain the desired result.

Theorem 2 indicates that the computational complexity of MCSampEn is controlled
by setting appropriate sampling parameters N0 and N1. When N0 and N1 are fixed, the
computational complexity of MCSampEn is independent of the length N of time series u.
Meanwhile, we can also select N0 and N1 depending on N to balance the error and compu-
tational complexity of MCSampEn. For example, we can set N0 := max{1024, b

√
Nc} and

N1 := min{5 + log2 N, bN/N0c}, where bac denotes the greatest integer no bigger than
a ∈ R. In this case, the computational complexity is O(N log2 N).

Entropy 2022, 24, 524 5 of 25

Noting that MCSampEn provides an approximation of the sample entropy, and not
the exact value, convergence of MCSampEn is an important issue. We will discuss this in
Section 3.

3. Error Analysis

In this section, we analyze the error of MCSampEn. Specifically, we will establish an
approximation rate of MCSampEn in the sense of almost sure convergence.

A sequence of {Vk : k ∈ N} of random variables in probability space {Ω,F , P} is said
to converge almost surely to V ∈ {Ω,F , P}, denoted by

Vk
a.s.−→ V,

if there exists a set N ∈ F with P(N) = 0 such that for all ω ∈ Ω \ N ,

lim
k→∞

Vk(ω) = V(ω).

It is known (see [17]) that {Vk : k ∈ N} converges almost surely to V ∈ {Ω,F , P} if and
only if

lim
k→+∞

P

({
sup
i≥k
|Vi −V| > ε

})
= 0, for all ε > 0.

Furthermore, we can describe the convergence rate of {Vi : i ∈ N} by the declining rate of
the sequence

{
P
({

supi≥k|Vi −V| > ε
})

: k ∈ N
}

for all ε > 0. If for α > 0,

P

({
sup
i≥k
|Vi −V| > ε

})
= O(k−α), for all ε > 0,

we say {Vi : i ∈ N} converges to V almost surely with rate α.
To establish the approximation error of MCSampEn, we first derive two theoretical

results for the expectations and variations of Ã
N0(N0−1) and B̃

N0(N0−1) . Then, by combining
these results with the results of the almost sure convergence rate in [18] and the local
smoothness of logarithm functions, we obtain the approximation rate of {− log(B̄N1 /ĀN1) :
N1 ∈ N} in the sense of almost sure convergence, which is the main theoretical result of
this paper. We state these results below and postpone their proofs to the Appendix A.

The expectations of Ã
N0(N0−1) and B̃

N0(N0−1) are given in the following theorem.

Theorem 3. It holds that for all N0 ∈ ZN with N0 > 1,

E
[

Ã
N0(N0 − 1)

]
=

A
N(N − 1)

, (1)

and

E
[

B̃
N0(N0 − 1)

]
=

B
N(N − 1)

. (2)

The next theorem presents the variations of Ã
N0(N0−1) and B̃

N0(N0−1) .

Theorem 4. It holds that for all N0 ∈ ZN with N0 > 1,

Var
[

Ã
N0(N0 − 1)

]
=

CN0

N0
, (3)

and

Var
[

B̃
N0(N0 − 1)

]
=

CN0

N0
, (4)

Entropy 2022, 24, 524 6 of 25

where

CN0 :=
B

(N0 − 1)N(N − 1)
+

N0 − 2
(N0 − 1)N(N − 1)(N − 2)

(
N

∑
l=1

B2
l − 2B

)

+
(N0 − 2)(N0 − 3)

(N0 − 1)N(N − 1)(N − 2)(N − 3)

(
B2 −

N

∑
l=1

B2
l + B

)
− N0B2

N2(N − 1)2 . (5)

Moreover, there is 0 < CN0 < 1 + 1
2(N0−1) .

Based on Theorems 3 and 4, we can obtain log
B̄N1
ĀN1

a.s.−→ log B
A by the Kolmogorov

strong law of large numbers and the continuous mapping theorem. However, in practice
it is desirable to quantify the approximation rate in the sense of almost sure convergence,

so that we can estimate the error between log
B̄N1
ĀN1

and log B
A . To this end, we define

τA := E
[∣∣∣ Ã

N0(N0−1) −
A

N(N−1)

∣∣∣], and τB := E
[∣∣∣ B̃

N0(N0−1) −
B

N(N−1)

∣∣∣]. Let γA := A
2N(N−1)e

and γB := B
2N(N−1)e . For all β > 1 and 0 < ε < 1, we also let

nε,β := max
{

6ε−1, exp
((

9β−1ε−1
)β−1/(1−β−1)

)}
. (6)

With the notation defined above, we present below the main theoretical result of this paper,
which gives the rate of {− log B̄k

Āk
: k ∈ N} approximating − log B

A in the sense of almost
sure convergence.

Theorem 5. Let β > 1 and N0 ∈ ZN with N0 > 3. If A, B > 0, then there exist constants Dβ

and D̃β (depending only on β) such that for all 0 < ε < 1 and N1 > nε,β, such that

P

(
sup
k>N1

∣∣∣∣log
B̄k

Āk
− log

B
A

∣∣∣∣ > max{τA, τB}ε
)

≤
72CN0

ε2N0N1

(
Dβ + D̃β(log N1)

β−1
)(1

τ2
Aγ2

A
+

1
τ2

Bγ2
B

)
. (7)

The proof for Theorems 3–5 are included in the Appendix A. Note that Theorem 5
indicates that − log B̄k

Āk
approximates − log B

A in the sense of almost sure convergence of
order 1.

4. Experiments

We present numerical experiments to show the accuracy and computational complex-
ity of the proposed algorithm MCSampEn.

As sample entropy has been prevalently used in a large number of areas, we con-
sider several series with a variety of statistical features, including the electrocardiogram
(ECG) series, RR interval series, electroencephalogram (EEG) series , mechanical vibration
signals (MVS), meteorological data (MD), and 1/ f noise. The ECG and EEG data can be
downloaded from PhysioNet, a website offering access to recorded physiologic signals
(PhysioBank) and related open-source toolkits (PhysioToolkit) [19]. The MVS data can
be found in [20] and the website of the Case Western Reserve University Bearing Data
Center [21]. The MD data can be downloaded from the website of the Royal Netherlands
Meteorological Institute [22]. The databases used in this paper include:

Long-Term AF Database (ltafdb) [23]. This database includes 84 long-term ECG record-
ings of subjects with paroxysmal or sustained atrial fibrillation (AF). Each record

Entropy 2022, 24, 524 7 of 25

contains two simultaneously recorded ECG signals digitized at 128 Hz with 12-bit
resolution over a 20 mV range; record durations vary but are typically 24 to 25 h.

Long-Term ST Database (ltstdb) [24]. This database contains 86 lengthy ECG recordings
of 80 human subjects, chosen to exhibit a variety of events of ST segment changes,
including ischemic ST episodes, axis-related non-ischemic ST episodes, episodes of
slow ST level drift, and episodes containing mixtures of these phenomena.

MIT-BIH Long-Term ECG Database (ltecg) [19]. This database contains 7 long-term ECG
recordings (14 to 22 h each), with manually reviewed beat annotations.

BIDMC Congestive Heart Failure Database (chfdb) [25]. This database includes long-
term ECG recordings from 15 subjects (11 men, aged 22 to 71, and 4 women, aged 54
to 63) with severe congestive heart failure (NYHA class 3–4).

MGH/MF Waveform Database (mghdb) [26]. The Massachusetts General Hospital/ Mar-
quette Foundation (MGH/MF) Waveform Database is a comprehensive collection of
electronic recordings of hemodynamic and electrocardiographic waveforms of stable
and unstable patients in critical care units, operating rooms, and cardiac catheteriza-
tion laboratories. Note that only the ECG records were considered in our experiments.

RR Interval Time Series (RR). The RR interval time series are derived from healthy sub-
jects (RR/Health), and subjects with heart failure (RR/CHF) and atrial fibrillation
(RR/AF).

CHB-MIT Scalp EEG Database (chbmit) [27]. This database contains (EEG) records of
pediatric subjects with intractable seizures. The records are collected from 22 subjects,
monitored for up to several days.

Gearbox Database (gearbox) [20]. The gearbox dataset was introduced in [20] and was
published on https://github.com/cathysiyu/Mechanical-datasets (accessed on 27
March 2022).

Rolling Bearing Database (RB) [21]. This database as a standard reference for the rolling
bearing fault diagnosis is provided by the Case Western Reserve University Bearing
Data Center [21].

Meteorological Database (MD) [22]. The meteorological database used in this section
records the hourly weather data in the past 70 years in the Netherlands.

