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Background. The tumor immune microenvironment is vital to kidney renal clear cell carcinoma (KIRC) progression, and
immunotherapies have been shown to be effective in the management of KIRC. However, the prognostic genes associated with
the tumor immune microenvironment in KIRC have not been fully identified. We obtained the KIRC RNA sequencing data and
the clinical characteristics from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)
database. We screened the gene modules associated with the tumor immune microenvironment based on the ESTIMATE
algorithm and weighted gene coexpression network analysis (WGCNA). Univariate Cox analysis and the LASSO method were
used to construct a prognostic model. Receiver Operating Characteristic (ROC) curve analysis was performed to evaluate the
accuracy of our risk model. TIMER and Single-Sample Gene Set Enrichment Analysis (ssGSEA) were used to explore the
correlation between prognostic genes and immune cell infiltration. Results. Fifty-four genes in modules were significantly
associated with the overall survival (OS) time of patients with KIRC. Furthermore, 12 hub genes were selected to construct the
prognostic model. The prognostic model showed superior accuracy in both TCGA and ICGC cohorts using ROC curve analysis.
Systematic analysis of immune cell infiltration revealed that nine genes were significantly correlated with levels of tumor-
infiltrating immune cells. Conclusions. Our findings indicated that the tumor immune microenvironment was an important
determinant of KIRC outcomes and revealed potential biomarkers for predicting patient OS and for targeted immunotherapies.

1. Introduction

Malignant kidney tumors are common worldwide, account-
ing for 2–3% of all cancers [1]. Based on different molecular
signatures, there are various histological subtypes of kidney
cancer. Clear cell renal cell carcinoma (ccRCC) is the most
common subtype and accounts for 70–80% of all kidney
cancer cases [2, 3]. Etiological factors, including genetic
factors and lifestyle variables, such as smoking, obesity,
and hypertension, participate in kidney tumorigenesis. At

the gene level, kidney renal clear cell carcinoma (KIRC) is
associated with the loss of chromosome 3p, and mutations
in VHL, PBRM1, SETD2, and BAP1 are involved in KIRC
progression and metastases [2]. Patients with advanced
ccRCC have a poor prognosis. Anatomical, histological, clini-
cal, and molecular factors influence patient outcomes. Despite
advances in diagnosis, surgery, and drug treatment, the clinical
outcomes of patients with KIRC are still unsatisfactory.

The tumor microenvironment (TME) is involved in
tumor progression. Various cells, including fibroblasts,
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endothelial cells, and immune cells, and extracellular com-
ponents surrounding tumor cells play vital roles in cancer
biology [4]. Tumor-infiltrating immune cells have been
widely studied and are known to target tumor cells and
inhibit tumor growth, exhibiting antitumor activity. In
contrast, these cells can also exhibit protumor activity and
promote tumor development and metastases [5, 6]. For
example, regulatory T cells modulate the functions of
effector T cells and suppress their proliferation. Tumor-
associated myeloid cells, such as tumor-associated macro-
phages (TAMs) and myeloid-derived suppressor cells
(MDSCs), are important tumor-infiltrating immune cells.
In general, the high frequency of TAMs is associated with
poor prognosis in human cancers [7]. Compared with other
solid tumors, ccRCC has a unique immune microenviron-
ment. Infiltrating CD8+ T cells in ccRCC tumors are rela-
tively abundant but show impaired tumor killing ability,
and patients with increased levels of CD8+ T cells in tumors
usually have poor outcomes [8]. Recently, immune check-
point inhibition has been shown to be an effective method
in the treatment of kidney cancer. Thus, investigation of
the TME in ccRCC and elucidation of the underlying mech-
anisms are important for improvement of the diagnosis and
treatment of ccRCC. Many computational methods, includ-
ing the Estimate of Stromal and Immune cells in Malignant
Tumors using Expression data (ESTIMATE) algorithm and
Tumor Immune Estimation Resource (TIMER), can help
improve our understanding of the roles of the TME during
ccRCC tumorigenesis and progression [9, 10]. In the current
study, we used weight gene coexpression network analysis
(WGCNA) to identify KIRC immune-related gene modules
and constructed a prognostic model based on least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis. LASSO is a variable selection method to shrink
and select variates for regression. Variable selection methods
assume that the “signals” are sparse, while dimension reduc-
tion methods assume that all covariates carry some signals.
In genetic data analyses of pan cancers in TCGA data,
LASSO is pervasively adopted to be applied in genetic data
for the univariate Cox regression analysis.

