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Abstract: Surface and underground stretched deformation is one of the most important physical
measurement quantities for geological-disaster monitoring. In this study, a parallel helical sensing
cable (PHSC) based on the time–domain reflectometry (TDR) technique is proposed and used to
monitor large ground stretched deformation. First, the PHSC structure and manufacturing process are
introduced, and then, distributed capacitance, distributed inductance, and characteristic impedance
were derived based on the proposed stretched-structure model. Next, the relationship between
characteristic impedance and stretched deformation was found, and the principle of distributed
deformation measurement based on the TDR technique and PHSC characteristic impedance was
analyzed in detail. The function of the stretched deformation and characteristic impedance was
obtained by curve fitting based on the theoretically calculated results. A laboratory calibration test
was carried out by the designed tensile test platform. The results of multi-point positioning and the
amount of stretched deformation are presented by the tensile test platform, multi-point positioning
measurement absolute errors were less than 0.01 m, and the amount of stretched deformation
measurement absolute errors were less than 3 mm, respectively. The measured results are in
good agreement with the theoretically calculated results, which verify the correctness of theoretical
derivation and show that a PHSC is very suitable for the distributed measurement of the ground
stretched deformation.

Keywords: geological monitoring; parallel helical sensing cable; time–domain reflectometry (TDR);
distributed parameter; characteristic impedance; stretched deformation

1. Introduction

In recent years, natural geological disasters, such as earthquakes, landslides, and mudslides, have
occurred frequently in earthquake-stricken areas, which are serious threats to human life, safety, and
economic security. Ground deformation is one of the most important physical measurement quantities
for monitoring and predicting geological disasters. Sensing technology is mainly used to monitor
ground deformation, including draw-wire displacement sensor technology [1,2], global positioning
system (GPS) technology [3,4], total station observation technique [5], remote sensing technique [6–8],
synthetic aperture radar (SAR) technology [4,9], laser scanning technology [10], optical fiber sensing
technology [11–15], and time–domain reflectometry (TDR) technology [16,17].

The draw-wire displacement sensor is a two-point measurement, which can accurately measure
the relative displacement between two points, but it is difficult to reflect the whole stretched
deformation using this method. GPS technology can monitor three-dimensional displacement
information by point distribution measurement [18]. However, the measured position must ensure
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good satellite signals, and the accuracy of vertical displacement is relatively low. The GPS precise
point positioning method based on a 24-h observation period can determine horizontal displacement
up to 1.5 cm [19]. The total station instrument is a point distribution measurement. With this method,
it is necessary to establish the work point in the place where invisible change is guaranteed [20], and
the accuracy is easily affected by temperature, atmosphere, and other factors. Synthetic aperture
radar interferometry (InSAR) can extract one-dimensional deformation along the line-of-sight of radar,
and SAR image co-registration and pixel offsets can be used to extract two-dimensional deformation
along the azimuth and range directions [21]. However, the deformation accuracy is significantly
affected by matching window size and oversampling, and terrain effect can cause significant pixel
displacements in SAR images over high-relief areas. Laser scanning technology can be used to monitor
the three-dimensional displacement of a landslide with high precision by using a non-contact method,
but the measurement accuracy is easily affected by the buildings and vegetation on the surface. In [22],
two scanning methods were adopted to assess the reasons for premature cracks adjacent to bridge
objects. Laser scanning was used to measure geometric surface deformation. and ground penetrating
radar inspection was used to assess the road pavement condition. A deformation sensor based on
optical fiber can realize the continuous and distributed measurement of micro-deformation without
electromagnetic interference. In [23], the experimental results showed that the distributed optical fiber
can measure the soil strain during the ground deformation process, and the strain curve responded to
the soil compression and tension region clearly. When the amount of deformation is larger than 2 mm,
the optical fiber is easily broken due to the limited stretching ability. Then, various special optical
fibers can be developed to meet the requirements, including larger deformation and coordination
deformation. Time–domain reflectometry (TDR) technology has become a valuable tool for monitoring
displacements and locating shear planes in rock–soil slopes. A deformation sensor based on a coaxial
cable can realize a continuous and distributed deformation measurement, which is mainly used to
measure underground shear deformation [24].