As each database consists of multiple records from different subjects, we select one
record randomly from each database. Specifically, we choose record “00” from ltafdb,
“s20011” from ltstdb, “14046” from ltdb, “chf01” from chfdb, “mgh001” from mghdb,
“chb07_01” from chbmit, “Miss_30_2” from gearbox, “XE110_DE_Time” from RB, and
“380_t” from MD. Moreover, 1/ f noise signal, an artificial signal, is studied to increase
diversity. The time series considered in this section are illustrated in Figure 1, where all
samples are normalized to have a standard deviation of 1, since the parameter threshold r
is proportional to the standard deviation of the records, and thus the whole range of the
records is negligible.

https://github.com/cathysiyu/Mechanical-datasets

Entropy 2022, 24, 524 8 of 25

Figure 1. Samples of the dataset records.

4.1. Approximation Accuracy

In the experiments presented in this subsection, we examine the approximation accu-
racy of the MCSampEn algorithm. Specifically, we set r := 0.15 and m := 4, 5. We vary the
sampling size N0 and the number N1 of computations to study the approximation accuracy
of the proposed algorithm. In this experiment, records with lengths exceeding 106 are trun-
cated to have length 106; otherwise, the entire records are used. Since in the MCSampEn
algorithm, sk ∈ Ω are selected randomly, the outcome of the algorithm depends on the
selected value of sk. To overcome the effect of the randomness, for every specified pair of
(N0, N1), we run the algorithm 50 times and calculate the mean errors (MeanErr) and the
root mean squared errors (RMeanSqErr) of the 50 outcomes.

In our first experiment, we consider series “mghdb/mgh001”, select parameters
N0 ∈ {200i : i ∈ Z+

20}, N1 ∈ {10i : i ∈ Z+
25}, and show in Figure 2 the mean errors and the

root mean squared errors of the MCSampEn outputs as surfaces in the N0-N1 coordinate
system. Images (a) and (c) of Figure 2 show the values of MeanErr and images (b), (d), and
(f) of Figure 2 show the values of RMeanSqErr. Figure 2 clearly demonstrates that both
the mean errors and the root mean squared errors of the MCSampEn outputs converge to
0 as N0 or N1 increases to infinity. This is consistent with our theoretical analysis in the
previous section.

In the second experiment, we consider all series illustrated in Figure 1 and show
numerical results in Figures 3 and 4. Images (a), (c), and (e) of Figure 3 show the values
of MeanErr, and images (b), (d), and (f) of Figure 3 show the values of RMeanSqErr, with
N0 ∈ {200i : i ∈ Z+

20} and fixed N1 = 250. Images (a), (c), and (e) of Figure 4 show the
values of MeanErr, and images (b), (d), and (f) of Figure 4 show the values of RMeanSqErr,
with N0 = 4000 and N1 ∈ {10i : i ∈ Z+

25}. Figure 3 indicates that the outputs of the
MCSampEn algorithm converge as N0 increases. We can also see from Figure 3 that when
N0 ≥ 1500, N1 = 150, and m = 4, both MeanErr and RMeanSqErr are less than 1× 10−2

for all tested time series. In other words, the MCSampEn algorithm can effectively estimate
sample entropy when N0 ≥ 1500, N1 = 150, and m = 4. From Figure 4, we can also observe
that the outputs of the MCSampEn algorithm converge as N1 increases. This is consistent
with the theoretical results established in Section 3.

Entropy 2022, 24, 524 9 of 25

M
ea

nE
rr

(a)

RM
ea

nS
qE

rr

(b)

M
ea

nE
rr

(c)
RM

ea
nS

qE
rr

(d)

Figure 2. The values of MeanErr and RMeanSqErr for time series “mghdb/mgh001” with respect to
the sample size N0 and the number of computations N1, where parameters r = 0.15 and m = 4, 5.
(a) MeanErr with m = 4. (b) RMeanSqErr with m = 4. (c) MeanErr with m = 5. (d) RMeanSqErr
with m = 5.

0 1000 2000 3000 4000

10-3

10-2

10-1

100

101

(a)

0 1000 2000 3000 4000

10-3

10-2

10-1

100

(b)

0 1000 2000 3000 4000

10-3

10-2

10-1

100

101

(c)

0 1000 2000 3000 4000

10-3

10-2

10-1

100

101

(d)

Figure 3. The values of MeanErr and RMeanSqErr with respect to N0 ∈ {200i : i ∈ Z+
20} and

N1 = 150, where parameters r = 0.15 and m = 4, 5. (a) MeanErr with m = 4. (b) RMeanSqErr with
m = 4. (c) MeanErr with m = 5. (d) RMeanSqErr with m = 5.

We next explain how the randomness of a time series effects the accuracy of the
MCSampEn algorithm by applying the algorithm to the stochastic process MIX(p), which
has been widely applied to studies of sample entropy [1,2,28]. The MIX(p) is defined as
follows. Let xj := α−1/2 sin(12π j/12) for all j ∈ ZN where

α :=

(
12

∑
j=1

sin2(2π j/12)

)
/12.

Entropy 2022, 24, 524 10 of 25

Let {yj : j ∈ ZN} be a family of independent identically distributed (i.i.d) real random
variables with uniform probability density on the interval [−

√
3,
√

3]. Note that {xj : j ∈
ZN} and {yj : j ∈ ZN} are sequences with contrary properties: the former is a completely
regular sine sequence, and the latter is completely random. Let p ∈ [0, 1], and {zj : j ∈ ZN}
be a family of i.i.d random variables satisfying zj = 1 with probability p and zj = 0 with
probability 1− p. Then, the MIX(p) process is defined as {mj := (1− zj)xj + zjyj : j ∈ ZN}.
It’s not hard to find that the parameter p controls the ratio of sine sequence and random
noise in the MIX(p) process and the increase in p makes the MIX(p) process more random.
When p = 0, the MIX(p) process is a deterministic sine sequence. Meanwhile, when p = 1,
the MIX(p) process turns out completely unpredictable uniform noise. This feature makes
it an ideal series to study how randomness affects the accuracy of the MCSampEn algorithm.

0 50 100 150 200 250

10-3

10-2

10-1

100

101

(a)

0 50 100 150 200 250

10-3

10-2

10-1

100

101

(b)

0 50 100 150 200 250

10-3

10-2

10-1

100

101

(c)

0 50 100 150 200 250

10-3

10-2

10-1

100

101

(d)

Figure 4. The values of MeanErr and RMeanSqErr with respect to N0 = 2× 103 and N1 ∈ {10i :
i ∈ Z+

25}, where parameters r = 0.15 and m = 4, 5. (a) MeanErr with m = 4. (b) RMeanSqErr with
m = 4. (c) MeanErr with m = 5. (d) RMeanSqErr with m = 5.

Here, we apply MCSampEn to MIX(p), p ∈ {0.5+ 0.5i : i ∈ Z19} and show the results
of RMeanSqErr versus p in Figure 5. From Figure 5, we can observe that the values of
RMeanSqErr increase linearly with a very small growth rate when p ≤ 0.5. When p > 0.5,
the values of RMeanSqErr are significantly faster than that of p ≤ 0.5. Therefore, we believe
that when the randomness of a time series is weak, the error of the MCSampEn algorithm
is small; as the randomness of the time series increases, the error of the MCSampEn grows.

0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

Figure 5. The values of RMeanSqErr with respect to p, where parameters r = 0.15, m = 4, 5, N = 220,
N0 = 2000, and N1 = 150.

Entropy 2022, 24, 524 11 of 25

4.2. Time Complexity

In the experiments presented in this subsection, we compare the computing time of the
MCSampEn algorithm with that of the kd-tree algorithm [8] and SBOX algorithm [14], under
the condition that the value of sample entropy computed by the MCSampEn algorithm is
very close to the ground truth value. The computational time experiments are performed
on a desktop computer running Windows 11, with an Intel(R) Core(TM) i5-9500 CPU,
and 32GB RAM. The implementations of the kd-tree-based algorithm and the MCSampEn
algorithm are available on the website https://github.com/phreer/fast_sampen_impl.git
(accessed on 30 March 2022). As for the SBOX method, we utilize the implementation
given by the original author, published on website https://sites.google.com/view/yhw-
personal-homepage (accessed on 25 October 2021). To demonstrate the validity of the
MCSampEn algorithm, we also show both the sample entropy estimated by MCSampEn
and the corresponding ground truth.

