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ABSTRACT
Wind speed has an important impact on the formation and dispersion of fine particulate
matter (PM), which can cause several health problems. During the transition from the
winter to the summer season in northern Thailand, the wind speed has been low for
longer than usual, which has resulted in fine PM accumulating in the air. Motivated
by this, we have identified a need to investigate wind speed due to its effect on PM
formation and dispersion and to raise awareness among the general public. The hourly
windspeed can be approximated by using confidence intervals for the ratio of the
medians of three-parameter lognormal distributions containing zero values. Thus, we
constructed them by using fiducial, normal approximation, and Bayesian methods. By
way of comparison, the performance measures for all ofthe proposed methods (the
coverage percentage, lower and upper error probabilities (LEP and UEP,respectively),
and expected length) were assessed via Monte Carlo simulation. The results of Monte
Carlo simulation studies show that the Bayesianmethod provided coverage percentages
close to the nominal confidence level and shorter intervals than the other methods.
Importantly, it maintained a good balance between LEP and UEP even for large
variation and percentage of zero-valued observations. To illustrate the efficacy of our
proposedmethods, we applied them to hourlywind speed data fromnorthernThailand.

Subjects Statistics, Computational Science, Natural Resource Management, Environmental
Contamination and Remediation, Environmental Impacts
Keywords Wind speed, Particulate matter, Confidence intervals, Ratio of medians, Fiducial,
Normal approximation, Bayesian method

INTRODUCTION
Oxygen in the air is necessary for the survival of humans and other animals. How fast the
air moves past a certain point is known as wind speed (measured in km/h), which is an
important phenomenon in meteorology for monitoring and predicting weather patterns in
a given area. It is reported daily along with the temperature, precipitation, and humidity for
all provinces on the ThaiMeteorological Departmentwebsite. Importantly, lowwind speeds
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during the transition from thewinter to the summer season lead to increased fine particulate
matter (PM) levels. In 2020, high PM2.5 (PM≤ 2.5 µm) increased the incidences of several
ailments (respiratory illness, allergic reactions in the eyes and nasal passages, etc.) in almost
all of the regions in Thailand, especially in the northern region (Tanraksa & Kendall, 2020).
Spikes in PM2.5 levels in the northern and northeastern regions of Thailand occur during
the transition from the winter to the summer season (January–March) (Wipatayotin &
Tangprasert, 2021). These reasons have led to our interest in estimating wind speeds to
provide essential information on current PM2.5 levels based on historic data. The hourly
wind speed data for Phitsanulok and Phayao provinces located in the northern region
follow the assumptions for a three-parameter lognormal (TPLN) distribution containing
zero values indicating no wind. By way of comparison, estimating the ratio of the median
wind speeds in two areas is used as a starting point in this study. The median, a measure
of central tendency, is the central value of a dataset (the midpoint of a distribution).
Moreover, it is more efficacious to use the median than the mean in analyses when the
distribution of data is skewed. In addition, the ratio of the medians of two datasets can be
used to measure the difference between them.

A lognormal distribution is used to represent right-skewed data when the threshold
parameter (the lower bound of the data) is equal to zero. The TPLN distribution first
introduced by Aitchison & Brown (1963) is suitable for highly right-skewed data that do
not fit a lognormal distribution because the threshold parameter is greater than zero. It has
been used in hydrology (Burges, Lettenmaier & Bates, 1975; Charbeneau, 1978) and for the
analysis of flood frequency (Singh & Rajagopal, 1986; Singh & Singh, 1987). In this study,
zero values are included among both simulated and wind speed data that follow a TPLN
distribution (i.e., a TPLN distribution containing zero values).

One of statistical inferencemethods is the parameter estimations, including the point and
interval estimations with the best-known example of the latter being a confidence interval
(CI). According to Casella & Berger (2002), the CI is a range of numbers containing the
parameter of interest with the desirable level of confidence which is better than a point
estimator. For this reason, the CI is focused in this study. The point parameter estimations
of the TPLN distribution have been formulated and discussed by various authors. Cohen
& Whitten (1980) modified the local maximum likelihood and the moment estimators for
the mean, variance and threshold parameters by using the first, second and third order
statistics. Next, the moment estimation has been developed by replacing the third moment
in a function of the first order statistics, as previously described in Cohen, Whitten & Ding
(1985). Later, Singh, Cruise & Ma (1990) compared the five methods, including the regular
method of moments, the modified method of moment (Cohen & Whitten, 1980), the
regular maximum likelihood estimate (MLE), the modified MLE, and entropy to estimate
the parameters and the quantiles of the TPLN viaMonte Carlo simulation.

In particular, some researchers have formulated methods for estimating the CIs for
the parameters of the TPLN. Royston (1992) used the zero skewness method to estimate
the threshold parameter and its certain functions, motivated by Griffiths (1980). After
that, Pang et al. (2005) presented the Bayesian estimation usingMarkov chainMonte Carlo
to approximate the coefficient of variation of three-parameter Weibull, lognormal and
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gamma distributions. Later, Basak, Basak & Balakrishnan (2009) made use of numerical
methods (Newton–Raphson and EM algorithms) based on progressively Type-II censored
samples from the TPLN for assessing the local and modified MLEs for the mean, variance
and threshold parameters as well as the CIs for the threshold by using Monte Carlo
simulations. Chen & Miao (2012) conducted the order statistics to construct the exact
CIs and the exact upper CIs for the threshold parameter. Recently, Maneerat, Niwitpong
& Nakjai (2022b) formulated the CIs for the median of the TPLN distribution based on
bootstrapping, normal approximation (NA) and the generalized pivotal quantity.Maneerat,
Nakjai & Niwitpong (2022a) also proposed Bayesian confidence intervals based on different
noninformative priors for the delta-lognormal mean.

However, the CIs for the parameters of a TPLN distribution, especially when zero values
are included along with the nonzero values, have not yet been formulated. Therefore, we
herein propose fiducial, NA, and Bayesian methods for constructing CIs for the ratio of
the medians of TPLN distributions containing zero values. We conducted a Monte Carlo
study to assess their performances in terms of their coverage percentages (CPs), lower
and upper error probabilities (LEP and UEP, respectively), and expected lengths. These
methods were applied to estimate hourly wind speeds during the transition from the winter
to the summer season in northern Thailand. This information could be used to help design
green corridors and implement other policies to reduce PM levels in northern Thailand in
the future.

THREE-PARAMETER LOGNORMAL DISTRIBUTIONS
CONTAINING ZERO VALUES AND THE PARAMETER OF
INTEREST
Let Xi= (Xi1,Xi2,...,Xini), i= 1,2 be random samples drawn from a TPLN distribution
containing zero values, denoted as TPLNZ (γi,µXi,σ

2
Xi
,ρi) where γi is the threshold

parameter, µXi is the scale parameter (the mean of Xi), σ 2
Xi

is the shape parameter
(the variance of Xi) and ρi is the proportion of nonzero values. For Xi > 0, random
variable Yi= ln(Xi−γi) is normally distributed as N (µXi,σ

2
Xi
) if Xi is a lognormal random

variable (Cohen & Whitten, 1980). Thus, the probability density function (pdf) of Xi is
given by

h(Xi;γi,µXi,σ
2
Xi
,ρi)= (1−ρi)+

ρi(Xi−γi)−1

(2πσ 2
Xi
)1/2

exp

{
−

1
2σ 2

Xi

[
ln(Xi−γi)−µXi

]2}
, (1)

where γi < Xi <∞, which are bounded as follows: γi ≥ 0, 0<µXi <∞, σ 2
Xi
> 0 and

0<ρi< 1. Otherwise, for Xi= 0, the pdf of W becomes h(Xi;γi,µXi,σ
2
Xi
,ρi)= 1−ρi. The

likelihood and log-likelihood functions of ω= (γi,µXi,σ
2
Xi
,ρi) are respectively given by