Here, a parallel helical sensing cable (PHSC), as a distributed sensor based on the TDR technique,
is proposed to achieve the point positioning and deformation size measurement for a large-surface
stretched deformation measurement. Compared with distributed optical fiber sensing technique,
a PHSC can achieve precise point positioning of ground deformation; in addition, it can realize the
transverse tensile measurement and enlarge the measurement range. In this study, we propose using a
PHSC to realize the precise point positioning of the stretched deformation of the ground and the large
deformation measurement of a landslide. First, the structure of a PHSC and the manufacturing process
are introduced. Then, the relationship between characteristic impedance and stretched deformation is
derived based on the proposed physical model. The principle of distributed deformation measurement
based on TDR and PHSC characteristic impedance is also analyzed in detail. A laboratory calibration
test and physical model test were carried out by the stretched test platform, and the procedure for
these laboratory tests and the related results are presented here.

2. Mechanism of a Parallel Spiral Transmission Line

A PHSC used as a sensing component for the distributed measurement of ground deformation
is typically buried under the ground. All the parameters of a PHSC, including the characteristic
impedance and pitch, are basically fixed if there is no geological deformation. The characteristic
impedance is changed when the PHSC is stretched, and the change of the characteristic impedance
accurately reflects the stretched deformation. The characteristic impedance and the position of
the deformation can be measured by the tensile test platform, the relationship between stretched
deformation and the characteristic impedance can be found, and the determination position and
the amount of stretched deformation of the surface and the underground deformation can also be
determined [25]. The relationship between the characteristic impedance and the stretched deformation
is the focus of this research. A photograph and structure diagram of the PHSC used here are shown in
Figure 1. It is composed of a central silica gel strip, parallel copper wires of a silicone outer sheath,
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and an outer silicone protective sleeve [26]. The PHSC has good stretching ability, because the silica
material has a certain elasticity and the parallel copper wires are spirally wound around the central
silica gel strip. The length of the PHSC refers to the central silica gel strip length, and because they
have the same structure, the same analysis principle is used in any parallel spiral transmission lines
manufactured with different materials and sizes. The four types of PHSC are listed in Table 1, TS
means that the conductors of the parallel wires are twisted, tinned copper wires. For example, the
24AWG PHSC is fabricated by 40 tinned copper wires with a diameter of 0.08 mm, the cross-sectional
area of total 40 wires is 40 × π × 0.042 mm2, and the equivalent diameter (De) is about 0.5060 mm,
obtained from the cross-sectional area.
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Figure 1. (a) Photograph and (b) structure diagram of a parallel helical sensing cable (PHSC).

Table 1. Four types of PHSC.

Types Parameters De (mm)

24AWG 40 × 0.08TS 0.5060
22AWG 60 × 0.08TS 0.6197
20AWG 100 × 0.08TS 0.8000
18AWG 150 × 0.08TS 0.9798

3. Principle of the TDR Technique

The TDR technique is usually used for local ground deformation monitoring. TDR instruments
are composed of a step signal generator with an 80E04 TDR module and a high-speed sampling
oscilloscope of Tektronix DSA8300 (Tektronix, Shanghai, China). The measurement method is shown
in Figure 2a. The beginning of the PHSC is connected to the 80E04 TDR module and the Tektronix
DSA8300, and the end of the sensor is in an open state. The high-frequency step signal is transmitted
into the PHSC, and the reflected signal is acquired by TDR instrument after a time delay. Then, the
reflection coefficients and characteristic impedance of the sensing cable are calculated by sampling the
reflected voltage signal. Figure 2b is a typical step signal incident and measured waveform, where ZDUT
is the impedance of the tested devices, Z0 is the characteristic impedance of the TDR measurement
system, which is 50 Ω, Vincident is the incident step signal voltage value, Vreflected is the reflected signal
voltage value, and Vmeasured is the measured voltage value, which is equal to (Vincident + Vreflected).