Twelve genes in our risk model significantly influenced
patient survival. Our results provided insights into the
mechanisms through which the TME affects clinical
outcomes in patients with KIRC and identified potential
prognostic and therapeutic targets for KIRC.

2. Materials and Methods

2.1. Datasets. RNA sequencing data containing RSEM nor-
malized data and the clinical characteristics of KIRC patients
(537 primary tumor samples, 537 patients) were obtained
from TCGA database. Cases with incomplete clinical data,
overall survival time less than 30 days, and obvious outlier
RNA sequence data were removed. Finally, the data from
499 patients were analyzed in this study. The stromal and
immune scores of TCGA KIRC dataset were calculated using
the “estimate” package in R language. In the current study,
TCGA cohort was separated randomly at a 2 : 1 ratio; 349
samples were used to generate the prognostic model, and

150 samples were used for validation. Another cohort of
KIRC patient with RNA sequencing data was obtained from
the ICGC database. Cases with incomplete clinical data and
obvious outlier RNA sequence data were removed. Finally,
70 patients with RNA sequencing data and clinical charac-
teristics were included in this study as ICGC validation data-
set. The clinical information for patients from TCGA and
ICGC is shown in Table 1. The gene expression profile
(GSE28490) based on the platform of GPL570 (Affymetrix
Human Genome U133 Plus 2.0 Array) was downloaded from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The
dataset GSE28490 contains the gene expression information
of human immune cell subset. The raw data were normalized
using the robust multi-array average (RMA) algorithm
through the Affy package of Bioconductor (http://www
.bioconductor.org/).

2.2. WGCNA to Identify Key Modules. WGCNA was per-
formed using the “WGCNA” package in R language [11].
In total, 499 RSEM normalized RNA sequencing data from
TCGA KIRC cohort were included for WGCNA analysis.
Genes that were undetectable in more than 50 samples were
filtered out; then, we chose the top 5000 genes with the high
deviation to construct a network. The unsigned coexpression
networks were established based on the best soft threshold-
ing power β. Then we calculated the coexpression similarity
and transformed the similarity matrix to the weighted adja-
cency matrix. Next, we transformed the weight adjacency
matrix into a topological overlap matrix (TOM) to detect
gene connectivity in the network. Finally, based on the
TOM, gene dendrograms over 30 were produced to con-
struct coexpression gene modules. We merged similar mod-
ules based on a height cut of 0.25 and calculated the module
membership and gene significance to evaluate the gene rela-
tionships between tumor stage, tumor grade, immune score,
and estimate score. Genes in modules that were closely
related to these four traits were selected for further analysis.

2.3. Functional Annotation Analysis. Functional annotation
of Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for the genes in
the most related modules of the WGCNA were performed
using the “clusterProfiler” R package [12]. The P value was
adjusted by the Benjamini and Hochberg method [13].

2.4. Construction of a KIRC Prognostic Model. Univariate
Cox analysis and the LASSO method were used to identify
genes that significantly influence patient survival [14]. First,
we used univariate Cox regression analysis to find the prog-
nostic genes in green/yellow and tan modules. Then, genes
that significantly influenced patient clinical outcomes
(P < 0:001) were used for LASSO analysis. TCGA discovery
dataset with 349 patient data was used to construct the prog-
nostic model.

2.5. Survival Analysis. Survival analysis was used to investi-
gate the relationships between different gene expression
levels and patient survival. According to the gene expres-
sion level, patients with KIRC were divided into the
high-expression group and low-expression group. Based
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on the risk score, patients were divided into the high-risk
group and low risk group. Kaplan-Meier survival analysis
was performed using “survival” and “survminer” R lan-
guage packages.

2.6. Evaluation of the KIRC Prognostic Model. The accuracy
of the KIRC prognostic model generated by LASSO Cox
regression analysis was assessed by using the Receiver
Operating Characteristic (ROC) curve method. The sensi-
tivity and specificity of our prognostic model for 1-, 3-,
and 5-year overall survival (OS) in TCGA KIRC discovery
and test cohorts were evaluated using the “survivalROC” R
package [15]. ICGC cohort was used as the external eval-
uation dataset.