L(ω|X)= (1−ρi)ni0ρ
ni1
i (2πσ 2

Xi
)ni1/2

ni1∏
j=1

exp

{
−ln(Xij−γi)−

1
2σ 2

Xi

[ln(Xij−γi)−µXi]
2

}
(2)
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l(ω|X)= ni0 ln(1−ρi)+ni1 lnρi−
ni1
2
ln(2πσ 2

Xi
)−

∑
j:xij>0

ln(Xij−γi)

−
1

2σ 2
Xi

∑
j:xij>0

[ln(Xij−γi)−µXi]
2 (3)

where ni1 is the number of nonzero values that are binomially distributed with sample size
ni= ni0+ni1; ρi is the proportion of nonzero values ; ni0 is the number of zero values. Eq.
(3) is computed from the first derivative about (γi,µXi,σ

2
Xi
,ρi). The respective MLEs of

(γi,µXi,σ
2
Xi
,ρi) are solved by setting their first derivative to zero as follows:

∂ l(ω|X)
∂γi

=

∑
j:xij>0

1
Xij−γi

+
ni1∑

j:xij>0[ln(Xij−γi)− 1
ni1

∑
j:xij>0 ln(Xij−γi)]2

∑
j:xij>0 1

Xij−γi

ln(Xij−γi)−
1
ni1

∑
j:xij>0

ln(Xij−γi)


= 0 (4)

∂ l(ω|X)
∂µXi

= σ−2Xi

∑
j:xij>0

ln(Xij−γi)= 0 (5)

∂ l(ω|X)
∂σ 2

Xi

=−(2σ 2
Xi
)−1ni1+[2σ 4

Xi
]
−1
∑
j:xij>0

[ln(Xij−γi)−µXi]
2
= 0 (6)

∂ l(ω|X)
∂ρi

= ni0(1−ρ)−1−ni1ρ−1= 0. (7)

It is difficult to determine the explicit form of γ̂i from the Eq. (4), so theMLE of γi can be
obtained bymaximizing Eq. (4) using the Adam algorithm. It is a replacement optimization
algorithm for stochastic gradient descent based on adaptive moment estimation that is
mainly used in neural networks and other machine learning algorithms (Ruder, 2016). It
provides a way of computing adaptive learning rates for specific parameters. Let β1 and β2
be the initial time step and decay rate, respectively. Adam performs well in practice when
β1 = 0.9 and β2 = 0.999 (Singh, 2020). By optimizing γi, the decaying averages and the
past squared gradients are the estimates of the first and second moments of the gradients
as follows:

(mt ,vt )=
(
β1mt−1+[1−β1]gt ,β2vt−1+[1−β2]g 2t

)
(8)

where gt denotes the first derivative of the target function (4) at time t = 0. Note that
(mt ,vt ) are initialized as vectors of 0’s, and the Adam algorithm operates until their
gradients approach zero. The bias-corrected first- and second-moment estimates are used
to update parameter γi as follows:

(m̂t ,v̂t )=
(

mt

1−β t
1
,

vt
1−β t

2

)
. (9)

Finally, the parameter γi is updated by Adam update rule, which is defined as

γi,t+1= γi,t −δ
(√

v̂t +ε
)−1

m̂t (10)
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where δ and ε denote the step size and the learning rate, respectively. ε is fixed at 10−8

for a sufficient learning rate using the Adam optimization algorithm, as can be seen in
Algorithm 1.

Algorithm 1: Adam optimization algorithm
Input: l , γi,t , δ, ε, β1, β2
Output: γi,t

1 while γi,t not converged do
2 t = t+1
3 gt = ∇γi,t lt (γi,t−1)
4 mt = β1 ·mt−1+ (1−β1) ·gt
5 vt = β2 ·vt−1+ (1−β1) ·g 2t
6 m̂t =mt/(1−β t

1)
7 v̂t = vt/(1−β t

2)
8 γi,t+1= γi,t −δ(

√
v̂t +ε)−1m̂t

After obtaining γ̂i by using Adam, one can compute the MLEs of (µXi,σ
2
Xi
,ρi) as follows:

(
µ̂Xi,σ̂

2
Xi,mle,ρ̂i

)
=

n−1i1

∑
j:xij>0

ln(Xij− γ̂i),n−1i1

∑
j:xij>0

[
ln(Xij− γ̂i)− µ̂Xi

]2
,
ni1
ni
.

 (11)

Since ηi= ρi[γi+exp(µXi)] provides the medians of Xi, the ratio of the medians of Xi

(the parameter of interest in the this study) is given by

ω= η1/η2. (12)

By substituting MLEs
(
γ̂i,µ̂Xi,σ̂

2
Xi,mle,ρ̂i

)
, estimate η̂i= ρ̂i[γ̂i+ exp(µ̂Xi)] becomes the

MLE of ηi. The concepts are elaborated in the methods for constructing CIs for ω in the
next section.

METHODS
Here, we present constructing the CIs for the ratio of the medians in the TPLN models
containing zero observations based on the fiducial methods (the fiducial generalized pivotal
quantity (fiducial GPQ)) and the method of variance estimates recovery-based fiducial
generalized pivotal quantity (MOVER-fiducial GPQ), NA (McKean & Schrader, 1984) and
the Bayesian methods.

The fiducial method
Hannig, Iyer & Patterson (2006) described the fiducial method based on the fiducial
GPQ, a GPQ subclass introduced by Weerahandi (1993). Fiducial techniques have been
used in constructing CIs in several research studies (Kharrati-Kopaei, Malekzadeh &
Sadooghi-Alvandi, 2013; Li, Zhou & Tian, 2013; Maneerat, Niwitpong & Niwitpong, 2020).
Let Y = (Y1,Y2,...,Yn) be a random variable with probability density function fY (y;λ,θ),

Maneerat et al. (2022), PeerJ, DOI 10.7717/peerj.14194 5/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.14194


where λ and θ are vectors of the parameter of interest and the nuisance parameter,
respectively. Moreover, let y = (y1,y2,...,yn) be the observed values of Y , and assume that
fiducial GPQ T (Y ;y,λ,θ) is only a function of λ. This method is especially associated
with the fiducial inference proposed by Fisher (1935). The fiducial GPQ CI depends on
the fiducial GPQ defined by Hannig, Iyer & Patterson (2006) in Definition 1. Recently,
Chankham, Niwitpong & Niwitpong (2022) recommended the fiducial GPQ-based CI for
estimating the coefficient of variation of an inverse gaussian distribution when the sample
size was small. Similarly, the performance of a fiducial GPQ CI in terms of expected
length was the shortest when used to estimate the common coefficient of variation of
delta-lognormal distributions by Yosboonruang, Niwitpong & Niwitpong (2022).

Definition 1.
A GPQ T (Y ;y,λ,θ) for a parameter λ is called a fiducial generalized pivotal quantity
(FGPQ) if it satisfies the following conditions: (FGPQ1) Given Y = y , the T (Y ;y,λ,θ)
distribution is free of all parameters. (FGPQ2) For every y ∈ R+, the observed pivotal
T (Y ;y,λ,θ)= λ.

If the T (Y ;y,λ,θ) satisfies the conditions (FGPQ1) and (FGPQ2), then it is possible to
construct the 100(1−ϕ)% fiducial GPQ-based CI for λ is [Tλ(ϕ/2),Tλ(1−ϕ/2)]; Tλ(ϕ) is
the ϕth percentile of T (Y ;y,λ,θ).