The reflection coefficient ρ is written as follows:

ρ =
Vre f lected

Vincident
=

Z− Z0

Z + Z0
(1)

Therefore, the characteristic impedance Z of the PHSC can be obtained by the following [27,28]:

Z = Z0 ·
1 + ρ

1− ρ
= Z0 ·

Vmeasured
2 ·Vincident −Vmeasured

(2)
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When the PHSC is stretched, the stretched deformation becomes larger, which leads to a change
in Z. The position of the characteristic impedance change is expressed as follows:

Llocation =
v · T

2
(3)

where the Llocation is the reflected position from the beginning of the PHSC, ν is the transmission speed
of the step signal in the PHSC, and T is the time difference between the reflection point and the input
point measured by the TDR [29].
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Figure 2. Diagram of tensile test platform and waveform (a) tensile test platform based on the
time–domain reflectometry (TDR) technique; (b) a typical step signal incident and measured waveform.

4. Distributed Parameters and Characteristic Impedance of PHSC

If the resistance of a 100 m length is less than 10 Ω for the four types of PHSC, then the influence of
the distributed resistance can be neglected [30]. For lossless transmission lines or low-loss transmission
lines, the characteristic impedance is expressed as

Z ≈
√

L/C (4)

where the L is the unit length conductance and C is unit length capacitance. The units of L and C are
H/m and F/m, respectively.

In order to obtain the relationship between the distributed parameters and the stretched
deformation (s) of the PHSC, the cross-section model of the PHSC in the stretched region is shown in
Figure 3a. The PHSC is divided into the normal region, gradient region, and the stretched region. A0

and B0 are the two parallel copper wires in the center of the stretched region. There are (2N + 1) turns
of spiral wires in the stretched region. N turns are in the left region, and another N turns are in the
right region. The charge densities of two parallel copper wires A and B are −η and +η, respectively.
The radius of the two wires are r, the fixed distance of the two parallel copper wires is d, and the pitch
of spiral transmission line is (d + s). The diameter of the central silica gel strip is D, which is a structural
constant, and the angle between the wire and the vertical direction is θ. Assuming that there exists a
point P at the middle of B0 and AR1, based on the Biot–Savart law [31,32], the electric field strength E
shown in Figure 3b along the x-axis direction at point P for a finite wire B0B′0 with uniform current
density is expressed as

EB0B′0
= 2

∫ Lp

0

η

4πε
· x

(x2 + y2)3/2 dy =
η

2πε
·

Lp

x
√

x2 + LP
2

(5)

where the ε is relative permittivity and the Lp is the length of the wire B0B′0 and Lp = D
2 cos θ . The x is

the distance from point P to origin O.
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According to the superposition theorem, the electric field strength sum at point P is given by

E = EAL + EBL + EAR + EBR (6)

where the first letter of the subscript represents the parallel wire A or B and the second letter indicates
the parallel wire at the left or right of point P.

Each electric field strength is expressed as

EAL = − η

2πε

K

∑
i=0

Lp

[i(s + d) + d + x]
√
[i(s + d) + d + x]2 + Lp2

(7a)

EBL =
η

2πε

K

∑
i=0

Lp

[i(s + d) + x]
√
[i(s + d) + x]2 + Lp2

(7b)

EAR =
η

2πε

K

∑
i=0

Lp

[i(s + d) + s− x]
√
[i(s + d) + s− x]2 + Lp2

(7c)

EBR = − η

2πε

K

∑
i=0

Lp

[(i+1)(s + d)− x]
√
[(i+1)(s + d)− x]2 + Lp2

(7d)

where the K is the number of PHSC turns on the left and right of point P.
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Directed line segment l from the nearest point P along the B0 and AR1 direction is selected; if the
direction of l is same as the electric field E, then the potential difference between B0 and AR1 is given by

U =
∫
l

→
E · d

→
l =

∫ s−r

r
Edx (8)

Equations (7a)–(7d) are brought into Equation (8), and the potential difference U can be derived as

U =
η

2πε
(−ζAL + ζBL + ζAR − ζBR) (9)

where ζAL, ζBL, ζAR, and ζBR are the mathematical integral results. According to the characteristics
of the definite integral and circuit symmetry, there are

∫ s−r
r EALdx =

∫ s−r
r EBLdx and

∫ s−r
r EARdx =∫ s−r

r EBLdx, which then lead to the following:

ζAL = ζBR =
K

∑
i=0

ln

√
[(i + 1)(s + d)− r]2 + Lp2 − Lp√
[i(s + d) + (d + r)]2 + Lp2 − Lp

i(s + d) + d + r
(i + 1)(s + d)− r

(10a)

ζAR = ζBL =
3

∑
i=0

ln

√
[i(s + d) + s− r]2 + Lp2 − Lp√
[i(s + d) + r]2 + Lp2 − Lp

i(s + d) + r
i(s + d) + s− r

(10b)

In order to simplify the calculation and guarantee the calculation precision, set K = 3. Then, for
22AWG PHSC (r = 0.3099 mm, d = 1.6 mm, D = 4.6 mm, θ = 30◦), the initial value of s is equal to d, the
curves of ζAL, ζBL and (ζBL − ζAL) with s are shown in Figure 4. When the PHSC is stretched, the s
becomes larger, and all the results increase, but the rate of increase slows down.
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Based on the Gauss theorem, it is known that the capacitance per unit length between B0 and AR1

is the ratio of the charge density to the voltage, which is given by

C =
η

U
(11)
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According to Equation (11), the electric field strength becomes larger with the increase of s, but
the charge density is a constant. Additionally, the distribution capacitance becomes smaller and the
distribution inductance becomes larger. Then, the distributed capacitance C is obtained as

C =
πε

(ζBL − ζAL)
(12)

The constitutive parameters (µ,ε) in the medium are given by

LC = µε (13)

Then, the distributed inductance can be expressed as

L =
µ

π
· (ζBL − ζAL) (14)

where the µ is relative permeability.
Based on Equations (4), (12), and (14), the characteristic impedance Z of PHSC is obtained as [33]

Z =

√
µ

ε
· ζBL − ζAL

π
(15)

It can be seen from Equation (15) that Z is only related to the physical size of r, d, s, D, and θ. The
relative dielectric constant ε is 5.5, and the relative permeability µ is 1. The distribution capacitance C
and inductance L of 22AWG PHSC (r = 0.3099 mm, d = 1.6 mm, D = 4.6 mm, θ = 30◦) with the s are
shown in Figure 5. It can be observed that the distribution capacitance C becomes smaller with the
increase of s, but the distribution inductance L becomes larger.
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The characteristic impedance Z of four types of PHSC are shown in Figure 6. It can be seen that
Z decreases as the value of De increases. When the PHSC is stretched, s becomes larger. Z gradually
increases with the increase of s, but the rate of increase slows down. Z at the center point of the PHSC
is a maximum when s is a fixed value. Because the deformation region is divided into the stretched
deformation region, gradual region, and a normal region, Z will be decreased from the maximum at
the center point of the stretched region to the minimum of the normal region.

In application, the tensile deformation should be obtained based on the measured characteristic
impedance of the PHSC. However, considering that Equation (15) is very complex, the inverse function
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is not easy to obtain. A simple inverse function is easily obtained by curve fitting based on the
theoretically calculated results shown in Figure 6. The inverse function for four types PHSC is given by

s =
a

ln
(

Z+b
c

) (16)

where a, b, and c are the fitting coefficients.
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5. Measurement Experiments

5.1. Tensile Test Platform

In order to verify the theoretical derivation correctness and realize the distributed deformation
measurement of the ground, it is necessary to establish a PHSC tensile test platform and carry out
a stretching experiment. The established tensile test platform shown in Figure 2 is composed of the
stretching structure, a TDR measurement system, and a host computer [34]. The stretched structure
shown in Figure 7 is mainly composed of mechanical structure and a stepper motor.
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The software interface for the distributed measurement of deformation based on the TDR
technique is shown in Figure 8, and it consists of a waveform display, parameter setting, data sampling,
data analysis, and result export. The waveform display function can display the time–domain reflection
waveforms of multiple results in one picture to facilitate the observation of the waveform change of
the deformation position and also actively identify and mark the starting point and endpoint of the
PHSC. The unit of the ordinate axis is set to the characteristic impedance. The length of the PHSC and
the parameters of function by curve fitting based on the theoretically calculated results are written into
the parameter setting region. The sampling command is sent to the TDR by the data sampling function.
Then, the waveforms are acquired and sent to the host computer. The data analysis function is used
to analyze the acquired waveforms. First, according to the waveforms, the beginning and the end of
the PHSC are located, and the waveform propagation time is calculated. The transmission speed of
the step signal in the PHSC is obtained under the length of the PHSC, which is known. Second, the
stretched position and the stretch region are found based on the change of the characteristic impedance.
The stretched deformation s is calculated according to Equation (16). The amount of the stretched
deformation is a product of (s–d), and the parallel wire turns in the stretched region. For many stretched
regions, the positions can be found, and the acquired waveforms are analyzed, respectively.Sensors 2019, 19, 1297 9 of 14 
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5.2. Point Positioning Calibration Experiment