As we have discussed above, the time complexity of the MCSampEn algorithm de-
pends on the parameters N0 and N1. In this subsection, we discuss two strategies for
choosing N0 and N1:

S1 Choose N0 and N1 to be independent of N, for example N0 = 2× 103 and N1 = 150.

S2 Choose N0 = max{1024, b
√

Nc} and N1 = min{5 + log2 N, bN/N0c}, depending
on N.

An intuitive explanation of the second strategy is shown below. We would like to
choose N0 and N1 such that the overall time complexity of executing the algorithm is
O(N log N). For this purpose, we expect N0 to grow like

√
N and N1 to grow logarithmi-

cally in N. However, when N is not large enough, lack of sampling templates can seriously
impair the accuracy of the algorithm. To overcome this problem, we set a lower bound of N0
to 1024, which is a good trade-off between accuracy and time complexity. The experimental
results in this subsection show that this strategy can produce satisfactory output even when
N is small.

The results on different signals “ltafdb/00”, “1/ f noise”, “chbmit/chb07_01”, and
“ltecg/14046” are shown in Figure 6, where the first strategy is adopted by setting
N0 = 2× 103 and N1 = 150, and the results for m = 4 are marked by red color, and
the results for m = 5 are marked by blue. In the left column of Figure 6, the values of
computation time consumed by the kd-tree, SBOX, and MCSampEn algorithms are plotted,
respectively, with the dashed lines marked “x”, the dash-dot lines marked “+”, and the
solid lines marked “o”. From the results shown in the left column of Figure 6, we can find
that MCSampEn is faster than the SBOX algorithm when N is greater than 215. We also
can see when the time series “chbmit/chb07_01” and “ltecg/14046” have length N of 220,
MCSampEn is nearly 1000 times faster than the SBOX algorithm. Compared to the kd-tree
algorithm, the MCSampEn algorithm can still achieve up to hundreds of times acceleration
when N = 220. In addition, the time complexity of MCSampEn algorithm is close to a
constant relative to m, and is much smaller than the kd-tree and SBOX algorithms when N
is large enough. Meanwhile, the computational time (shown in the left column of Figure 6)
required is hardly affected by the times series length N.

The right column of Figure 6 shows the average of 50 outputs of the MCSampEn
algorithm for different time series under the settings of N0 = 2× 103 and N1 = 150, where
the red solid lines plot the average for the cases of m = 4, and the blue solid lines plot the
average for the cases of m = 5. In the right column of Figure 6, the values of ground truth
for the cases of m = 4 and m = 5 are plotted by the red and blue dashed lines, respectively.
Meanwhile, in the right column of Figure 6, we use error bars “I” to represent the values of
RMeanSqErr, where the larger the value of RMeanSqErr, the longer the error bar “I”. From
the length of error bar “I”, we can see that the values of RMeanSqErr are small compared
to the ground truth. Especially on the time series “ltafdb/00”, “chbmit/chb_0701”, and
“ltecg/14046”, the values of RMeanSqErr are negligible compared to the values of ground

https://github.com/phreer/fast_sampen_impl.git
https://sites.google.com/view/yhw-personal-homepage
https://sites.google.com/view/yhw-personal-homepage

Entropy 2022, 24, 524 12 of 25

truth. These results imply that when N0 = 2× 103 and N1 = 150, the sample entropy
estimated by the MCSampEn algorithm can effectively approximate the ground truth value.

14 15 16 17 18 19 20
10-2

100

102

104

(a)

14 15 16 17 18 19 20
0.6

0.7

0.8

0.9

1

1.1

(b)

14 15 16 17 18 19 20
10-2

100

102

104

(c)

14 15 16 17 18 19 20
1.95

2

2.05

2.1

(d)

14 15 16 17 18 19 20

100

102

104

(e)

14 15 16 17 18 19 20 21
0.3

0.4

0.5

0.6

0.7

0.8

(f)

14 15 16 17 18 19 20

100

102

104

(g)

14 15 16 17 18 19 20
0.1

0.15

0.2

0.25

0.3

(h)

Figure 6. The left column shows the results of computational time versus data length N on different
signals. In the right column, the values of RMeanSqErr are presented by error bars “I”, where
the larger the value of RMeanSqErr, the longer the error bar “I”. In this figure, we set m = 4, 5,
N0 = 2× 103, and N1 = 150. (a) Time for “ltafdb/00”. (b) Sample entropy “ltafdb/00”. (c) Time for
1/ f noise. (d) Sample entropy for 1/ f noise. (e) Time for “chbmit/chb07_01”. (f) Sample entropy for
“chbmit/chb07_01”. (g) Time “ltecg/14046”. (h) Sample entropy for “ltecg/14046”.

The results of the second strategy are shown in Figure 7, where N0 = max{1024, b
√

Nc}
and N1 = min{5 + log2 N, bN/N0c}. The results for m = 4 are marked by red color, and
the results for m = 5 are marked by blue color. The left column of Figure 6 shows the
values of computation time consumed by the kd-tree, SBOX, and MCSampEn algorithms,
which are presented by the dashed lines marked “x”, the dash-dot lines marked “+”, and
the solid lines marked “o”, respectively. From the left column of Figure 7, we also can see
that with the second strategy, the computational time of MCSampEn algorithm is much
less than that of the kd-tree and SBOX algorithms, since the computational complexity of

Entropy 2022, 24, 524 13 of 25

Algorithm 2 is O(N log N). Furthermore, we observe that MCSampEn achieves a speedup
of more than 100 compared to the SBOX algorithm when N goes from 216 to 218, and it is
over 1000 times faster when N = 220. Compared to the kd-tree algorithm, the MCSampEn
algorithm can still obtain up to 1000 times acceleration when N = 220.

14 15 16 17 18 19 20
10-2

100

102

104

(a)

14 15 16 17 18 19 20
0.6

0.7

0.8

0.9

1

1.1

(b)

14 15 16 17 18 19 20
10-2

100

102

104

(c)

14 15 16 17 18 19 20

1.8

2

2.2

2.4

(d)

14 15 16 17 18 19 20
10-2

100

102

104

(e)

14 15 16 17 18 19 20
0.3

0.4

0.5

0.6

0.7

0.8

(f)

14 15 16 17 18 19 20
10-2

100

102

104

(g)

14 15 16 17 18 19 20
0.1

0.15

0.2

0.25

0.3

(h)

Figure 7. The left column shows the results of computational time versus data length N on different
signals. The right column shows the values of RMeanSqErr by error bar, where the larger the value
of RMeanSqErr, the longer the error bar “I”. In this figure, we set m = 4, 5, N0 = max{1024, b

√
Nc},

and N1 = max{1, bN/N0c}. (a) Time for “ltafdb/00”. (b) Sample entropy “ltafdb/00”. (c) Time for
1/ f noise. (d) Sample entropy for 1/ f noise. (e) Time for “chbmit/chb07_01”. (f) Sample entropy for
“chbmit/chb07_01”. (g) Time “ltecg/14046”. (h) Sample entropy for “ltecg/14046”.

In the right column of Figure 7, we plot the average of 50 outputs of the MCSampEn
algorithm for different time series by the red and blue solid lines for m = 4 and m = 5,
respectively. At the same time, the values of ground truth for the cases of m = 4 and m = 5
are plotted by the red and blue dashed lines, respectively. As in Figure 6, we use the error
bar “I” to represent the values of RMeanSqErr. Comparing the error bar “I” in Figure 6, we
can see that the values of the RMeanSqErr in this experiment are larger than that shown in

Entropy 2022, 24, 524 14 of 25

Figure 6. However, the value of RMeanSqErr is still small in terms of the values of ground
truth. Moreover, we can observe that the length of the error bars decreases as N increases.
This means that we can obtain a better approximation of sample entropy as the time series
length increases.

To reveal the effect of randomness on the speedup, we compare the time taken by
the kd-tree and MCSampEn algorithms to compute the sample entropy of the time series
MIX(p), p ∈ {0.5 + 0.5i : i ∈ Z19}. The experimental results are shown in Figure 8, where
the results for m = 4 are marked by red color, and the results for m = 5 are marked by
blue. The values of computation time consumed by the kd-tree and MCSampEn algorithms
are plotted, respectively, with the dashed lines marked “x” and the solid lines marked
“o”. In this experiment, we set N = 220 and r = 0.15. We also let N0 = 1000 + 3000p and
N1 = 80 + 70p to ensure that the relative error RMeanSqErr/SampEn is no greater than
0.02. From Figure 8, we can see that when the value of p is less than 0.2, compared with the
kd-tree algorithm, the MCSampEn algorithm can achieve 300 to 1000 times speedup. When
the value of p is greater than 0.8, our algorithm can still obtain a 10x speedup relative to
the kd-tree algorithm.