The fiducial GPQ CI
The fiducial GPQCI can be constructed based on the fiducial GPQ conditions in Definition
1. Recall that (γi,µXi,σ

2
Xi
,ρi) are the parameters controlling the behavior of a TPLN

containing zero observations. Motivated by the possible value γi<Xi(1), we proposed the
fiducial GPQ of γi based on a continuously uniform distribution and the fiducial GPQ of
ρi based on a beta distribution, respectively, as follows:

Tγi ∼Uniform(min= 0,max=Xi(1)) (13)

T1−ρi ∼Beta(ni0+1,ni1+1) (14)

where Xi(1) denotes the minimum value of Xi and ni1 is the sample size of nonzero values
ni= ni1+ni0. Furthermore, the fiducial GPQ of µXi can be obtained by using the concepts
of Krishnamoorthy & Mathew (2003) as

TµXi
= µ̂Xi−Wi

√
Tσ 2

Xi
/ni1 (15)

where Tσ 2
Xi
= (ni1− 1)σ̂ 2

Xi
/Vi is the fiducial GPQ of σ 2

Xi
. Moreover, estimator σ̂ 2

Xi
=

(ni1−1)−1
∑

j:xij>0 ln(Xij− γ̂i). Note that the random variablesWi and Vi are independently
draw from a standard normal distribution and a chi-square distribution with ni1−1 degrees
of freedom, respectively. Since the three fiducial pivots (Tγi,Tρi,TµXi

) satisfy the fiducial
GPQ properties and Tηi = T1−ρi[Tγi+ exp(TµXi

)] is the fiducial GPQ of ηi, then we can
obtain the the 100(1−ϕ)% fiducial GPQ CI for ω as follows:

[lFω,u
F
ω] = [Tω(ϕ/2),Tω(1−ϕ/2)] (16)
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where Tω=Tη1/Tη2 , and Tω(ϕ) denotes the ϕth percentile of Tω. The steps for calculating
the CP of fiducial GPQ CI (CPF ) for ω can be carried out by using Algorithm 2.

Algorithm 2: Fiducial GPQ CI

Input: γ̂i,µ̂Xi,σ̂
2
Xi,mle,ρ̂i

Output: CPF
1 for k in 1:M do
2 Generate Tγi , T1−ρi and TµXi

3 Generate Tη1 and Tη1
4 Compute Tωi

5 Compute [lFω,u
F
ω]

6 if lFω <ω< uFω, then pFk = 1; else pFk = 0

7 Compute CPF =
∑M

i=1p
F
k /M

The MOVER-fiducial GPQ CI
MOVER is a well-knownmethod for estimating the CI of the parameter of interest (Donner
& Zou, 2012; Harvey & Van der Merwe, 2012; Hasan & Krishnamoorthy, 2017; Maneerat &
Niwitpong, 2020; Maneerat, Niwitpong & Niwitpong, 2021; Zhang et al., 2021; Maneerat,
Nakjai & Niwitpong, 2022a). Moreover, it can produce an explicit form of the CI that is
easy to compute. For these reasons, we derived the MOVER-fiducial GPQ CI for ω as
follows:

The fiducial GPQ CIs for (γi,µXi,ρi) can respectively be written as

[
lγi,uγi

]
=
[
Tγi(ϕ/2),Tγi(ϕ/2)

]
(17)[

lµXi
,uµXi

]
=

[
TµXi

(ϕ/2),TµXi
(ϕ/2)

]
(18)[

lρi,uρi
]
=
[
Tρi(ϕ/2),Tρi(ϕ/2)

]
. (19)

These intervals can be formulated the MOVER CI by using the concept of Donner &
Zou (2012) such that the 100(1−ϕ)% MOVER-fiducial CI for lnηi becomes

[
llnηi,ulnηi

]
=

[
lnη̂i−

√{
ln(ρ̂i)− lγi

}2
+

{
ln[γ̂i+exp(µ̂Xi)]− lln[γi+exp(µXi )]

}2
,lnη̂i

+

√{
ln(ρ̂i)−uγi

}2
+

{
ln[γ̂i+exp(µ̂Xi)]−uln[γi+exp(µXi )]

}2]
(20)

where

lln[γi+exp(µXi )]= ln
{
γ̂i+exp(µ̂Xi)−

√{
γ̂i− lγi

}2
+
{
exp(µ̂Xi)−exp(lγi)

}2} (21)

uln[γi+exp(µXi )]= ln
{
γ̂i+exp(µ̂Xi)+

√{
γ̂i− lγi

}2
+
{
exp(µ̂Xi)−exp(lγi)

}2}
, (22)
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thereby providing the 100(1−ϕ)% CI-based the MOVER-fiducial GPQ CI for ω as[
lMω ,u

M
ω

]
= exp

[
(lnη̂1− lnη̂2)−

√[
lnη̂1− llnη̂1

]2
+
[
lnη̂2− llnη̂2

]2
,(lnη̂1− lnη̂2)

+

√[
lnη̂1− llnη̂1

]2
+
[
lnη̂2− llnη̂2

]2]
. (23)

Algorithm 3 presents the computational steps for calculating the CP of the MOVER-
fiducial GPQ CI (CPM ) for ω.

Algorithm 3:MOVER-fiducial GPQ CI
Input: γ̂i,µ̂Xi,ρ̂i

Output: CPM
1 for k in 1:M do
2 Generate Tγi to compute [lγi,uγi]
3 Generate TµXi

to compute [lµXi
,uµXi
]

4 Generate Tρi to compute [lρi,uρi]

5 Compute
[
lln[γi+exp(µXi )],uln[γi+exp(µXi )]

]
6 Compute [llnηi,ulnηi]
7 Compute [lMω ,u

M
ω ]

8 if lMω <ω< uMω , then pMk = 1; else pMk = 0

9 Compute CPM =
∑M

k=1p
M
k /M

The NA method
According to probability theory, the concept behind this method is the assumption that
the approximate distributions of all of the samples approach a normal distribution pattern
if the sample size is sufficiently large. This idea is integrated with the central limit theorem,
in which the distribution of a given sample mean is approximated as a normal pattern
if the sample size is sufficiently large under the assumption that all of the samples are
similar to each other regardless of the shape of the population distribution. Recently,
Maneerat, Niwitpong & Nakjai (2022b) proposed an NA-based CI for the median of a
TPLN distribution, which performed well for a large sample size. Thus, we also considered
the NA method.

Given a set of observations, threshold γi can be estimated by using the Adam algorithm
to find the MLEs of the mean and variance (µ̂Xi,σ̂

2
Xi
). Here, the medians of TPLN models

with zero observations can be log-transformed to become

lnηi= lnρi+ ln[γi+exp(µXi)] (24)

which can be approximated by using (γ̂i,µ̂Xi,ρ̂i) to give lnη̂i= lnρ̂i+ ln[γ̂i+exp(µ̂Xi)].
Using the delta method, the variance of lnρi can be derived as

Vlnρ̂i =
1−ρi
nρi

. (25)

Maneerat et al. (2022), PeerJ, DOI 10.7717/peerj.14194 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.14194


Likewise, McKean & Schrader (1984) estimated the variance of the median as a
distribution-free estimate defined as follows:

VMS
η̂i
=

[
Xi(ni1−c+1)+Xi(c)

2(1.96)

]2
(26)

where Xi(r) denotes the r th order statistic in a random sample drawn from a TPLN
model with zero observations of size ni1, and c = [(ni1+ 1)/2]− 1.96(

√
ni1/4). Later,

Hettmansperger & Sheather (1986) claimed that VMS is a consistent estimator of the variance
of the median. Similarly, the variance of lnη̂i can be derived by applying the delta method
as follows:

Vlnη̂i
∼=

VMS
η̂i

[Eη̂i]2
(27)

where Eη̂i = γ̂i+exp
[
µ̂Xi+ σ̂

2
Xi
(2ni1)−1

]
is the expectation of η̂i. Estimated variance V̂lnη̂i

is obtainable by replacing (γ̂i,µ̂Xi,σ̂
2
Xi
,ρ̂i) from the sample. Thus, by applying the central

limit theorem , the random variableWi can be defined as

Wi=
lnη̂i− lnηi√

V̂lnη̂i

(28)

which approaches a standard normal distribution as n→∞. Subsequently, the 100(1−ϕ)%
NA-based CI for ω can be written as[
lNω ,u

N
ω

]
= exp

[
(lnη̂1− lnη̂2)∓W1−ϕ/2

√
V̂lnη̂1+ V̂lnη̂2

]
(29)

where Wϕ denotes the ϕth percentile of a standard normal distribution. Algorithm 4 was
used to compute the CP of the NA (CPN ).