To determine the distributed measurement of the ground stretched deformation by using PHSC,
the first step is to locate the position of the stretched region. In many cases, multiple positions are
simultaneously stretched, while ground deformations occur in many places. Therefore, multiple
stretched points should be located and calculated. A 6.6 m AWG22 PHSC (r = 0.3099 mm, d = 1.6 mm,
D = 4.6 mm, θ = 30◦, ε = 5.5) was selected for the stretched deformation experiment, and the stretching
center point was selected to be 2, 3.5, and 5 m from the beginning of the PHSC, respectively. The tensile
region was set to 140 mm, and the amount of the deformation was set to 20 mm. A photograph of the
multi-point positioning measurement experiment is shown in Figure 9. A set of measured results are
listed in Table 2. It can be seen that the measurement of the absolute errors was less than 0.01 m, and
the results have an accuracy rating of 0.2.
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Table 2. Multi-point positioning measurement results.

Position(m) Measured Result(m) Absolute Error(m) Reference Error

2.000 1.993 −0.007 −0.106%
3.500 3.501 0.001 0.015%
5.000 5.006 0.006 0.091%

5.3. Stretched Deformation Experiment

A 6.6 m AWG24 PHSC (r = 0.25303 mm, d = 1.6 mm, D = 4.6 mm, θ = 30◦, ε = 5.5) was selected for
the tensile deformation experiment, and the stretching center point was selected to be 2 and 4 m from
the start point of the test PHSC, respectively. The stretched region was set to 200 mm, the initial value of
s was 1.6 mm, and there were 62.5 turns in the tensile region. The maximum value of the characteristic
impedance was measured by the PHSC tensile test platform. A set of measured results were selected
and are listed in Table 3. The comparison between the measured results and the theoretically calculated
results based on the distributed parameters model is shown in Figure 10.

Table 3. The s and measured maximum Z at the 20 and 4 m positions.

s (mm) Z2m (Ω) Z4m (Ω) s (mm) Z2m (Ω) Z4m (Ω)

1.600 69.53 71.98 2.084 79.35 77.93
1.681 72.41 73.78 2.165 80.45 78.63
1.761 74.23 74.80 2.245 81.44 79.05
1.842 75.62 75.83 2.326 82.06 79.64
1.923 77.12 76.71 2.406 82.75 80.14
2.003 78.32 77.50 2.487 83.34 80.49

The theoretically calculated results are in good agreement with those measured by the experiment,
verifying the reliability of the physical model and the measurement method. The measured results
at 2 m from the beginning of the PHSC are in good agreement with the theoretically calculated
results, which is mainly due to the end of the test PHSC in the open state. The incident signal is
a total reflection station at the end of the PHSC. The reflected signal voltage near the end changed
relatively drastically, and the characteristic impedance changed relatively drastically, which affected
the measurement accuracy.
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The inverse function can be obtained by curve fitting based on the theoretically calculated results
shown in Figure 6 for AWG24 PHSC. The coefficients of Equation (16) were filled into the host
computer’s software interface, as shown in Figure 8. The local stretched deformation measurement
was carried out for the same 6.6 m AWG24 PHSC (r = 0.2530 mm, d = 1.6 mm, D = 4.6 mm, θ = 30◦,
ε = 5.5), and the stretching center point was selected to be a position 2.5 and 4.5 m from the starting end
of the PHSC, respectively. The stretched region was set to 200 mm, the initial value of s was 1.6 mm,
and the turns of the PHSC in the tensile region were 200/3.2, which is 62.5. The amount of the stretched
deformation was increased from 0 to 50 mm with an initial step with a 5 mm increase. The incremental
step of s is 0.080 mm from the initial value. The sampling characteristic impedance curves cut from the
host computer software interface are shown in Figure 11. The measured characteristic impedance at
the center point of the stretched region is a maximum, and there is a decrease from the maximum to
the minimum in the normal region. The formation mechanism of the characteristic impedances in the
partial amplified area is consistent with the previous theoretical analysis. The measured characteristic
impedances and tensile amount are listed in Table 4. When the amount of stretched deformation is
small, the absolute errors are within 2 mm. As the amount of the stretched deformation increases, the
absolute error increases and is less than 3 mm, from the 0 to 50 mm stretching amount.
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Table 4. The measured results at the 2.5 and 4.5 m positions.