2.7. Analysis of Immune Cell Infiltration. TIMER is a com-
prehensive resource for systematic analysis of immune cell
infiltration across different cancer types (https://
cistrome.shinyapps.io/timer/) [9]. We used TIMER to investi-
gate the infiltration of immune cells, including B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells, in TCGA KIRC patients. We analyzed the correlations
between hub genes and immune cells in tumor tissues.

2.8. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
KIRC RSEM normalized RNA-seq data were compared with
the gene set using the “GSVA” package in R. The gene sets
included 782 genes for predicting the proportions of 28
tumor-infiltrating immune cells in tumor tissues [16]. The

Table 1: Clinical characteristics of KIRC in TCGA and ICGC datasets.

KIRC patient clinical characteristics
TCGA dataset (N = 499) ICGC dataset (N = 70)

Age Discovery set (N = 349) Test set (N = 150)
<60 172 (49.3%) 63 (42.0%) 32 (45.7%)

≥60 177 (50.7%) 87 (58.0%) 38 (54.3%)

Gender

Female 110 (31.5%) 62 (41.3%) 29 (41.4%)

Male 239 (68.5%) 88 (58.7%) 41 (58.6%)

Vital status

Deceased 113 (32.4%) 53 (35.3%) 27 (38.6%)

Living 236 (67.6%) 97 (64.7%) 43 (61.4%)

Histologic grade

G1 7 (2.0%) 5 (3.3%) NA

G2 155 (44.4%) 61 (40.7%) NA

G3 138 (39.5%) 60 (40.0%) NA

G4 46 (13.2%) 23 (15.3%) NA

GX 3 (0.9%) 1 (0.7%) NA

Stage

I 170 (48.7%) 81 (54.0%) NA

II 39 (11.2%) 12 (8.0%) NA

III 87 (24.9%) 29 (19.3%) NA

IV 53 (15.2%) 28 (18.7%) NA

T classification

T1 175 (50.1%) 82 (54.7%) 37 (52.9%)

T2 47 (13.5%) 16 (10.7%) 13 (18.6%)

T3 123 (35.2%) 47 (31.3%) 19 (27.1%)

T4 4 (1.1%) 5 (3.3%) 1 (1.4%)

N classification

N0 154 (44.1%) 70 (46.7%) 60 (85.7%)

N1 10 (2.9%) 5 (3.3%) 2 (2.9%)

NX 185 (53.0%) 75 (50.0%) 8 (11.4%)

M classification

M0 285 (81.7%) 115 (76.7%) 61 (87.1%)

M1 50 (14.3%) 26 (17.3%) 8 (11.4%)

MX 14 (4.0%) 9 (6.0%) 1 (1.4%)
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features of cells exerting antitumor reactivity (including acti-
vated CD4+ T cells, activated CD8+ T cells, central memory
CD4+ T cells, central memory CD8+ T cells, effector memory
CD4+ T cells, effector memory CD8+ T cells, Th1 cells, Th17
cells, activated dendritic cells, natural killer NK T cells, and
CD56 bright NK cells) and cells exerting protumor reactivity
(including regulatory T cells, Th2 cells, immature dendritic
cells, macrophages, MDSCs, neutrophils, plasmacytoid den-
dritic cells, and CD56dim NK cells) were obtained from
recent publications [17, 18]. The ssGSEA score was normal-
ized to the unity distribution. Scores for antitumor immu-
nity and protumor suppression for each sample were
calculated. The scores were plotted, and the correlation
between antitumor immunity and protumor suppression in
KIRC was analyzed by Pearson’s correlation analysis.

3. Results

3.1. Immune Scores Were Closely Associated with KIRC
Progression and Survival. The stromal score, immune score,
and estimate score reflect the infiltration levels of stromal
cells and immune cells in tumor. In total, 499 patients with
RNA sequencing data were included in this study, and the
scores were calculated. First, we compared the difference of
immune scores, stromal scores, and estimate scores between
different stages of KIRC. Immune scores and estimate scores
were significantly associated with KIRC progression,
whereas stromal scores were comparable (Figures 1(a)–1(f
)). To investigate the relationships between scores and
patient prognosis, KIRC patients from TCGA cohort were
divided into the high-score group (score > 67 percentile)
and low-score group (score < 33 percentile). The results
revealed that immune score and estimate score were signifi-
cantly related to the OS of patients with KIRC. High
immune score and high estimates indicated the poor prog-
nosis (Figures 1(g) and 1(i)). However, the stromal score
did not significantly affect clinical outcomes (Figure 1(h)).
This observation highlighted the importance of the immune
microenvironment in KIRC survival.