Algorithm 4: NA CI
Input: γ̂i,µ̂Xi,ρ̂i

Output: CPN
1 for k in 1:M do
2 Compute Vlnρ̂i and VMS

η̂i

3 Compute Vη̂i
4 GenerateWi

5 Compute [lNω ,u
N
ω ]

6 if lNω <ω< uNω , then pNk = 1; else pNk = 0

7 Compute CPN =
∑M

k=1p
N
k /M

The Bayesian method
Bayesian methods are based on treating probability as beliefs rather than frequencies.
Given unknown parameter θ , a prior distribution p(θ) represents the subjective belief as
a subjective distribution formulated before the data are seen. The posterior distribution is
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obtained from a prior that is updated with the likelihood function (or sample information)
by using Bayes’ rule (Casella & Berger, 2002). Importantly, the posterior distribution is
considered to be a random quantity and can be used to make a statement about θ , For
example, the point and interval estimates of θ can be computed by using its posterior.
Equal-tailed Bayesian intervals based on the Jeffreys’ and uniform priors based on the
posterior densities of the zero proportion and the variance have been shown to perform
well in certain scenarios (Yosboonruang, Niwitpong & Niwitpong , 2022).

Here, the Bayesian CI for ω is formulated based on the Bayesian method. First, we
define an informative prior for our objective assumption depending on the amount of
information available in the data as

P(γ1i,µXi,logσXi,ρi)= constant∗ (1−ρi)αi−1ρ
βi−1
i 0(αi+βi)[0(αi)0(βi)]−1. (30)

The posterior densities of (γi,ρi) are obtained by obtaining Eq. (30) with the likelihood
function (2) as

fγi = P(γi|X ,µ̂Xi,σ̂
2
Xi
)=

[
constant∗ (1−ρi)αi−1ρ

βi−1
i 0(αi+βi)[0(αi)0(βi)]−1

]
∗

(1−ρi)ni0ρni1i (2πσ 2
Xi
)−ni1/2exp

−∑
j:xij>0

ln(Xij−γi)−
1

2σ 2
Xi

∑
j:xij>0

[ln(Xij−γi)−µXi]
2


(31)

∝ (σ̂ 2
Xi
)−ni1/2exp

−∑
j:xij>0

ln(Xij−γi)−
1

2σ̂ 2
Xi

∑
j:xij>0

[
ln
(
Xij−γi

)
− µ̂Xi

]2 (32)

fρi = P(ρi|X)=
[
constant∗ (1−ρi)ni0+αi−1ρ

ni1βi−1
i 0(αi+βi)[0(αi)0(βi)]−1

]
∗

(2πσ 2
Xi
)ni1/2exp

−∑
j:xij>0

ln(Xij−γi)−
1

2σ 2
Xi

∑
j:xij>0

[ln(Xij−γi)−µXi]
2


 (33)

∝ (1−ρi)ni0+αi−1ρ
ni1+βi−1
i . (34)

Next, we apply NA to the posterior distribution of κi = (µXi,logσXi); the logarithm
of the posterior density is approximated by using a quadratic function of κi. The second
derivatives of the log-posterior density are needed for constructing the approximation.
From Eq. (3), the log-likelihood can be expressed as

l(κi|X)= ni0 ln(1−ρi)+ni1 lnρi−
ni1
2
ln(2π)+ni1 lnσXi

−

∑
j:xij>0

ln(Xij−γi)−
1

2σ 2
Xi

[
(ni1−1)σ̂ 2

Xi
+ni1(µ̂Xi−µXi)

2]
∝ constant.

+ni1 lnσXi−
1

2exp(2lnσXi)
[
(ni1−1)σ̂ 2

Xi
+ni1(µ̂Xi−µXi)

2.
]

(35)

After that the first and second derivatives of (µXi,logσXi) respectively become

(
∂ l(κi|X)
∂µXi

,
∂2l(κi|X)
∂µ2

Xi

)
=

(
ni1(µ̂Xi−µXi)

σ 2
Xi

,−
ni1
σ 2
Xi

)
(36)
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(
∂ l(κi|X)
∂ lnσXi

,
∂2l(κi|X)
∂[lnσXi]

2

)
=
(
−ni1+σ−2Xi

[
(ni1−1)σ̂ 2

Xi
+ni1(µ̂Xi−µXi)

2] ,
−2σ−1Xi

[
(ni1−1)σ̂ 2

Xi
+ni1(µ̂Xi−µXi)

2]). (37)

The point estimates of (µXi,logσXi) are derived after setting their first derivatives to
zero. Meanwhile, the variances of their estimates are respectively obtained by using an
inverse Fisher information matrix as follows:

(
µ̂Xi

lnσ̂Xi

)
=

(
µ̂Xi

ln
√
(ni1−1)n−1i1 σ̂

2
Xi

)
(38)(

Vµ̂Xi

Vlnσ̂Xi

)
=

(
σ̂ 2
Xi
/ni1

2ni1

)
. (39)

After using the Jacobian to back-transform from lnσ̂Xi to σ
2
Xi
, the posterior densities of

(µXi,σ
2
Xi
) are respectively approximated as normal distribution as follows:

fµXi
= p(µXi |X ,σ̂

2
Xi
,γ̂i)=

1
(2πσ 2

Xi
/ni1)1/2

exp

{
−

ni1
2σ 2

Xi

[
ln(Xij− γ̂i)− µ̂Xi

]2} (40)

fσ 2
Xi
= p(σ 2

Xi
|X)=

(
ni1+2
4πσ̃ 4

Xi

)1/2

exp

{
−
ni1+2
4σ̃ 4

Xi

[
ln(Xij− γ̂i)− σ̃ 2

Xi

]2}
(41)

where σ̃ 2
Xi
= ni1σ̂ 2

Xi
/(ni1+2). Therefore, the posterior density of ω becomes

fω=
fρ1[fγ1+exp(fµX1

)]

fρ2[fγ2+exp(fµX2
)]

(42)

Finally, the 100(1−ϕ)% Bayesian-based CI for ω is

[lBω,u
B
ω] =

[
fω(ϕ/2),fω(1−ϕ/2)

]
(43)

where fω(ϕ) denotes the ϕth percentile of fω. The CP of Bayesian CI (CPB) can be computed
by using Algorithm 5.

Algorithm 5: Bayesian CI

Input: γ̂i,µ̂Xi,σ̂
2
Xi
,ρ̂i,σ̃Xi,αi,βi

Output: CPB
1 for k in 1:M do
2 Generate fγi , fρi, fµXi

3 Compute fω
4 Compute [lBω,u

B
ω]

5 if lBω<ω< uBω, then pBk = 1; else pBk = 0

6 Compute CPB=
∑M

k=1p
B
k/M
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THE MONTE CARLO SIMULATION STUDY
The comparative performances of the proposed Bayesian-, the fiducial GPQ- andMOVER-
fiducial GPQ-, and NA-based CI were evaluated via a Monte Carlo simulation study. The
settings for the simulation parameters for the two simulation studies were as follows. For
each specified parameter combination, the 95% CIs for the ratio of the medians (ω) of
TPLN distributions containing zero values were constructed based on 5000 randomly
generated samples. In addition, 2500 Monte Carlo sampling passes were used for each
generated sample for the fiducial GPQ-based method. To assess the performances of the
methods, their CPs were calculated by using the proportion of 5000 simulated CIs covering
ω. LEP and UEP are defined as the proportion of times that ω falls below and above the
stimulated CIs, respectively. At the 95% nominal confidence level, the expected lengths
(ELs) of the CIs is also needed for deciding which method performs the best. A good
performance will produce CP= 95% and LEP=UEP= 2.5%. Likewise, the comparison
between LEP and UEP can be expressed in terms of the relative bias, which is defined as

RB=
UEP−LEP
UEP+LEP

. (44)

Thus, a good balance between LEP and UEP will produce a relative bias close to zero.
Last, the best-performing method will provide the shortest EL.