0.2 0.4 0.6 0.8 1
100

101

102

103

Figure 8. The results of computational time with respect to p, where parameters r = 0.15, m = 4, 5,
N = 220, N0, and N1 are selected such that relative error RMeanSqErr/SampEn ≤ 0.02.

From the experiments in this subsection, we can observe that the MCSampEn algo-
rithm can achieve a high speedup when it is applied to different types of signals. In fact,
compared with kd-tree algorithm, the MCSampEn algorithm can achieve high accuracy
and more than 300 times acceleration when the time series has less randomness. When the
randomness of the time series is high, our algorithm can still obtain a speedup of nearly
10 times.

4.3. Memory Usage

In order to show the performance of the MCSampEn algorithm more comprehensively,
we also compare the memory usage of the kd-tree and MCSampEn algorithms. The memory
usage on signal “ltstdb/s20011” is shown in Figure 9, where the memory usage for m = 4
and m = 5 is shown in Figure 9a,b, respectively. In this figure, the memory usage of the
kd-tree algorithm is plotted by the blue dash-dot lines marked “x”. The memory usage
of the MCSampEn algorithm with the first and second strategies is plotted by the green
dashed lines marked “+” and the red dotted lines marked “o”, respectively. In Figure 9,
the first strategy is adopted by setting N0 = 2048 and N1 = 150, and the second strategy is
adopted by N0 = max{1024, b

√
Nc} and N1 = min{5 + log2 N, bN/N0c}. We also present

the memory usage for storing the data by the black solid lines marked “�”.
From the results shown in Figure 9, it can be seen that when the size of the data is

220, the memory required by the kd-tree algorithm is almost 36 times that of the memory
required by the MCSampEn algorithm. This is because the kd-tree algorithm requires a
large memory space to save the kd-tree. Meanwhile, the experimental results in Figure 9
also show that the amount of memory required by the MCSampEn algorithm is only about

Entropy 2022, 24, 524 15 of 25

15 MB more than the amount of memory required to store the data when the length of
data is between 214 and 224. This is because the MCSampEn algorithm requires additional
memory for storing N0 templates and to execute the subroutines that generate random
numbers.

14 16 18 20 22 24

100

102

(a)

14 16 18 20 22 24
10-1

100

101

102

103

(b)

Figure 9. The results of memory usage versus data length N with m = 4, 5. (a) Memory usage for
m = 4. (b) Memory usage for m = 5.

Because the MCSampEn algorithm is based on Monte Carlo sampling and the law of
large numbers, it is an easily parallelizable algorithm. Therefore, combined with distributed
storage techniques, the idea of the MCSampEn algorithm can be used to compute sample
entropy for large-scale data (for example, where the size of data is larger than 1 TB). Parallel
algorithms for computing sample entropy of large-scale data will be our future work.

5. Conclusions

In this paper, we propose a Monte-Carlo-based algorithm called MCSampEn to esti-
mate sample entropy and prove that the outputs of MCSampEn can approximate sample
entropy in the sense of almost sure convergence of order 1. We provide two strategies
to select the sampling parameters N0 and N1, which appear in MCSampEn. The exper-
iment results show that we can flexibly select the parameters N0 and N1 to balance the
computational complexity and error. From the experimental results, we can observe that
the computational time consumed by the proposed algorithm is significantly shorter than
the kd-tree and SBOX algorithms, with negligible loss of accuracy. Meanwhile, the com-
putational complexity of our MCSampEn method is hardly affected by the time series
length N. We also study how the randomness of the time series affects the accuracy and
computation time of the MCSampEn algorithm by applying the algorithm to the stochastic
process MIX(p). The results indicate that the proposed algorithm performs well for time
series with less randomness.

Author Contributions: Conceptualization, Y.J.; methodology, Y.J. and W.L.; software, W.L.; validation,
Y.J. and W.L.; formal analysis, Y.J. and W.L.; investigation, Y.J.; writing—original draft preparation,
W.L.; writing—review and editing, Y.J. and Y.X.; visualization, W.L.; supervision, Y.J.; project adminis-
tration, Y.J.; funding acquisition, Y.J. All authors have read and agreed to the published version of
the manuscript.

Funding: W. Liu and Y. Jiang are supported in part by the Key Area Research and Development
Program of Guangdong Province, China (No. 2021B0101190003); the Natural Science Foundation
of Guangdong Province, China (No.2022A1515010831); and Science and Technology Program of
Guangzhou, China (No. 201804020053). Yuesheng Xu was supported in part by US National Science
Foundation under grant DMS-1912958.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2022, 24, 524 16 of 25

Appendix A

In this Appendix, we provide proofs of Theorems 3–5, where Theorems 3 and 4
describe the expectations and variances of Ã

N0(N0−1) and B̃
N0(N0−1) , and Theorem 5 presents

the convergence rate of {− log B̄k
Āk

: k ∈ N}.
Note that the only difference in the definitions between Ã

N0(N0−1) and B̃
N0(N0−1) is the

template length. Without loss of generality, we discuss the expectation (2) and variation (4)
of B̃

N0(N0−1) . The Equations (1) and (3) of Ã
N0(N0−1) can be obtained in a similar way.

To analyze the expectation of B̃
N0(N0−1) , we define the following notation. For all

j ∈ ZN0 , we define random variable B̃j on the probability space {Ω,F , P} by

B̃j(s) := #
{

i ∈ ZN0 : i 6= j and ρ(ysi , ysj) ≤ r
}

, s ∈ Ω. (A1)

For all j ∈ ZN0 , the definition of B̃j indicates that B̃j(s) is the number of elements in
{ysi : i ∈ ZN0} that satisfy ρ(ysi , ysj) ≤ r and i 6= j. From the definitions of B̃ and B̃j, we
have that for all s ∈ Ω,

B̃(s) =
1
2

N0

∑
j=1

B̃j(s).

For p, q, l ∈ N, we say random variable V follows the hypergeometric distribution H(p, q, l)
if and only if the probability of V = k

Pr(V = k) =


(q

k)(
p−q
l−q)

(p
l)

, if max{0, q + l − p} ≤ k ≤ min{q, l},
0, otherwise.

See Section 5.3 of [29] for more details about the hypergeometric distribution. For all
l ∈ ZN , let Bl := {i ∈ ZN : i 6= l and ρ(yi, yl) ≤ r}, which is the index set of elements of Y
satisfying ρ(yi, yl) ≤ r. From the definition of Bl , we have that Bl = #Bl . For the purpose
of analyzing the expectation of B̃

N0(N0−1) , we recall the expectation of the hypergeometric
distribution H(p, q, l) (see Theorem 5.3.2 in [29]) and prove a technical lemma as follows.

Theorem A1. For p, q, l ∈ N, the expectation of the hypergeometric distribution H(p, q, l) is ql
p .

Lemma A1. Let N0 ∈ ZN with N0 > 1. For any fixed j ∈ ZN0 and l ∈ ZN , the conditional
probability distribution of B̃j given sj = l is the hypergeometric distribution H(N − 1, Bl , N0 − 1).
Moreover, for all j ∈ ZN0 , the expectation of random variable B̃j is

E
[
B̃j
]
=

2(N0 − 1)
N(N − 1)

B. (A2)

Proof. Let j ∈ ZN0 and l ∈ ZN . From the definition of B̃j, we can see that for all s ∈ Ω with
sj = l, B̃j(s) ≤ min{Bl , N0 − 1}. On the other hand, since for all s ∈ Ω with sj = l,{

i ∈ ZN0 : ρ(ysi , yl) > r
}
⊂ {i ∈ ZN : ρ(yi, yl) > r},

from the definitions of B̃j and Bl , we have that N0 − B̃j ≤ N − Bl . Thus, we can see that for
all s ∈ Ω with sj = l, max{0, N0 − N + Bl} ≤ B̃j ≤ min{N0 − 1, Bl}. This means that for
k < max{0, N0 − N + Bl} or k > min{N0 − 1, Bl},

#{s ∈ Ω : B̃j(s) = k and sj = l} = 0.