3.2. Screening Immune-Related Prognostic Gene Modules in
KIRC Patients via WGCNA. WGCNA is a method to iden-
tify key gene modules closely associated with clinical traits
and scores generated by the ESTIMATE algorithm. Clinical
and RSEM-normalized RNA sequencing data from 499
KIRC samples were used to construct a gene coexpression
network. The best soft thresholding power β = 5 was calcu-
lated (Figure 2(a)) and used to calculate the adjacencies. 16
gene modules with sizes ranging from 46 to 753 genes were
screened out based on TOM and dynamic tree clipping
(Figure 2(b)). Similar modules were merged based on the
height cut of 0.25 (Figure 2(c)). Finally, we determined 16
gene modules correlations with tumor stage, grade, immune
score, and estimate score (Figure 2(d)). We assigned an arbi-
trary color for each coexpression module (red, pink, green,
turquoise, purple, cyan, black, blue, green/yellow, tan, yel-
low, midnight blue, magenta, brown, salmon, and gray).
These modules contained 374, 196, 394, 753, 159, 105, 314,
661, 158, 141, 407, 46, 173, 412, 108, and 599 genes, respec-

tively. The non-co-expressed group was designated as gray.
We calculated the module membership and gene signifi-
cance of each module and chose the genes in green/yellow
and tan modules, which were significantly associated with
those four traits, for further analysis (Figures 2(e) and 2(f)).

3.3. Functional Enrichment Analysis of Highly Correlated
Module Genes. There were 158 genes in the green/yellow
module and 141 genes in the tan module. To further eluci-
date the functions of these genes, we performed GO and
KEGG analyses. For genes in the green/yellow module, GO
analysis showed that the top terms of biological processes
(BPs) included adaptive immune response, response to
interferon-gamma, and T-cell activation (Figure 3(a)). And
these genes were enriched in immune-related pathways,
including antigen processing and presentation and cell adhe-
sion molecules (Figure 3(b)). For genes in the tan module,
the top terms of BPs included granulocyte activation, neu-
trophil mediated immunity, and neutrophil degranulation
(Figure 3(c)). And these genes were involved in innate
immune responses, including lysosome, phagosome, and
NOD-like receptor signaling pathways (Figure 3(d)).

3.4. Construction and Validation of a Prognostic Risk Model
for KIRC. To further screen the prognostic genes from these
two immune-related modules, we performed univariate Cox
analysis of these 299 genes. Genes with P values of less than
0.001 were considered candidates to build the prognostic
model. We obtained 54 genes that were correlated with
KIRC outcomes. We then used TCGA discovery cohort con-
taining 349 patient data as the training dataset and applied
LASSO Cox regression analysis to identify stable markers
from these 54 prognostic genes. 12 genes (CAPZA1, EMX2,
FGL2, FUCA1, GRB2, HLA-E, IMPA2, NFE2L3, PLEKHO1,
RORC, SIGLEC1, and UBE2Z) were included in the prognos-
tic model (Figures 4(a) and 4(b)). Survival and ROC curve
analyses were used to investigate the predictive accuracy of
our risk model. In TCGA discovery cohort, we calculated
the risk score based on the prognostic model and divided
patients into two groups (high risk versus low risk); the opti-
mal cutoff value was -4.192, which was based on the 1-year
ROC curve. We then calculated the risk score of each
patient, the high-risk score indicated shorter OS
(Figure 4(c)). The areas under the ROC curves for 1-, 3-,
and 5-year OS were 0.720, 0.729, and 0.742, respectively
(Figure 4(d)). Next, we used TCGA test cohort and external
datasets from the ICGC database evaluate the predictive
value of our prognostic model. In TCGA test cohort,
patients with lower risk score had longer OS (Figure 4(e)),
and the areas under the ROC curves of this model in the test
cohorts for 1-, 3-, and 5-year OS were 0.866, 0.719, and
0.741, respectively (Figure 4(f)). In the ICGC validation
cohort, based on the optimal cutoff -3.276, risk score was
closely correlated with patient survival (Figure 4(g)), and
the areas under the ROC curves of this model in the ICGC
validation datasets for 1-,3-, and 5-year OS were 0.647,
0.637, and 0.640, respectively (Figure 4(h)). Taken together,
our prognostic model had good performance in predicting
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Figure 1: Continued.
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the outcome of patients with KIRC. Parameters for building
the LASSO Cox model are shown in Table 2.