Set Tensile
Amount (mm)

Tensile
Position (m) s(mm) Z(Ω) Measured Tensile

Amount (mm)
Absolute Error

(mm)

5.000
2.500

1.680
72.96 4.879 −0.121

4.500 73.79 3.944 −1.056

10.000
2.500

1.760
74.52 9.601 −0.399

4.500 74.83 9.081 −0.919

15.000
2.500

1.840
75.81 14.112 −0.888

4.500 75.89 15.806 0.806

20.000
2.500

1.920
76.96 18.959 −1.041

4.500 76.76 21.221 1.221

25.000
2.500

2.000
77.77 23.593 −1.407

4.500 77.46 26.147 1.147

30.000
2.500

2.080
78.67 28.785 −1.215

4.500 78.21 31.470 1.470

35.000
2.500

2.160
79.46 33.566 −1.434

4.500 78.57 36.747 1.747

40.000
2.500

2.240
80.17 38.478 −1.522

4.500 79.14 41.964 1.964

45.000
2.500

2.320
80.94 43.196 −1.804

4.500 79.66 47.415 2.415

50.000
2.500

2.400
81.37 47.740 −2.260

4.500 80.05 52.820 2.820

6. Conclusions

This research describes the mechanism of using a PHSC for the distributed measurement of
ground deformation. The following conclusions have been drawn based on the theoretical analysis
and experimental results.

(1) Ground deformation monitoring based on the TDR technique and proposed PHSC is a very
feasible technique, and the sensing parallel spiral transmission line implantation method is
quite effective.

(2) A distribution parameter calculation model of PHSC is proposed and used to derive the
distributed capacitance, distributed inductance, and characteristic impedance. The distribution
capacitance becomes smaller with the increase of stretched s, and distribution inductance becomes
larger. The relationship between the stretched deformation and the characteristic impedance of
PHSC can be found based on the model and is shown here as Equation (15). It can be seen from
Equation (15) that the impedance increases when the cable is stretched.

(3) The derived characteristic impedance is related to the physical size of the equivalent radius of
the two wires, the fixed distance between the two parallel copper wires, the pitch of the spiral
transmission line, the diameter of the central silica gel strip, and the angle between the wire and
the vertical direction. The characteristic impedance decreases with the value of the equivalent
radius of the two wires.

(4) The characteristic impedance at the stretched center point is a maximum when s is a fixed value.
The deformation region is divided into the stretched deformation region, the gradual region, and
a normal region. The characteristic impedance decreases from the maximum at the center point
of stretched region to the minimum of the normal region.

(5) In application, tensile deformation can be obtained based on the measured characteristic
impedance of the PHSC. The function of the stretched deformation and characteristic impedance
can be obtained by curve fitting based on the theoretically calculated results. According to the
function, the stretched deformation measurement is carried out.

(6) A measurement experiment platform, including a stretching device, TDR measurement
system, and host computer software, was established to carry out the multi-point positioning
measurement and the amount of stretched deformation measurement at different positions.
The theoretically calculated results are in good agreement with the experiment results, which
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show that the PHSC can measure the rock–soil large deformation and verify the accuracy of the
theoretical derivation.

In future work, the model for the characteristic impedance and stretched deformation should be
further optimized to improve the measurement accuracy. The parallel helical sensing cable should be
applied to monitor the distributed measurement of ground deformation.
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