In the first simulation study, we chose a small proportion of zeros and variance
((d1,d2)= (10%,10%), (10%,30%) and σ 2

X1
= σ 2

X2
= 1.25, respectively), the results of

which provide insight into the sampling behavior of the CIs (Table 1 and Figs. 1, 2 and 3).
It can be seen that although all of the methods generated CPs above or close to the nominal
confidence level in almost all of the scenarios, the LEPs, UEPs, and ELs produced by the
Bayesian method demonstrated its superiority. Thus, the Bayesian method performed the
best in situations with a small proportion of zeros and sample variance except for with a
large sample size, with the MOVER-fiducial GPQ method performing the best in that case.

In the next simulation, we were interested in scenarios with a large proportion of zeros
and variance (d1= d2= (20%,40%),(40%,40%) and σ 2

X1
= σ 2

X2
= 3, respectively) (Table 2

and Figs. 4, 5 and 6). Once again, the Bayesian method provided acceptable CPs, as well as
better ELs and a better balance between LEP and UEP, than the other methods.

APPLICATION OF THE METHODS TO COMPARE HOURLY
WIND SPEED DATA FROM TWO AREAS IN NORTHERN
THAILAND
Due to the rapid effects of climate change, agricultural growth, and the social economy,
seasonal air pollution from the burning of agricultural waste in preparation for planting,
forest fires, and waste disposal during the transition from the winter to the dry season
are important factors that influence the environment in northern Thailand (IQAir, 2021).
Wind can affect the movement of PM2.5 and PM10 when its speed is 7.2 km/hr or higher
(Liu et al., 2020). When cold air mass moves from China to Thailand, the upper region
of Thailand can potentially become very cold toward the end of winter, which reduces
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Table 1 Monte Carlo simulation results from the simulation study 1: σ2
X1

= σ2
X2

= 1.25.

Scenarios (n1,n2) (ρ1,ρ2)% (γ1,γ2) B F M N Relative bias

LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL B F M N

1 (25,25) (10,10) (1,1) 0.72 98.30 0.98 163.37 0.18 99.52 0.30 200.56 0.06 99.48 0.46 189.01 0.34 99.18 0.48 211.70 0.15 0.25 0.77 0.79

2 (1,3) 0.66 98.44 0.90 156.22 0.28 99.48 0.24 198.36 0.00 99.58 0.42 186.41 0.28 99.26 0.46 202.52 0.15 −0.08 1.00 1.00

3 (3,5) 0.74 98.44 0.82 142.20 0.24 99.68 0.08 195.00 0.00 99.80 0.20 182.46 0.36 99.28 0.36 182.52 0.05 −0.50 1.00 1.00

4 (10,30) (1,1) 0.96 98.30 0.74 180.80 0.36 99.42 0.22 222.67 0.18 99.58 0.24 208.90 0.48 99.14 0.38 240.36 0.13 −0.24 0.14 1.00

5 (1,3) 0.90 97.98 1.12 171.38 0.54 99.22 0.24 218.83 0.04 99.46 0.50 204.42 0.44 99.00 0.56 225.81 0.11 −0.38 0.85 1.00

6 (3,5) 0.90 98.02 1.08 157.74 0.28 99.54 0.18 215.19 0.08 99.52 0.40 200.41 0.44 99.08 0.48 206.96 0.09 −0.22 0.67 1.00

7 (25,50) (10,10) (1,1) 0.38 96.92 2.70 136.08 0.12 98.84 1.04 167.07 0.12 99.00 0.88 158.35 0.14 98.98 0.88 177.91 0.75 0.79 0.76 0.56

8 (1,3) 0.48 96.26 3.26 132.95 0.12 98.94 0.94 167.09 0.04 98.64 1.32 158.41 0.26 98.42 1.32 173.17 0.74 0.77 0.94 1.00

9 (3,5) 0.28 96.96 2.76 121.35 0.02 99.36 0.62 165.16 0.02 98.96 1.02 156.11 0.14 98.86 1.00 156.03 0.82 0.94 0.96 1.00

10 (10,30) (1,1) 0.70 96.48 2.82 146.90 0.20 98.60 1.20 179.03 0.12 98.90 0.98 169.60 0.36 98.80 0.84 190.57 0.60 0.71 0.78 1.00

11 (1,3) 0.44 96.86 2.70 142.87 0.18 98.86 0.96 178.49 0.06 98.70 1.24 168.96 0.36 98.70 0.94 183.63 0.72 0.68 0.91 1.00

12 (3,5) 0.54 96.94 2.52 130.98 0.16 99.28 0.56 176.39 0.02 98.96 1.02 166.45 0.32 98.88 0.80 167.46 0.65 0.56 0.96 1.00

13 (50,50) (10,10) (1,1) 2.20 95.28 2.52 103.10 0.74 98.34 0.92 125.77 0.38 98.60 1.02 121.00 0.56 98.66 0.78 137.55 0.07 0.11 0.46 0.47

14 (1,3) 2.30 95.34 2.36 99.18 1.12 98.40 0.48 125.60 0.18 98.80 1.02 120.90 0.46 98.90 0.64 131.36 0.01 −0.40 0.70 1.00

15 (3,5) 2.20 95.40 2.40 91.07 0.70 99.10 0.20 126.29 0.00 98.96 1.04 121.84 0.48 99.02 0.50 119.67 0.04 −0.56 1.00 1.00

16 (10,30) (1,1) 2.32 96.16 1.52 116.99 0.90 98.52 0.58 140.93 0.46 98.80 0.74 135.19 0.64 99.04 0.32 153.10 0.21 −0.22 0.23 1.00

17 (1,3) 2.44 95.88 1.68 111.47 1.14 98.36 0.50 140.01 0.18 98.92 0.90 134.02 0.70 98.72 0.58 145.15 0.18 −0.39 0.67 1.00

18 (3,5) 2.52 95.76 1.72 102.94 0.88 98.86 0.26 139.91 0.04 99.06 0.90 134.30 0.66 98.74 0.60 132.03 0.19 −0.54 0.91 1.00

19 (50,100) (10,10) (1,1) 1.28 92.60 6.12 86.81 0.36 97.48 2.16 106.31 0.28 97.58 2.14 102.76 0.42 98.28 1.30 116.03 0.65 0.71 0.77 0.07

20 (1,3) 1.34 92.66 6.00 84.88 0.64 98.04 1.32 107.17 0.12 97.80 2.08 104.00 0.34 98.38 1.28 112.56 0.63 0.35 0.89 1.00

21 (3,5) 1.18 92.76 6.06 77.90 0.28 98.80 0.92 108.69 0.00 97.64 2.36 105.99 0.18 98.52 1.30 102.12 0.67 0.53 1.00 1.00

22 (10,30) (1,1) 1.56 94.06 4.38 93.63 0.50 97.66 1.84 113.43 0.34 97.88 1.78 109.72 0.38 98.58 1.04 123.78 0.47 0.57 0.68 1.00

23 (1,3) 1.56 94.08 4.36 91.27 0.80 97.98 1.22 114.13 0.18 97.98 1.84 110.65 0.34 98.66 1.00 119.67 0.47 0.21 0.82 1.00

24 (3,5) 1.38 94.16 4.46 84.33 0.44 98.78 0.78 115.57 0.02 98.16 1.82 112.46 0.42 98.52 1.06 109.19 0.53 0.28 0.98 1.00