3.5. Twelve Genes in the Prognostic Model Correlated with
Patient Outcomes. Next, we explored the correlations of
these 12 genes in our prognostic model with patient
outcomes. Based on the expression of each gene, we divided
patients with KIRC into high-expression
(expression > 67 percentile) and low-expression
(expression ≤ 33 percentile) groups and plotted Kaplan-
Meier curves. The expression levels of these 12 genes in
our model significantly and independently influenced
patient survival (log-rank test, P value < 0.05). Patients with
high expression levels of CAPZA1, GRB2, NF2EL3, PLE-
KHO1, SIGLEC1, and UBE2Z and low expression levels of
FGL2, EMX2, FUCA1, HLA-E, IMPA2, and RORC had poor
prognosis (Figures 5(a)–5(l)).

3.6. Twelve-Gene Expression Signature. To investigate the
dynamitic changes in the expression levels of these 12 genes
during tumorigenesis and tumor progression, we compared
their expression levels in tumor tissues and adjacent normal
tissues. The expression levels of all genes, except RORC,
showed significant differences among tumor and normal tis-
sues. CAPZA1, HLA-E, IMPA2, NFE2L3, PLEKHO1,
SIGLEC1, and UBE2Z were expressed at higher levels in
tumor tissues, whereas EMX2, FGL2, FUCA1, and GRB2
were expressed at lower levels in tumor tissues
(Figure 6(a)). During tumor progression, CAPZA1, GRB2,
NF2EL3, PLEKHO1, SIGLEC1, and UBE2Z were expressed
at higher levels in late-stage KIRC, whereas EMX2, FUCA1,
IMPA2, and RORC were expressed at higher levels in
early-stage KIRC (Figure 6(b)).

3.7. Genes in the Prognostic Model Correlated with Immune
Infiltration in KIRC. Because our prognostic model was
based on 12 genes that were closely correlated with immune
scores, immune infiltration profiling was used to explore the
influence of these genes on tumor-infiltrating immune cells

within the TME. The proportions of immune cell types,
including B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells, in tumor samples were cal-
culated by TIMER. The results showed that nine genes,
including CAPZA1, FGL2, FUCA1, GRB2, HLA-E, NFE2L3,
PLEKHO1, SIGLEC1, and UBE2Z, had significantly positive
correlations with immune cell infiltration (P < 0:05, partial
correlation > 0:3) (Figure 7).

3.8. Differences in Immune Cell Subtypes between the High-
and Low-Risk Groups. To explore the immune cell profiles
within the KIRC microenvironment, the proportions of 28
immune cell types in KIRC were analyzed by ssGSEA
(Figure 8(a)). Patients with high immune scores, which were
correlated with high infiltration of immune cells in tumors,
had poor outcomes. We further analyzed the regulatory
mechanism of KIRC. Pearson’s correlation analysis showed
that the abundances of antitumor immune cells and protu-
mor immune cells were positively associated within the
TME (R = 0:8004, P < 0:001; Figure 8(b)). The proportions
of antitumor immune cells and protumor immune cells were
both significantly higher in the high-risk group (Figure 8(c)).
Further, we analyzed the expression level of these hub genes
in different immune cell subtypes. EMX2, NFE2L3, RORC
failed to map to the probe on GeneChips. The expression
levels of CAPZA1, FGL2, FUCA1, GRB2, IMPA2, PLEKHO1,
and SIGLEC1 were relatively higher in monocytes. The
expression of HLA-E and UBE2Z was relatively abundant
in NK cells and lymphocytes (Figure 8(d)). Taken together,
the hub genes in our model were closely associated with
the infiltration level and the composition of immune cells
in the tumor microenvironment of KIRC.