Entropy 2022, 24, 524 17 of 25

Meanwhile, it can be checked that for all s ∈ Ω with sj = l and max{0, N0 − N + Bl} ≤
k ≤ min{N0 − 1, Bl}, B̃j(s) = k if and only if vector s contains k components belonging to
Bl , and N0 − 1− k components belonging to ZN/(Bl ∪ {l}). Note that there are (Bl

k) ways
of drawing k elements from set Bl , and (N−1−Bl

N0−1−k) ways of drawing N0 − 1− k elements
from set ZN/(Bl ∪ {l}). Thus, by noting that each element in Ω is a permutation formed
by extracting N0 numbers from ZN , we have that for all max{0, N0 − N + Bl} ≤ k ≤
min{N0 − 1, Bl},

#{s ∈ Ω : B̃j(s) = k and sj = l} = (N0 − 1)!
(

Bl
k

)(
N − 1− Bl
N0 − 1− k

)
. (A3)

Note that #{s ∈ Ω : sj = l} = (N−1)!
(N−N0)!

, and the elements in {s ∈ Ω : sj = l} are of equal

probability. Hence, dividing the right term of (A3) by (N−1)!
(N−N0)!

, we obtain

P
(

B̃j = k | sj = l
)
=


(

Bl
k)(

N−1−Bl
N0−1−Bl

)

(N−1
N0−1)

, max{0, N0 − N + Bl} ≤ k ≤ min{N0 − 1, Bl},

0, otherwise.

This indicates that the conditional probability distribution of B̃j given sj = l is the hyperge-
ometric distribution H(N − 1, Bl , N0 − 1) (see [29]).

Since the conditional probability distribution of B̃j given sj = l is the hypergeometric
distribution H(N − 1, Bl , N0 − 1), from Theorem A1 we have for any j ∈ ZN0 and l ∈ ZN ,

E
[
B̃j | sj = l

]
= Bl(N0−1)

N−1 . Thus, by noting ∑l∈ZN
Bl = 2B and P

(
sj = l

)
= 1

N for all l ∈ ZN ,
from the law of total expectation we obtain (A2).

The proof for Theorem 3 is shown as follows.

Proof. From the definitions of B̃ and B̃j, we know

E
[
B̃
]
=

1
2

N0

∑
j=1

E
[
B̃j
]
. (A4)

Substituting (A2) into (A4) leads to (2).

Next we consider the variance of B̃
N0(N0−1) . Since B̃ = 1

2 ∑j∈ZN0
B̃j, the variance of

B̃
N0(N0−1) can be obtained by summing the covariances E[B̃j1 B̃j2], j1, j2 ∈ ZN0 . This motivates
us to compute these covariances. As a preparation, we establish two auxiliary lemmas. For
all k, l ∈ ZN with k 6= l, we define Bkl := Bk ∩Bl and Bkl := #Bkl .

Lemma A2. It holds that

∑
k∈ZN

∑
l∈ZN\{k}

Bkl = ∑
l∈ZN

B2
l − 2B. (A5)

Proof. Note that Bkl
⋂
Bk′ l′ is not necessarily empty for (k, l) 6= (k′, l′). For Bkl , we define

new sets Πkl so that they mutually disjoint and have the same cardinality as Bkl . In this
way, the formula (A5) will be proved by establishing a set identity and counting their
cardinality. To this end, we define Πkl := {(p, k, l) : p ∈ Bkl}, for each k, l ∈ ZN with k 6= l,
and Πp :=

{
(p, k, l) : k, l ∈ Bp with k 6= l

}
, for each p ∈ ZN . From the definition of Πkl , we

have that #Πkl = Bkl and Πkl
⋂

Πk′ l′ = ∅ if (k, l) 6= (k′, l′). Thus,

∑
k∈ZN

∑
l∈ZN\{k}

Bkl = #

 ⋃
k∈ZN

⋃
l∈ZN\{k}

Πkl

. (A6)

Entropy 2022, 24, 524 18 of 25

Likewise, the definition of Πp ensures that #Πp = Bp(Bp − 1) and Πp
⋂

Πp′ = ∅ if p 6= p′.
Thus, by noting that 2B = ∑p∈ZN

Bp,

∑
p∈ZN

B2
p − 2B = ∑

p∈ZN

Bp(Bp − 1) = #

 ⋃
p∈ZN

Πp

. (A7)

Combining Equations (A6) and (A7), we see that it suffices to prove⋃
k∈ZN

⋃
l∈ZN\{k}

Πkl =
⋃

p∈ZN

Πp. (A8)

For all k, l ∈ ZN with k 6= l, and (p, k, l) ∈ Πkl , the definitions of Πkl and Bkl ensure

p 6= k, p 6= l, ρ(yp, yk) ≤ r and ρ(yp, yl) ≤ r. (A9)

In other words, there are k ∈ Bp, l ∈ Bp and k 6= l. Thus, for all k, l ∈ ZN with k 6= l, and
(p, k, l) ∈ Πkl , there has (p, k, l) ∈ Πp. Thus, we obtain⋃

k∈ZN

⋃
l∈ZN\{k}

Πkl ⊂
⋃

p∈ZN

Πp. (A10)

On the other hand, for all p ∈ ZN and (p, k, l) ∈ Πp, we know (A9) holds and k 6= l from the
definitions of Πp and Bp. This means that (p, k, l) ∈ Πkl and k 6= l. Hence, we obtain that⋃

p∈ZN

Πp ⊂
⋃

k∈ZN

⋃
l∈ZN\{k}

Πkl . (A11)

From (A10) and (A11) we obtain (A8), which leads to the desired result (A5).

For i, j ∈ ZN0 with i 6= j, we define random variable Zij on the probability space
{Ω,F , P} by

Zij(s) :=

{
1, if ρ(ysi , ysj) ≤ r,

0, if ρ(ysi , ysj) > r,
s ∈ Ω. (A12)

From the definition of B̃j, we can see that B̃j = ∑i∈ZN0\{j} Zij. Thus, in order to compute

the covariance E[B̃j1 B̃j2], we next show the values of P(Zi1 j1 = 1, Zi2 j2 = 1) for j1, j2 ∈ ZN0

and i1, i2 ∈ ZN0 \ {j1, j2} with i1 6= i2.

Lemma A3. It holds that for j1, j2 ∈ ZN0 with j1 6= j2, and i1, i2 ∈ ZN0 \ {j1, j2} with i1 6= i2,

P(Zi1 j1 = 1, Zi2 j2 = 1) =
4
(

B2 + B−∑l∈ZN
B2

l
)

N(N − 1)(N − 2)(N − 3)
. (A13)

Moreover, for all j ∈ ZN0 and i, i′ ∈ ZN0 \ {j} with i 6= i′, it holds that

P(Zij = 1, Zi′ j = 1) =
∑l∈ZN

B2
l − 2B

N(N − 1)(N − 2)
. (A14)

Proof. We first prove (A13). Let

LN0 := {(i1, j1, i2, j2) : j1, j2 ∈ ZN0 with j1 6= j2, and i1, i2 ∈ ZN0 \ {j1, j2} with i1 6= i2}

and for all (i1, j1, i2, j2) ∈ LN0 , we define

Ωi1 j1,i2 j2 := {s ∈ Ω : Zi1 j1(s) = 1, and Zi2 j2(s) = 1}.

Entropy 2022, 24, 524 19 of 25

We prove (A13) by counting the cardinality of Ωi1 j1,i2 j2 . To this end, we identify Ωi1 j1,i2 j2 as
the union of disjoint subsets of Ωi1 j1,i2 j2 . From the definition of Zi1 j1 and Zi2 j2 , we know for
all (i1, j1, i2, j2) ∈ LN0 and s ∈ Ωi1 j1,i2 j2 that si1 ∈ Bsj1

and si2 ∈ Bsj2
. At the same time, note

that for (i1, j1, i2, j2) ∈ LN0 and s ∈ Ωi1 j1,i2 j2 , the numbers in set {sj1 , sj2 , si1 , si2} are distinct.
Thus, for all (i1, j1, i2, j2) ∈ LN0 and s ∈ Ωi1 j1,i2 j2 , it holds that sj1 6= sj2 , si1 ∈ Bsj1

\ {sj2},
and si2 ∈ Bsj2

\ {si1 , sj1}. Namely,

Ωi1 j1,i2 j2 ⊂ {s ∈ Ω : sj1 6= sj2 , si1 ∈ Bsj1
\ {sj2}, and si2 ∈ Bsj2

\ {si1 , sj1}}.

On the other hand, it is easy to check that

Ωi1 j1,i2 j2 ⊃ {s ∈ Ω : sj1 6= sj2 , si1 ∈ Bsj1
\ {sj2}, and si2 ∈ Bsj2

\ {si1 , sj1}}.

Thus, for all (i1, j1, i2, j2) ∈ LN0 , Ωi1 j1,i2 j2 can be rewritten as

Ωi1 j1,i2 j2 = {s ∈ Ω : sj1 6= sj2 , si1 ∈ Bsj1
\ {sj2}, and si2 ∈ Bsj2

\ {si1 , sj1}}.