25 (100,100) (10,10) (1,1) 3.94 92.68 3.38 66.72 1.40 97.36 1.24 82.27 0.66 98.10 1.24 80.42 0.96 98.42 0.62 90.22 0.08 −0.06 0.31 −0.05

26 (1,3) 4.22 92.16 3.62 64.20 2.08 97.30 0.62 83.51 0.12 98.12 1.76 82.05 0.74 98.56 0.70 86.14 0.08 −0.54 0.87 1.00

27 (3,5) 4.36 91.82 3.82 59.41 0.82 98.80 0.38 87.00 0.00 98.32 1.68 86.29 0.64 98.54 0.82 78.57 0.07 −0.37 1.00 1.00

28 (10,30) (1,1) 4.32 92.50 3.18 75.39 1.56 97.30 1.14 91.48 0.68 97.88 1.44 89.20 0.86 98.32 0.82 99.62 0.15 −0.16 0.36 1.00

29 (1,3) 4.64 92.48 2.88 72.36 2.00 97.58 0.42 92.34 0.14 98.58 1.28 90.33 0.58 98.70 0.72 94.97 0.23 −0.65 0.80 1.00

(continued on next page)
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Table 1 (continued)
Scenarios (n1,n2) (ρ1,ρ2)% (γ1,γ2) B F M N Relative bias

LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL B F M N

30 (3,5) 4.78 92.48 2.74 67.33 1.46 98.32 0.22 95.34 0.04 98.74 1.22 94.07 0.76 98.56 0.68 87.22 0.27 −0.74 0.94 1.00

31 (100,200) (10,10) (1,1) 1.66 89.92 8.42 56.58 0.54 96.54 2.92 70.38 0.30 96.88 2.82 69.05 0.36 98.42 1.22 76.93 0.67 0.69 0.81 −0.44

32 (1,3) 2.38 90.08 7.54 55.34 1.14 97.62 1.24 72.25 0.18 97.10 2.72 71.61 0.64 98.02 1.34 74.88 0.52 0.04 0.88 1.00

33 (3,5) 2.14 90.02 7.84 51.27 0.62 98.86 0.52 76.67 0.00 97.22 2.78 76.83 0.48 97.98 1.54 68.25 0.57 −0.09 1.00 1.00

34 (10,30) (1,1) 2.42 91.16 6.42 61.27 0.90 97.04 2.06 75.23 0.34 97.48 2.18 73.82 0.58 98.46 0.96 81.88 0.45 0.39 0.73 1.00

35 (1,3) 2.64 90.74 6.62 59.68 1.28 97.66 1.06 76.81 0.18 97.06 2.76 75.98 0.50 98.16 1.34 79.33 0.43 −0.09 0.88 1.00

36 (3,5) 3.00 90.52 6.48 55.51 0.88 98.46 0.66 80.91 0.04 97.10 2.86 80.90 0.76 97.88 1.36 72.88 0.37 −0.14 0.97 1.00

Notes.
B, the Bayesian CI; F, the fiducial GPQ CI; M, the MOVER-fiducial GPQ CI; N, the NA CI.
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Figure 1 Simulation 1: Box plots of the coverage percentages for 36 scenarios based on the
four methods: σ2

X1
= σ2

X2
= 1.25 in the following cases [sample sizes, zero proportions]:

(A)[(25,25),(10,10)%],(B)[(25,50),(10,10)%], (C)[(50,50),(10,10)%],(D)[(50,100),(10,10)%],
(E)[(100,100),(10,10)%],(F)[(100,200),(10,10)%], (G)[(25,25),(10,30)%],(H)[(25,50),(10,30)%],
(I)[(50,50),(10,30)%],(J)[(50,100),(10,30)%], (K)[(100,100),(10,30)%],(L)[(100,200),(10,30)%].

Full-size DOI: 10.7717/peerj.14194/fig-1

Figure 2 Simulation 1: Scatter plots of the relative bias for Scenarios 1–36 based on the four methods:
σ2
X1

= σ2
X2

= 1.25.
Full-size DOI: 10.7717/peerj.14194/fig-2
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Figure 3 Simulation 1: Line plots of the expected width for 36 scenarios based on the
four methods: σ2

X1
= σ2

X2
= 1.25 in the following cases [sample sizes, zero proportions]:

(A)[(25,25),(10,10)%],(B)[(25,50),(10,10)%], (C)[(50,50),(10,10)%],(D)[(50,100),(10,10)%],
(E)[(100,100),(10,10)%],(F)[(100,200),(10,10)%], (G)[(25,25),(10,30)%],(H)[(25,50),(10,30)%],
(I)[(50,50),(10,30)%],(J)[(50,100),(10,30)%], (K)[(100,100),(10,30)%],(L)[(100,200),(10,30)%].

Full-size DOI: 10.7717/peerj.14194/fig-3

the northeast monsoon to a calm wind. For this reason, PM2.5 levels usually increase
during the transition between the winter season to the dry season (Teerasuphaset & Culp,
2020). Phitsanulok is a city in lower northern Thailand about halfway between Chiang Mai
and Bangkok where crop and forestland burning is extensive, resulting in extreme PM2.5

occurrences (IQAir, 2022),while Phayao is one of the three highest-ranking provinces for
PM2.5 in the upper northern region (Group, 2021).

We used datasets of the hourly wind speed from Phitsanulok and Phayao (Table 3)
recorded in January 2021 to illustrate the efficacies of our proposedmethods for formulating
CIs for the ratio of the medians of TPLN distributions containing zero values. The data
were taken from the Thai Meteorological Department Automatic Weather System (Thai
Meteorlogical Department Automatic Weather System, 2022). Since wind speed observations
are always non-negative, they are suitable for fitting to the following distributions:
Cauchy, chi-squared, exponential, lognormal, TPLN, logistic, normal, and t-distributions.
The Akaike information criterion (AIC) can be used to determine the best-fitting
distribution.

We found that the TPLNmodel was suitable for the wind speed data, as evidenced by its
smallest AIC value in Table 4. The basic statistics for the datasets are reported in Table 5.
By way of comparison, the ratio of the medians of the TPLN distributions of the hourly
wind speed data from Phayao and Phitsanulok is ω̂= 1.0217 for medians η̂phayao= 7.4091
and η̂phitsanulok = 7.2514. The 95% CIs and corresponding lengths based on the fiducial,
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Table 2 Monte Carlo simulation results from the simulation study 2: σ2
X1

= σ2
X2

= 3.

Scenarios (n1,n2) (ρ1,ρ2)% (γ1,γ2) B F M N Relative bias

LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL B F M N

37 (25,25) (20,40) (1,1) 1.70 97.30 1.00 259.44 1.28 98.10 0.62 293.83 1.52 97.88 0.60 280.54 0.40 99.30 0.30 444.30 −0.26 −0.35 −0.43 0.89

38 (1,3) 1.36 97.60 1.04 245.93 1.08 98.52 0.40 286.48 0.92 98.70 0.38 269.61 0.46 99.30 0.24 417.03 −0.13 −0.46 −0.42 1.00

39 (3,5) 1.44 97.24 1.32 224.79 1.04 98.40 0.56 276.06 0.46 98.92 0.62 255.06 0.34 99.10 0.56 380.39 −0.04 −0.30 0.15 1.00

40 (40,40) (1,1) 1.66 97.02 1.32 283.20 1.00 98.28 0.72 323.39 1.38 97.84 0.78 307.55 0.24 99.36 0.40 516.55 −0.11 −0.16 −0.28 1.00

41 (1,3) 0.78 98.06 1.16 270.82 0.42 99.00 0.58 317.18 0.50 98.72 0.78 297.65 0.20 99.52 0.28 486.72 0.20 0.16 0.22 1.00