4. Discussion

ccRCC is the most common subtype of kidney cancer. With
improvements in our understanding of the molecular mech-
anisms (e.g., the VHL/hypoxia-inducible factor (HIF)/vascu-
lar endothelial growth factor pathway) of the tumorigenesis
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Figure 1: Immune scores and estimate scores were correlated with KIRC grade, stage, and outcome. (a–f) Immune scores and estimate
scores were positively associated with grade and stage in KIRC, and stromal scores were comparable during KIRC progression (t-test; ns:
not significant; ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001). (g–i) Immune scores and estimate scores were significantly correlated with
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Figure 2: WGCNA analysis of KIRC data. (a) Analysis of scale-free index for various soft-threshold powers and mean connectivity for
various soft thresholding powers. (b) Dendrogram of top 5000 high deviation genes clustered based on the TOM. Each branch represents
a single gene; each color indicates a single module that contains weighted coexpressed genes. (c) Clustering of 16 module eigengenes.
The merging threshold was shown as the red line. (d) Heatmap of the correlations between gene modules and stage, grade, immune
score, and estimate score. ME green/yellow and ME tan modules were chosen for further analysis. (e, f) Gene correlation scatter plots for
the green/yellow and tan module.
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and progression of ccRCC, several targeted therapies have
been applied in treatment [19]. Recently, several studies have
revealed that the TME plays important roles in tumor malig-
nancy, providing good opportunities to use immunotherapy
in the management of patients with KIRC [8]. In our study,
based on RNA-seq data from tumor tissues, we found that
immune scores increased during tumor progression and

were significantly associated with patient outcomes.
Immune scores were significantly higher in tumor tissues
from patients with advanced-stage cancer. However, differ-
ences in stromal scores were not significant at different
stages of KIRC. Our results highlighted the importance
of the immune microenvironment during the progression
of KIRC. Consistent with a previous study [20], we found
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that patients with high immune scores typically had poor
outcomes.

The composition and function of tumor-infiltrating
immune cells affect tumor development through synergy or
opposing effects. The immune system can be activated to kill
tumor cells by exerting antitumor effects, whereas tumor-
infiltrating immune cells can be inhibited to promote tumor
progression and metastasis. Thus, the immune score may be
a superior indicator to predict patient outcomes. In this
study, we used WGCNA to identify gene modules that were
closely associated with tumor stage, grade, immune score,
and estimate score. GO and KEGG analyses of immune-
related module genes revealed that these genes were related
to adaptive and innate immune responses. Univariate Cox
and LASSO Cox analysis were performed to identify the
hub genes in the immune-related module and to construct

a prognostic model. Finally, 12 genes were identified, and
each of these genes could independently influence clinical
outcomes. We used TCGA discovery dataset to construct a
risk model. Then, we used TCGA test cohort and ICGC
RECA dataset to evaluate the accuracy of our model. Our
model showed good performance in the discovery cohort
and internal and external test dataset. In summary, our
model may have a potential value for predicting outcomes
in patients with KIRC.

There are several grouped variable selection methods
including Elastic net, LASSO, and Net. Lasso is a regulariza-
tion technique for performing linear regression and includes
a penalty term that constrains the size of the estimated coef-
ficients. Therefore, it resembles ridge regression. Lasso is a
shrinkage estimator: it generates coefficient estimates that
are biased to be small. In our research, Lasso is the most
prevalent technique to attain the main features among a
branch of features in small models.

In our study, patients with KIRC with high expression
levels of CAPZA1, GRB2, NFE2L3, PLEKHO1, SIGLEC1,
and UBE2Z had poor outcomes, whereas those with high
expression levels of EMX2, FGL2, FUCA1, HLA-E, IMPA2,
and RORC had better outcomes. The expression levels of
nine genes, including CAPZA1, EMX2, FUCA1, GRB2,
IMPA2, NFE2L3, PLEKHO1, SIGLEC1, and UBE2Z, were
significantly different during tumorigenesis, and their
expression showed gradually changes with the progression
of KIRC. CAPZA1 is involved in the EMT and autophagy
in tumors [21, 22], and we found monocytes have relatively
high expression level of CAPZA1. In hepatocellular carci-
noma, CAPZA1 is also associated with the HIF-1α pathway,
which is important during RCC tumorigenesis. Downregula-
tion of the EMX2 gene participates in tumor metastasis and
reduced overall survival [23]. In our study, patients with low
expression of EMX2 had poor outcomes. FUCA1, encoding
alpha-l-fucosidase 1, is a target of p53, and loss-of-function
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Figure 4: Construction and evaluation of the 12-gene risk model in KIRC. (a) The LASSO coefficient profiles of the 54 immune-related
prognostic genes. (b) Partial likelihood deviance for LASSO coefficient profiles and optimal lambda selection in the LASSO model. (c, e)
Kaplan-Meier analysis of TCGA KIRC discovery cohort and test cohort. (d, f) Time-dependent ROC curves displayed the predictive
value of our prognostic model in TCGA discovery and test cohorts. (g) Kaplan-Meier analysis of ICGC external validation cohort. (h)
Time-dependent ROC curves displayed the predictive value of our model in ICGC external validation dataset.