For k 6= l, we define Ωk,l
i1 j1,i2 j2

:= {s ∈ Ωi1 j1,i2 j2 : sj1 = k, sj2 = l}. Then, we can rewrite
Ωi1 j1,i2 j2 as

Ωi1 j1,i2 j2 =
⋃

k∈ZN

⋃
l∈ZN\{k}

Ωk,l
i1 j1,i2 j2

. (A15)

Since Ωk,l
i1 j1,i2 j2

∩Ωk′ ,l′
i1 j1,i2 j2

= ∅ if (k, l) 6= (k′, l′), from (A15) we can see that

#Ωi1 j1,i2 j2 = ∑
k∈ZN

∑
l∈ZN\{k}

#Ωk,l
i1 j1,i2 j2

. (A16)

Note that for all k ∈ ZN and l ∈ ZN \ {k},

Ωk,l
i1 j1,i2 j2

= {s ∈ Ω : sj1 = k, sj2 = l, si1 ∈ Bk \ (Bkl ∪ {l}) and si2 ∈ Bl \ {k}}
∪{s ∈ Ω : sj1 = k, sj2 = l, si1 ∈ Bkl and si2 ∈ Bl \ {si1 , k}},

and the two sets on the right-hand side of the above equation are disjoint. Thus, it holds
that for all k ∈ ZN and l ∈ ZN \ {k},

#Ωk,l
i1 j1,i2 j2

=
(N − 4)!
(N − N0)!

((Bk − Bkl − Zkl)(Bl − Zkl) + Bkl(Bl − Zkl − 1)). (A17)

Substituting (A17) into (A16) leads to

#Ωi1 j1,i2 j2 =
(N − 4)!
(N − N0)!

∑
k∈ZN

∑
l∈ZN\{k}

((Bk − Bkl − Zkl)(Bl − Zkl) + Bkl(Bl − Zkl − 1)).

By direct computation with noting Z2
kl = Zkl , we obtain from the equation above that

#Ωi1 j1,i2 j2 =
(N − 4)!
(N − N0)!

∑
k∈ZN

∑
l∈ZN\{k}

(BkBl − BkZkl − BlZkl − Bkl + Zkl). (A18)

Note that ∑k∈ZN\{l} Zkl = Bl and ∑l∈ZN\{k} Bl = 2B− Bk. We then have that

∑
k∈ZN

∑
l∈ZN\{k}

BlZkl = ∑
l∈ZN

∑
k∈ZN\{l}

BlZkl = ∑
l∈ZN

Bl

 ∑
k∈ZN\{l}

Zkl

 = ∑
l∈ZN

B2
l ,

Entropy 2022, 24, 524 20 of 25

∑
k∈ZN

∑
l∈ZN\{k}

BkBl = ∑
k∈ZN

Bk(2B− Bk) = 4B2 − ∑
l∈ZN

B2
l ,

and
∑

k∈ZN

∑
l∈ZN\{k}

Zkl = 2B.

Substituting (A5) and the above equations into (A18), we obtain that

#Ωi1 j1,i2 j2 =
4(N − 4)!
(N − N0)!

(
B2 + B− ∑

l∈ZN

B2
l

)
. (A19)

By noting that #Ω = N!
(N−N0)!

and P(Zi1 j1 = 1, Zi2 j2 = 1) =
#Ωi1 j1,i2 j2

#Ω , we obtain (A13) from
(A19).

We now turn to prove (A14). Let j ∈ ZN0 and i, i′ ∈ ZN0 \ {j} with i 6= i′. Note that

#{s ∈ Ω : Zij(s) = Zi′ j(s) = 1} = ∑
l∈ZN

#{s ∈ Ω : sj = l, si ∈ Bl and si′ ∈ Bl \ {si}}

=
(N − 3)!
(N − N0)!

∑
l∈ZN

Bl(Bl − 1).

Thus, it holds that

P(Zij = 1, Zi′ j = 1) =
∑l∈ZN

Bl(Bl − 1)
N(N − 1)(N − 2)

. (A20)

Since ∑l∈ZN
Bl = 2B, from (A20) we obtain (A14).

With the help of Lemma A3, we can calculate E
[
B̃j1 B̃j2

]
in the following lemma.

Lemma A4. If N0 ∈ ZN with N0 > 3, then for all j1, j2 ∈ ZN0 with j1 6= j2,

E
[
B̃j1 B̃j2

]
=

4(N0 − 2)(N0 − 3)
N(N − 1)(N − 2)(N − 3)

(
B2 + B− ∑

l∈ZN

B2
l

)

+
3(N0 − 2)

(
∑l∈ZN

B2
l − 2B

)
N(N − 1)(N − 2)

+
2B

N(N − 1)
,

(A21)

and for all j ∈ ZN0 ,

E
[

B̃2
j

]
=

2(N0 − 1)B
N(N − 1)

+
(N0 − 1)(N0 − 2)
N(N − 1)(N − 2)

(
∑

l∈ZN

B2
l − 2B

)
. (A22)

Proof. We first prove (A21). Let j1, j2 ∈ ZN0 with j1 6= j2. From the decomposition
B̃j = ∑i∈ZN0\{j} Zij, we obtain for all j1, j2 ∈ ZN0 with j1 6= j2 that

E
[
B̃j1 B̃j2

]
= ∑

i1∈ZN0\{j1}
∑

i2∈ZN0\{j2}
E
[
Zi1 j1 Zi2 j2

]
.

We further rewrite the right-hand side of the above equation to obtain

E
[
B̃j1 B̃j2

]
= ∑

i1∈ZN0\{j1,j2}
∑

i2∈ZN0\{j1,j2,i1}
E
[
Zi1 j1 Zi2 j2

]
+ ∑

i1∈ZN0\{j1,j2}
E
[
Zi1 j1 Zi1 j2

]
+ ∑

i1∈ZN0\{j1,j2}
E
[
Zi1 j1 Zj1 j2

]
+ ∑

i2∈ZN0\{j1,j2}
E
[
Zj2 j1 Zi2 j2

]
+ E

[
Zj2 j1 Zj1 j2

]
. (A23)

Entropy 2022, 24, 524 21 of 25

We next compute the terms on the right hand side of (A23) one by one. Since for all
j, j′ ∈ ZN0 , i ∈ ZN0 \ {j} and i′ ∈ ZN0 \ {j′},

E
[

ZijZi′ j′
]
= P(Zij = 1, Zi′ j′ = 1),

from Equation (A13) of Lemma A3, we know the first term in the right-hand side of (A23)
satisfies

∑
i1∈ZN0\{j1,j2}

∑
i2∈ZN0\{j1,j2,i1}

E
[
Zi1 j1 Zi2 j2

]
=

4
(

B2 + B−∑l∈ZN
B2

l
)

N(N − 1)(N − 2)(N − 3)
(N0 − 2)(N0 − 3).

(A24)
Likewise, by noting that Zij = Zji, from Equation (A14) of Lemma A3, we obtain the second,
third, and fourth terms on the right-hand side of (A23),

∑
i1∈ZN0\{j1,j2}

E
[
Zi1 j1 Zi1 j2

]
= ∑

i1∈ZN0\{j1,j2}
E
[
Zi1 j1 Zj1 j2

]
= ∑

i2∈ZN0\{j1,j2}
E
[
Zj2 j1 Zi2 j2

]
= (N0 − 2)

∑l∈ZN
B2

l − 2B
N(N − 1)(N − 2)

. (A25)

Note that for all i, j ∈ ZN0 with i 6= j, it holds that Zij = Zji and Z2
ij = Zij. Thus, the last

term on the right-hand side of (A23) satisfies

E
[
Zj2 j1 Zj1 j2

]
=

2B
N(N − 1)

. (A26)

Substituting (A24), (A25), and (A26) into (A23) leads to (A21).
It remains to prove (A22). Since for all j ∈ ZN0 , B̃j = ∑i∈ZN0\{j} Zij = ∑i∈ZN0\{j} Z2

ij,
there has

E
[

B̃2
j

]
= E

 ∑
i∈ZN0\{j}

Z2
ij + ∑

i1∈ZN0\{j}
∑

i2∈ZN0\{j,i1}
Zi1 jZi2 j

,

= E

B̃j + ∑
i1∈ZN0\{j}

∑
i2∈ZN0\{j,i1}

Zi1 jZi2 j


= E

[
B̃j
]
+ ∑

i1∈ZN0\{j}
∑

i2∈ZN0\{j,i1}
E
[
Zi1 jZi2 j

]
. (A27)

Note that for all j ∈ ZN0 , i1 ∈ ZN0 \ {j} and i2 ∈ ZN0 \ {j, i1},

E
[
Zi1 jZi2 j

]
= P(Zi1 j = 1, Zi2 j = 1).