42 (3,5) 1.48 97.20 1.32 248.95 0.82 98.58 0.60 306.52 0.46 98.88 0.66 282.32 0.36 99.40 0.24 445.82 −0.06 −0.15 0.18 1.00

43 (25,50) (20,40) (1,1) 1.22 96.54 2.24 213.10 0.92 97.48 1.60 235.89 1.06 97.38 1.56 227.43 0.44 99.02 0.54 320.58 0.29 0.27 0.19 0.73

44 (1,3) 1.36 95.90 2.74 205.82 1.16 97.12 1.72 232.74 0.92 97.18 1.90 222.39 0.64 98.62 0.74 309.26 0.34 0.19 0.35 1.00

45 (3,5) 1.14 96.56 2.30 188.47 0.82 97.82 1.36 225.40 0.42 98.10 1.48 211.28 0.26 99.02 0.72 283.15 0.34 0.25 0.56 1.00

46 (40,40) (1,1) 1.00 96.68 2.32 242.04 0.70 97.66 1.64 272.84 0.82 97.60 1.58 260.74 0.40 98.94 0.66 404.46 0.40 0.40 0.32 1.00

47 (1,3) 0.70 96.42 2.88 235.54 0.56 97.68 1.76 270.25 0.48 97.60 1.92 256.41 0.34 98.80 0.86 395.13 0.61 0.52 0.60 1.00

48 (3,5) 1.04 96.58 2.38 214.38 0.72 97.78 1.50 259.15 0.48 97.84 1.68 241.05 0.38 98.86 0.76 360.16 0.39 0.35 0.56 1.00

49 (50,50) (20,40) (1,1) 1.96 96.32 1.72 177.64 1.52 97.26 1.22 193.23 1.60 97.12 1.28 187.25 0.90 98.70 0.40 249.14 −0.07 −0.11 −0.11 0.67

50 (1,3) 2.02 96.36 1.62 168.55 2.06 96.98 0.96 189.16 1.28 97.54 1.18 180.85 0.76 98.72 0.52 237.29 −0.11 −0.36 −0.04 1.00

51 (3,5) 1.88 95.98 2.14 155.15 1.64 97.46 0.90 184.51 0.74 98.02 1.24 173.93 0.76 98.64 0.60 218.59 0.06 −0.29 0.25 1.00

52 (40,40) (1,1) 1.50 97.02 1.48 192.68 1.20 97.58 1.22 209.88 1.20 97.64 1.16 203.27 0.54 98.90 0.56 273.71 −0.01 0.01 −0.02 1.00

53 (1,3) 1.96 96.44 1.60 184.84 2.00 97.12 0.88 206.78 1.26 97.58 1.16 198.06 0.96 98.42 0.62 261.51 −0.10 −0.39 −0.04 1.00

54 (3,5) 1.48 96.80 1.72 169.90 1.28 97.74 0.98 200.86 0.58 98.20 1.22 189.24 0.52 98.74 0.74 241.20 0.08 −0.13 0.36 1.00

55 (50,100) (20,40) (1,1) 1.56 96.02 2.42 147.79 1.12 97.06 1.82 159.74 1.24 97.00 1.76 155.22 0.52 98.76 0.72 202.75 0.22 0.24 0.17 0.34

56 (1,3) 1.30 96.16 2.54 142.96 1.26 97.20 1.54 158.18 0.74 97.24 2.02 152.63 0.48 98.98 0.54 196.49 0.32 0.10 0.46 1.00

57 (3,5) 1.36 96.22 2.42 131.20 1.24 97.54 1.22 154.66 0.46 97.88 1.66 147.32 0.42 98.82 0.76 180.39 0.28 −0.01 0.57 1.00

58 (40,40) (1,1) 1.38 96.32 2.30 165.56 1.06 96.80 2.14 179.74 1.10 96.86 2.04 174.31 0.30 98.60 1.10 230.58 0.25 0.34 0.30 1.00

59 (1,3) 1.16 96.36 2.48 160.90 1.16 97.36 1.48 178.08 0.70 97.36 1.94 171.83 0.48 98.48 1.04 223.81 0.36 0.12 0.47 1.00

60 (3,5) 1.32 96.10 2.58 148.06 1.14 97.42 1.44 173.56 0.50 97.54 1.96 164.89 0.60 98.46 0.94 206.05 0.32 0.12 0.59 1.00

61 (100,100) (20,40) (1,1) 2.40 95.50 2.10 122.51 1.98 96.50 1.52 131.58 1.68 96.78 1.54 128.30 0.70 98.56 0.74 165.11 −0.07 −0.13 −0.04 0.25

62 (1,3) 2.28 95.80 1.92 116.67 2.30 96.74 0.96 129.62 1.14 97.30 1.56 125.17 0.86 98.54 0.60 156.54 −0.09 −0.41 0.16 1.00

63 (3,5) 2.30 95.52 2.18 107.65 2.20 96.92 0.88 128.12 0.48 98.06 1.46 122.77 0.86 98.46 0.68 143.65 −0.03 −0.43 0.51 1.00

64 (40,40) (1,1) 2.20 95.52 2.28 133.62 1.78 96.48 1.74 143.42 1.64 96.46 1.90 139.78 0.72 98.46 0.82 180.55 0.02 −0.01 0.07 1.00

65 (1,3) 1.88 95.86 2.26 128.21 2.00 96.68 1.32 141.60 0.94 97.30 1.76 136.82 0.68 98.54 0.78 172.85 0.09 −0.20 0.30 1.00

66 (3,5) 1.58 95.90 2.52 118.25 1.56 97.06 1.38 139.27 0.40 97.62 1.98 133.33 0.44 98.66 0.90 158.17 0.23 −0.06 0.66 1.00

67 (100,200) (20,40) (1,1) 1.58 95.16 3.26 101.46 1.34 96.36 2.30 108.80 1.24 96.34 2.42 106.37 0.64 98.36 1.00 134.21 0.35 0.26 0.32 −0.20

(continued on next page)

M
aneeratetal.(2022),PeerJ,D

O
I10.7717/peerj.14194

17/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.14194


Table 2 (continued)
Scenarios (n1,n2) (ρ1,ρ2)% (γ1,γ2) B F M N Relative bias

LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL LEP CP UEP EL B F M N

68 (1,3) 1.46 95.54 3.00 98.30 1.70 96.74 1.56 108.44 0.88 96.68 2.44 105.68 0.40 98.50 1.10 130.20 0.35 −0.04 0.47 1.00

69 (3,5) 1.68 95.32 3.00 90.42 1.54 97.32 1.14 107.71 0.36 97.30 2.34 104.56 0.56 98.46 0.98 119.13 0.28 −0.15 0.73 1.00

70 (40,40) (1,1) 1.40 95.62 2.98 114.31 1.04 96.50 2.46 122.60 1.02 96.54 2.44 119.66 0.38 98.56 1.06 152.21 0.36 0.41 0.41 1.00

71 (1,3) 1.28 95.74 2.98 111.45 1.54 96.78 1.68 122.19 0.68 96.70 2.62 118.93 0.36 98.48 1.16 148.24 0.40 0.04 0.59 1.00

72 (3,5) 1.58 95.00 3.42 102.93 1.24 97.16 1.60 121.02 0.48 96.70 2.82 116.90 0.52 98.26 1.22 135.95 0.37 0.13 0.71 1.00

Notes.
B, the Bayesian CI; F, the fiducial GPQ CI; M, the MOVER-fiducial GPQ CI; N, the NA CI.
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Figure 4 Simulation 2: Box plots of the coverage percentages for Scenarios 37-72 based
on the four methods: σ2

X1
= σ2

X2
= 3 in the following cases [sample sizes, zero propor-

tions]:(A)[(25,25),(20,40)%], (B)[(25,50),(20,40)%], (C)[(50,50),(20,40)%],(D)[(50,100),(20,40)%],
(E)[(100,100),(20,40)%],(F)[(100,200),(20,40)%], (G)[(25,25),(40,40)%],(H)[(25,50),(40,40)%],
(I)[(50,50),(40,40)%],(J)[(50,100),(40,40)%], (K)[(100,100),(40,40)%],(L)[(100,200),(40,40)%].