Table 2: Twelve-gene prognostic model by LASSO regression in
the KIRC discovery cohort.

Gene Coef HR HR.CI Cox P value

CAPZA1 0.206861 2.63 1.88~3.67 1:69E − 08
EMX2 -0.00295 0.80 0.75~0.86 1:49E − 10
FGL2 -0.10874 0.79 0.69~0.90 0:000457
FUCA1 -0.51746 0.56 0.43~0.75 5:41E − 05
GRB2 0.196888 1.37 1.15~1.63 0.000475

HLA-E -0.20349 0.66 0.52~0.84 0.000681

IMPA2 -0.14589 0.60 0.52~0.70 2:15E − 11
NFE2L3 0.038322 1.54 1.3~1.82 3:38E − 07
PLEKHO1 0.215124 1.61 1.35~1.93 1:46E − 07
RORC -0.06741 0.71 0.63~0.79 1:37E − 09
SIGLEC1 0.093055 1.24 1.09~1.40 0.000896

UBE2Z 0.008479 2.78 1.65~4.67 0.000124
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mutations in FUCA1 are found in several cancers. GRB2 is
associated with intracellular signal transduction. GRB2
signaling is essential for the cell cycle, cell motility, angio-
genesis, and vasculogenesis [24]. High expression of GRB2
in patients with KIRC may be related to tumor metastasis
and could indicate a poor prognosis. Studies have found that
downregulation of IMPA2 is associated with poor outcomes
in ccRCC and that miR-25-mediated IMPA2 regulation
could be a potential therapeutic target [25]. In this study,
we also showed that IMPA2 was important in kidney
tumors. Moreover, NFE2L3 may influence ccRCC progres-

sion by regulating immune activity, including antigen pre-
sentation and the NOD-like receptor signaling pathway
[26]. PLEKHO1 affects tumor cell proliferation and apopto-
sis. Downregulation of PLEKHO1 impairs RCC progression
[27]. In our study, PLEKHO1 was found to be highly
expressed in monocyte and DC. PLEKHO1might potentially
affect the tumor immune microenvironment and could
therefore be a novel target of immunotherapy. Several stud-
ies have suggested that SIGLEC1, which encodes CD169, can
act as a tumor-associated macrophage biomarker [28, 29].
High density of macrophages in tumors is usually a negative
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prognostic marker. Our studies also showed that SIGLEC1
was correlated with the levels of infiltration of macro-
phages in ccRCC and the expression level of SIGLEC1

was higher in monocyte and DC. Patients with high
SIGLEC1 expression had a poor prognosis. UBE2Z encodes
ubiquitin conjugating enzyme E2 Z, a member of the
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ubiquitin-conjugating enzyme family. In hepatocellular
carcinoma, UBE2Z is overexpressed in tumor tissues and
is significantly associated with TNM stage and histological
grade [30]. In our study, a similar expression pattern was

also observed, suggesting that UBE2Z may be a good prog-
nostic indicator in KIRC.