Thus, substituting (A2) and (A14) into (A27), we obtain (A22).

Now, we are ready to discuss the variance of B̃
N0(N0−1) .

The proof for Theorem 4 is shown as follows.

Proof. To prove this theorem, we compute E[B̃2]. Noting that B̃ = 1
2 ∑N0

j=1 B̃j, we have

E
[

B̃2
]
=

1
4

 ∑
j∈ZN0

E
[

B̃2
j

]
+ ∑

j1∈ZN0

∑
j2∈ZN0\{j1}

E
[
B̃j1 B̃j2

]. (A28)

Entropy 2022, 24, 524 22 of 25

Substituting (A21) and (A22) into (A28) leads to

E
[

B̃2
]
=

N0(N0 − 1)
N(N − 1)

B +
N0(N0 − 1)(N0 − 2)

N(N − 1)(N − 2)

(
N

∑
p=1

B2
p − 2B

)

+
N0(N0 − 1)(N0 − 2)(N0 − 3)

N(N − 1)(N − 2)(N − 3)

(
B2 −

N

∑
p=1

B2
p + B

)
.

(A29)

Since

Var
[

B̃
N0(N0 − 1)

]
= E

[(
B̃

N0(N0 − 1)

)2]
−
(

E
[

B̃
N0(N0 − 1)

])2

,

by conducting some computation, from (A29) and the definition of CN0 (5), we obtain (4).
We next estimate CN0 . It can be checked that

CN0 =
(N0 − 2)

(
∑l∈ZN

B2
l
)

(N0 − 1)(N − 1)N(N − 2)

(
1− N0 − 3

N − 3

)
+

B
(N0 − 1)N(N − 1)

(
1− 2

N0 − 2
N − 2

+
(N0 − 2)(N0 − 3)
(N − 2)(N − 3)

)
+

B2

N(N − 1)(N0 − 1)

(
(N0 − 2)(N0 − 3)
(N − 2)(N − 3)

− N0(N0 − 1)
N(N − 1)

)
. (A30)

By noting
∑l∈ZN

B2
l

(N−1)2 N ≤ 1, (N0−2)(N−1)
(N0−1)(N−2) ≤ 1 and 0 ≤ 1 − N0−3

N−3 ≤ 1, we know the first

term in (A30) is not greater than 1. Since B
N(N−1) < 1

2 and 1− 2 N0−2
N−2 + (N0−2)(N0−3)

(N−2)(N−3) ≤(
1− N0−2

N−2

)2
< 1, we have that the second term in (A30) is not greater than 1

N0−1 . Note

that (N0−2)(N0−3)
(N−2)(N−3) −

N0(N0−1)
N(N−1) ≤ 0. Thus, we know the third term in (A30) is not positive.

Therefore, we conclude that CN0 ≤ 1 + 1
2(N0−1) .

To analyze this almost sure convergence rate of
{
− log B̄k

Āk
: k ∈ N

}
, we require Theo-

rem 2 of [18], which is recalled as follows.

Theorem A2. Let {Vi : i ∈ N} ∪ {V} be a sequence of independent and identically distributed
random variables in probability space {Ω,F , P} with expectation µ, σ := Var[Vi] and τ :=
E[|Vi − µ|]. If σ < +∞ and τ < +∞, then for all 0 < ε ≤ 1 and β > 1, there are constants Dβ

and D̃β (depending only on β) such that for all i > nε,β,

P

(
sup
k≥i

∣∣∣∣∣1k k

∑
l=1

Vl − µ

∣∣∣∣∣ > τε

)
≤ 72σ

τ2ε2i

(
Dβ + D̃β(log i)β−1

)
,

where nε,β is defined by (6).

Combining Theorems 3, 4, and A2 leads to the almost sure convergence of
B̄N1

N0(N0−1)

and
ĀN1

N0(N0−1) in the next lemma.

Lemma A5. Let β > 1 and N0 ∈ ZN with N0 > 3. Then, there are constants Dβ and D̃β

(depending only on β) such that for all 1 ≥ ε > 0 and N1 > nε,β,

P

(
sup
k>N1

∣∣∣∣ Āk
N0(N0 − 1)

− A
N(N − 1)

∣∣∣∣ > τAε

)
≤

72CN0

τ2
Aε2N0N1

(
Dβ + D̃β(log N1)

β−1
)

, (A31)

Entropy 2022, 24, 524 23 of 25

and

P

(
sup
k>N1

∣∣∣∣ B̄k
N0(N0 − 1)

− B
N(N − 1)

∣∣∣∣ > τBε

)
≤

72CN0

τ2
Bε2N0N1

(
Dβ + D̃β(log N1)

β−1
)

, (A32)

where nε,β is defined by (6).

Proof. From Theorems 3 and 4, we know that Var
[

Ã
N0(N0−1)

]
= Var

[
B̃

N0(N0−1)

]
=

CN0
N0

<

+∞, E
[

Ã
N0(N0−1)

]
= A

N(N−1) , and E
[

B̃
N0(N0−1)

]
= B

N(N−1) . Meanwhile, since 0 ≤ Ã
N0(N0−1) ≤

1, 0 ≤ B̃
N0(N0−1) ≤ 1, 0 ≤ A

N(N−1) ≤ 1 and 0 ≤ B
N(N−1) ≤ 1, we know that τA ≤ 1 and

τB ≤ 1. Thus, by Theorem A2, we obtain (A32) and (A31).

We next consider the almost sure convergence rate of
{
− log B̄k

Āk
: k ∈ N

}
. To this end,

we introduce the following lemma.

Lemma A6. Let N0 ∈ ZN with N0 > 3. If A > 0 and B > 0, then for all N1 ∈ N and 1 > ε > 0,

P

(
sup
k>N1

∣∣∣∣log
(

Āk
N0(N0 − 1)

)
− log

(
A

N(N − 1)

)∣∣∣∣ > ε

)

≤ P

(
sup
k>N1

∣∣∣∣ Āk
N0(N0 − 1)

− A
N(N − 1)

∣∣∣∣ > Aε

N(N − 1)e

)
, (A33)

and

P

(
sup
k>N1

∣∣∣∣log
(

B̄k
N0(N0 − 1)

)
− log

(
B

N(N − 1)

)∣∣∣∣ > ε

)

≤ P

(
sup
k>N1

∣∣∣∣ B̄k
N0(N0 − 1)

− B
N(N − 1)

∣∣∣∣ > Bε

N(N − 1)e

)
. (A34)

Proof. Note that for all 0 < a, b < 1 and 0 < η < 1, when

|log a− log b| > η, (A35)

it holds that a > beη , or a < be−η . Hence, when (A35) holds, there is

a− b > b(eη − 1), or a− b < b(e−η − 1). (A36)

By noting that eη − 1 > 1− e−η and 1− e−η > e−1η, from (A36), we know that when (A35)
holds, there has a− b > be−1η, or a− b < −be−1η, that is,

|a− b| > be−1η. (A37)

Note that when a = 0, for all 0 < b < 1 and 0 < η < 1, inequality (A37) always holds.
Thus, we know that for all 0 ≤ a < 1 and 0 < b, η < 1, when (A35) holds, inequality (A37)
holds. Then, replacing a, b, and η by B̄k

N0(N0−1) , B
N(N−1) and ε, we know for all N1 ∈ N and

0 < ε < 1, when

sup
k>N1

∣∣∣∣log
(

B̄k
N0(N0 − 1)

)
− log

(
B

N(N − 1)

)∣∣∣∣ > ε, (A38)

there has

sup
k>N1

∣∣∣∣ B̄k
N0(N0 − 1)

− B
N(N − 1)

∣∣∣∣ > Bε

N(N − 1)e
. (A39)

Entropy 2022, 24, 524 24 of 25

Let F1 be the set of the events satisfying (A38), and F2 be the set of the events satisfying
(A39). From (A38) and (A39), we know that F1 ⊂ F2. Thus, we can obtain (A34) (see
Theorem 1.5.4 in [29]). Similarly, we can obtain (A33).

Combining Lemmas A5 and A6, we obtain the almost sure convergence rate of{
− log

B̄k

Āk
: k ∈ N

}
in Theorem 5.
The proof of Theorem 5 is provided as follows.