Full-size DOI: 10.7717/peerj.14194/fig-4

Figure 5 Simulation 2: Scatter plots of the relative bias for Scenarios 37-72 based on the four methods:
σ2
X1

= σ2
X2

= 3.
Full-size DOI: 10.7717/peerj.14194/fig-5
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Figure 6 Simulation 2: Line plots of the expected width for 36 scenarios based on the
four methods: σ2

X1
= σ2

X2
= 3 in the following cases [sample sizes, zero proportions]:

(A)[(25,25),(20,40)%],(B)[(25,50),(20,40)%], (C)[(50,50),(20,40)%],(D)[(50,100),(20,40)%],
(E)[(100,100),(20,40)%],(F)[(100,200),(20,40)%], (G)[(25,25),(40,40)%],(H)[(25,50),(40,40)%],
(I)[(50,50),(40,40)%],(J)[(50,100),(40,40)%], (K)[(100,100),(40,40)%],(L)[(100,200),(40,40)%].

Full-size DOI: 10.7717/peerj.14194/fig-6

NA, and Bayesian methods for the ratio of the medians of TPLN distributions containing
zero values are reported in Table 6.

It can be interpreted that there is no difference between the wind speeds in Phayao
and Phitsanulok. The majority of the population in both areas are agriculturists, and so
agricultural burning is often carried out in preparation for planting and after harvesting.
Furthermore, the empirical example results are in agreement with the Monte Carlo
simulation results in the previous section; the EL of the MOVER-fiducial GPQ CI was
the smallest with a suitable CP for a small variance and a large sample size. Overall, the
Bayesian-based method is the most suitable for formulating CIs for the ratio of the medians
of TPLN distributions containing zero values when taking the checking criteria results from
scenarios 1–12 and 37–72 into account.

DISCUSSION
We applied fiducial, NA, and Bayesian-based method to formulate CIs for the ratio of the
medians of TPLN distributions containing zero values. From the results of the simulation
study, the fiducial methods based on fiducial GPQ and MOVER-fiducial GPQ always
provided CPs greater than the nominal 95% confidence level because the fiducial GPQ
of (γi, ρi, µXi) have strong points (Hannig, Iyer & Patterson, 2006), as revealed by the
conditions for FGPQ2 in Definition 1. However, the MOVER-fiducial GPQ method
produced shorter interval than the fiducial GPQ and worked well for a small variance and a
large sample size. The NA method provided CPs greater than the nominal 95% confidence
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Table 3 Data of hourly wind speed (km/3 h) in Phisanulok and Phayao provinces, northern Thailand
during January 1–15, 2021.

Phisanulok Phayao

19.9 0 4.3 13.7 9.4 0 26.7 15
20.6 0 21.6 21.9 16.1 2.2 20.9 13.3
26 11.6 12.6 19.1 17.3 7.5 19.1 9.7
9.4 22.7 18.4 21.2 8.6 15.8 20.5 14
9.8 16.5 16.6 20.1 2.9 14.5 21.7 11.9
12.6 6.1 23.3 20.2 1.8 4.3 29.9 11.1
11.6 0 31 9 0 2.9 33.1 14.3
0 6.8 6.1 22 1.4 4.3 23 12.3
20.9 3.6 1.8 20.9 9.7 2.2 22.6 17.2
14.8 1.5 5 12.6 23.4 0 29.9 6.1
27.3 9 1.8 0 19.8 5.4 24.1 4.7
13 10.4 0 0 3.9 12.6 16.2 3.7
0 18.3 14.4 4.3 1.1 15.4 32 6.1
5.4 8.3 14.5 6.9 0 6.2 29.4 4.6
3.2 0 24.4 16.6 0 3.2 14 11.1
8.7 0.4 6.9 15.9 1.8 2.9 25.2 23.4
8.7 0 2.5 11.6 4.3 0.4 30.2 21.2
13 0 4.3 6.9 22.3 0.4 23.4 4.7
25.9 8.7 2.2 0 21.2 10.8 31.6 1.8
8 25.9 2.5 0 7.6 12.2 29.5 4.7
5 21.7 15.8 0 0.4 21.6 20.1 1.4
3.6 8.3 15.2 2.1 1.1 14.8 30.6 0
5.7 4.7 14.4 4.3 0 13 18.4 7.2
6.2 4.7 7.2 14.4 0.7 17.6 21.2 17.3
7.6 2.2 15.8 19.5 7.2 16.9 14.1 16.6
13 10.1 26.3 5 15.5 2.1 14.8 3.9
25.6 14 32 0 16.2 8.2 19.1 3.2
15.1 20.5 32.7 4.7 5 21.9 25.3 1.8
2.2 17.6 32.4 0 0 21.3 24.5 0.7
3.6 5.8 20.2 4 0 23.5 19.5 0

Notes.
Source: Thai Meteorological Department Automatic Weather System.
URL: http://www.aws-observation.tmd.go.th/web/reports/weather_minute.asp.

Table 4 AIC results for the positive wind speed data (km/3 h) in Phisanulok and Phayao provinces, northern Thailand during January 1–15,
2021.

Provinces Cauchy Chi-suqare Exponential Lognormal TPLN Logistic Normal T

Phitsanulok 787.8140 818.3827 739.9249 733.9261 725.9633 742.5044 736.4505 736.7834
Phayao 865.3148 1008.1470 793.3140 816.9264 800.6639 812.1632 803.3119 803.8294

Notes.
Bold font denotes the best-fitting model for the data.
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Table 5 Basic Statistics for the wind speed data.

Basic statistics Provinces

Phitsanulok Phayao

Groups (i) 1 2
sample sizes (ni) 120 120
Mean (µ̂i) 2.1581 2.0196
Variances (σ̂ 2

Xi ) 1.4911 2.3389
Zero proportions (ρ̂i :%) 13.33 8.33
Threshold (γ̂i) 0.399 0.389
Median wind speed (η̂i) 8.0248 6.8204
The ratio of the medians (ω̂= η̂1/η̂2) ω̂= 1.1765

Table 6 The 95% CIs for the ratio of the median wind speed in Phisanulok and Phayao provinces.

Methods 95% CIs Lengths

Fiducial GPQ (0.7825, 1.7937) 1.0112
MOVER-fiducial GPQ (0.7823, 1.7203) 0.9379
NA (0.6922, 1.9997) 1.3074
Bayesian (0.8047, 1.8238) 1.0190

level, thereby making its ELs longer than the other methods, which could have been caused
by the variance in the estimated median (McKean & Schrader, 1984).

Meanwhile, the Bayesianmethod provided suitable CPs with the shortest interval length,
except for a small variance and a large sample size for which the MOVER-fiducial GPQ
method performed the best. This could be because of using the uniform prior to gain
information about the parameters from the data to obtain their posterior density. As such,
the constructed CIs for the ratio of the medians of TPLN distributions containing zero
values based on the Bayesian method with a uniform prior performed well.

CONCLUSIONS
CIs for the ratio of the medians of TPLN distributions containing zero values were
formulated by using fiducial-, NA-, and Bayesian-based methods. Since a theoretical
comparison was not possible, a Monte Carlo simulation and empirical application with
two real datasets of wind speed observations were used to evaluate their performances in
terms of their CPs and ELs. The results of the simulation study led us to recommend the
Bayesianmethod for constructing the CIs for the ratio of themedians of TPLN distributions
containing zero values because it attained CPs close to the nominal 95% confidence level
and the shortest EL in most cases, except for a small variance and a large sample size for
which the MOVER-fiducial GPQ method should be used.
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