FGL2, encoding fibrinogen-like protein 2, and HLA-E,
encoding MHC class I antigen E, were significantly
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Figure 7: Correlations between model genes and infiltration levels of immune cells. Nine genes, including CAPZA1, FGL2, FUCA1, GRB2,
HLA-E, NFE2L3, PLEKHO1, SIGLEC1, and UBE2Z, were closely associated with infiltration of immune cells in tumor.
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Figure 8: Immune cell infiltration heterogeneity in KIRC. (a) The proportions of 28 immune cells in KIRC were analyzed by ssGSEA. (b)
Correlation between infiltration of antitumor immune cells and protumor immune cells. R coefficient of Pearson’s correlation. The shaded
area represents the 95% confident interval (R = 0:8004, P < 0:001). (c) Boxplot showing the relationship of antitumor immune cells and
protumor immune cells in high- and low-risk groups (t-test; ns: not significant; ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001). (d)
Heatmap of hub gene expression level in different immune cell subsets.
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differentially expressed in tumor tissues; however, their
expression levels were comparable at different stages of
ccRCC. We found mononuclear phagocytic cells had higher
expression level of FGL2 among different immune cell sub-
types. FGL2 can modulate immune reactions and may be a
potential immunotherapeutic target in glioma [31]. FGL2 is
significantly correlated with infiltrating levels of immune
cells in tumors and may be a potential therapeutic target in
KIRC. Studies in colorectal cancer have shown that HLA-E
is correlated with tumor metastasis and has a predictive
value for OS [32]. HLA-E is a ligand for the inhibitory
CD94/NKG2A receptor and is reported to affect the func-
tions of tumor-infiltrating CD8+ T cells [33]. NK cells and
T lymphocytes expressed relatively high level of HLA-E.
Our findings revealed that HLA-E was significantly corre-
lated with infiltrating levels of CD8+ T cells in tumors. We
also found that expression of RORC was comparable in
tumor and normal tissues, although its expression level was
significantly lower in advanced-stage tumor tissues. RORC
is a regulator of the proinflammatory Th17/interleukin-17
axis in adult T-cell leukemia [34], and low expression of
RORC was a negative prognostic indicator of KIRC in our
study. Thus, further studies are needed to assess the poten-
tial functions and mechanisms of RORC in immunotherapy.

We used TIMER to analyze the correlations between the
hub genes and the infiltration levels of immune cells. Nine
genes were identified to be associated with infiltration of
immune cells. And in the GEO dataset, we investigated the
expression levels of hub genes in different immune cell sub-
types. The results indicated that CAPZA1, FGL2, FUCA1,
GRB2, and SIGLEC1 were relatively high expressed in mono-
cyte, and these genes had significantly positive associations
with the infiltration level of macrophage in KIRC. FGL2,
FUCA1, PLEKHO1, and SIGLEC1 were highly expressed in
DC and might influence its number in tumor. The levels of
HLA-E and UBE2Z were higher in lymphocytes, and their
expression levels were correlated with the infiltration levels
of B cell and T cell in tumor tissue. The expression levels
of these hub genes can indicate the abundance of immune
cells in tumor tissue, and their function in KIRC immunity
needs to be further investigated.

To further explore the correlations between immune cell
infiltration and risk score, we used ssGSEA to calculate the
proportions of immune cell subtypes in tumors. Our results
showed that the abundances of various immune cell sub-
types were different between the high- and low-risk score
groups. Cells showing antitumor activity, such as increased
levels of activated CD8+ T cells, Th1 cells, and activated den-
dritic cells, were significantly more abundant in the high-risk
group. Moreover, cells such as MDSCs and regulatory T
cells, which are suppressed by protumor responses, were also
more abundant in the high-risk group. Pearson’s correlation
analysis showed that antitumor immunity and protumor
suppression were significantly positively associated within
the TME. Additionally, patients with KIRC with higher
immune scores typically have poor clinical outcomes and
higher immune scores correlated with higher infiltration of
immune cells in tumors. The antitumor immunity and pro-
tumor suppression scores in high-risk patients were both

higher than those in the low-risk group. This phenomenon
suggested that there may be a feedback mechanism for
immune suppression in patients with KIRC.

In our study, we constructed a prognostic model of
KIRC based on TCGA cohort. Next, we used the internal
validation dataset from TCGA and the external validation
dataset from ICGC to evaluate our model. Furthermore, we
used various algorithms and GEO datasets to explore the
relationship between hub genes and tumor microenviron-
ment (Figure 9). However, our study had some limitations.
First, our prognostic model needs to be validated using pro-
spective clinical studies. Second, the underlying mechanism
should be further confirmed by experiments.

5. Conclusions

This study identified 12 hub genes that were closely associ-
ated with the tumor immune microenvironment in patients
with KIRC and constructed a prognostic model to predict
patient outcomes. Nine genes, including CAPZA1, FGL2,
FUCA1, GRB2, HLA-E, NFE2L3, PLEKHO1, SIGLEC1, and
UBE2Z, were significantly associated with infiltration levels
of immune cells, indicating they may be therapeutic targets
of KIRC.

Data Availability

Publicly available datasets were analyzed in this study. This
data can be found in the following: https://xenabrowser.net/
datapages/?cohort=GDC%20TCGA%20Kidney%20Clear%
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Figure 9: Workflow of current work.
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