Proof. Note that for all N1 ∈ N,

sup
k>N1

∣∣∣∣log
B̄k

Āk
− log

B
A

∣∣∣∣ ≤ sup
k>N1

∣∣∣∣log
(

B̄k
N0(N0 − 1)

)
− log

(
B

N(N − 1)

)∣∣∣∣
+ sup

k>N1

∣∣∣∣log
(

Āk
N0(N0 − 1)

)
− log

(
A

N(N − 1)

)∣∣∣∣.
Thus, we know that for all N1 ∈ N and 1 > ε > 0, if

sup
k>N1

∣∣∣∣log
B̄k

Āk
− log

B
A

∣∣∣∣ > max{τA, τB}ε, (A40)

then

sup
k>N1

∣∣∣∣log
(

B̄k
N0(N0 − 1)

)
− log

(
B

N(N − 1)

)∣∣∣∣ > max{τA, τB}ε
2

≥ τBε

2
, (A41)

or

sup
k>N1

∣∣∣∣log
(

Āk
N0(N0 − 1)

)
− log

(
A

N(N − 1)

)∣∣∣∣ > max{τA, τB}ε
2

≥ τAε

2
. (A42)

Let F1 be the set of the events satisfying (A40), F2 be the set of the events satisfying (A41),
and F3 be the set of events satisfying (A42). Then, from the above inequalities, we have
F1 ⊂ F2 ∪ F3. Hence, we have P(F1) ≤ P(F2) + P(F3) (see Theorems 1.5.4 and 1.5.7
in [29]), that is,

P

(
sup
k>N1

∣∣∣∣log
B̄k

Āk
− log

B
A

∣∣∣∣ > max{τA, τB}ε
)

≤ P

(
sup
k>N1

∣∣∣∣log
(

B̄k
N0(N0 − 1)

)
− log

(
B

N(N − 1)

)∣∣∣∣ > τBε

2

)

+P

(
sup
k>N1

∣∣∣∣log
(

Āk
N0(N0 − 1)

)
− log

(
A

N(N − 1)

)∣∣∣∣ > τAε

2

)
.

Substituting (A34) and (A33) into above inequality, from Lemma A5 and the definitions of
γA and γB, we obtain the desired result (7).

References
1. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]

[PubMed]
2. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.

Heart Circ. Physiol. 2000, 278, 2039–2049. [CrossRef] [PubMed]
3. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89,

068102. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://www.ncbi.nlm.nih.gov/pubmed/12190613

Entropy 2022, 24, 524 25 of 25

4. Jiang, Y.; Peng, C.-K.; Xu, Y. Hierarchical entropy analysis for biological signals. J. Comp. Appl. Math. 2011, 236, 728–742.
[CrossRef]

5. Li, Y.; Li, G.; Yang, Y.; Liang, X.; Xu, M. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology
filter and modified hierarchical permutation entropy. Mech. Syst. Signal Proc. 2017, 105, 319–337. [CrossRef]

6. Yang, C.; Jia, M. Hierarchical multiscale permutation entropy-based feature extraction and fuzzy support tensor machine with
pinball loss for bearing fault identification. Mech. Syst. Signal Proc. 2021, 149, 107182. [CrossRef]

7. Li, W.; Shen, X.; Li, Y. A comparative study of multiscale sample entropy and hierarchical entropy and its application in feature
extraction for ship-radiated noise. Entropy 2019, 21, 793. [CrossRef]

8. Jiang, Y.; Mao, D.; Xu, Y. A fast algorithm for computing sample entropy. Adv. Adapt. Data Anal. 2011, 3, 167–186. [CrossRef]
9. Mao, D. Biological Time Series Classification via Reproducing Kernels and Sample Entropy. Ph.D. Dissertation, Syracuse

University, Syracuse, NY, USA, August 2008.
10. Grassberger, P. An optimized box-assisted algorithm for fractal dimensions. Phys. Lett. A 1990, 148, 63–68. [CrossRef]
11. Theiler, J. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A Gen. Phys. 1987,

36, 4456–4462. [CrossRef]
12. Manis, G. Fast computation of approximate entropy. Comput. Meth. Prog. Biomed. 2008, 91, 48–54. [CrossRef]
13. Manis, G.; Aktaruzzaman, M.; Sassi, R. Low computational cost for sample entropy. Entropy 2018, 20, 61. [CrossRef]
14. Wang, Y.H.; Chen, I.Y.; Chiueh, H.; Liang, S.F. A low-cost implementation of sample entropy in wearable embedded systems: An

example of online analysis for sleep eeg. IEEE Trans. Instrum. Meas. 2021, 70, 9312616. [CrossRef]
15. Tomčala, J. New fast ApEn and SampEn entropy algorithms implementation and their application to supercomputer power

consumption. Entropy 2020, 22, 863. [CrossRef] [PubMed]
16. Shekelyan, M.; Cormode, G. Sequential Random Sampling Revisited: Hidden Shuffle Method. In Proceedings of the 24th

International Conference on Artificial Intelligence and Statistics, Virtually Held, 13–15 April 2021; pp. 3628–3636.
17. Karr, A.F. Probability; Springer: New York, NY, USA, 1993.
18. Luzia, N. A simple proof of the strong law of large numbers with rates. Bull. Aust. Math. Soc. 2018, 97, 513–517. [CrossRef]
19. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.;

Stanley, H.E. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals.
Circulation 2000, 101, 215–220. [CrossRef] [PubMed]

20. Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind.
Inform. 2019, 15, 2446–2455. [CrossRef]

21. Case Western Reserve University Bearing Data Center. Available online: https://engineering.case.edu/bearingdatacenter
(accessed on 27 March 2022).

22. Royal Netherlands Meteorological Institute. Available online: https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
(accessed on 27 March 2022).

23. Petrutiu, S.; Sahakian, A.V.; Swiryn, S. Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial
fibrillation in humans. Europace 2007, 9, 466–470. [CrossRef]

24. Jager, F.; Taddei, A.; Moody, G.B.; Emdin, M.; Antolič, G.; Dorn, R.; Smrdel, A.; Marchesi, C.; Mark, R.G. Long-term st database: a
reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial
ischaemia. Med. Biol. Eng. Comput. 2003, 41, 172–182. [CrossRef]

25. Baim, D.S.; Colucci, W.S.; Monrad, E.S.; Smith, H.S.; Wright, R.F.; Lanoue, A.; Gauthier, D.F.; Ransil, B.J.; Grossman, W.; Braunwald,
E. Survival of patients with severe congestive heart failure treated with oral milrinone. J. Am. Coll. Cardiol. 1986, 7, 661–670.
[CrossRef]

26. Welch, J.; Ford, P.; Teplick, R.; Rubsamen, R. The massachusetts general hospital-marquette foundation hemodynamic and
electrocardiographic database–comprehensive collection of critical care waveforms. Clin. Monit. 1991, 7, 96–97.

27. Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph. D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, September 2009.

28. Silva, L.E.V.; Filho, A.C.S.S.; Fazan, V.P.S.; Felipe, J.C.; Junior, L.O.M. Two-dimensional sample entropy: Assessing image texture
through irregularity. Biomed. Phys. Eng. Expr. 2016, 2, 045002. [CrossRef]

29. DeGroot, M.H.; Schervish, M.J. Probability and Statistics, 4th ed.; Person Education: New York, NY, USA, 2012.

http://dx.doi.org/10.1016/j.cam.2011.06.007
http://dx.doi.org/10.1016/j.ymssp.2017.12.008
http://dx.doi.org/10.1016/j.ymssp.2020.107182
http://dx.doi.org/10.3390/e21080793
http://dx.doi.org/10.1142/S1793536911000775
http://dx.doi.org/10.1016/0375-9601(90)90577-B
http://dx.doi.org/10.1103/PhysRevA.36.4456
http://dx.doi.org/10.1016/j.cmpb.2008.02.008
http://dx.doi.org/10.3390/e20010061
http://dx.doi.org/10.1109/TIM.2020.3047488
http://dx.doi.org/10.3390/e22080863
http://www.ncbi.nlm.nih.gov/pubmed/33286634
http://dx.doi.org/10.1017/S0004972718000059
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://dx.doi.org/10.1109/TII.2018.2864759
https://engineering.case.edu/bearingdatacenter
https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
http://dx.doi.org/10.1093/europace/eum096
http://dx.doi.org/10.1007/BF02344885
http://dx.doi.org/10.1016/S0735-1097(86)80478-8
http://dx.doi.org/10.1088/2057-1976/2/4/045002

	Introduction
	Sample Entropy via Monte Carlo Sampling
	Error Analysis
	Experiments
	Approximation Accuracy
	Time Complexity
	Memory Usage

	Conclusions
	Appendix A
	References

