
Fuzzy Neural Network for Studying Coupling between Drilling
Parameters
Li Yang,* Tianyi Liu, Weijian Ren, and Wenfeng Sun

Cite This: ACS Omega 2021, 6, 24351−24361 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The rate of penetration (ROP) is an index used to
measure drilling efficiency. However, it is restricted by many
factors, and there is a coupling relationship among them. In this
study, the random forest algorithm is used to sort influencing
factors in order of feature importance. In this way, less influential
factors can be removed. A fuzzy neural network (FNN) is applied
to the field of drilling engineering for the first time, aiming at the
coupling problem to predict the ROP. Fuzzification is an important
part of training and realizing FNN, but research on this topic is
currently lacking. In this study, K-means are used to divide the data
with high similarity into a fuzzy set, which is used as the
initialization parameter for the second layer of the FNN. The data
of Shunbei No. 1 and 5 fault zones in Xinjiang are collected and
trained. The results show that the mean value of the coefficient of determination R2 is 0.9668 under 10 experiments, which is higher
than those obtained from a back propagation neural network and multilayer perceptron particle swarm optimization methods.
Therefore, the effectiveness and feasibility of the model are verified. The proposed model can improve drilling efficiency and save
drilling costs.

1. INTRODUCTION

The development of oil and gas is inseparable from the
advancements in drilling technology. With the increasing
demand for energy exploitation, the development of drilling
also needs further technical improvement. However, drilling
engineering is becoming increasingly complex. The main
challenge is to achieve a high drilling speed and low cost.1

Therefore, improving drilling technology is an important means
and measure to address the aforementioned problem.
The rate of penetration (ROP), which is the drilling distance

of the bit in unit time, is an index used to evaluate drilling
efficiency. Drilling efficiency can be improved using a proper
combination of drilling parameters.2 However, because of
uncertainty factors in the drilling process, establishing a general
model in drilling engineering is problematic. A complicated
coupling relationship exists in each link.3 Consequently, the
predicted results of the model are different from the actual
drilling speed. At present, research methods have been
developed from single-parameter research to multiobjective
and multiparameter optimization. The global research on
drilling speed prediction has changed from mathematical
models to artificial intelligence algorithms.4 As a representative
of traditional machine learning, support vector regression
(SVR)5,6 has a better fitting effect in experimental than other
machine-learning methods [such as K-nearest neighbors
(KNN), linear regression (LR), polynomial regression, and

decision tree], considering the drilling characteristics of highly
nonlinear, complexity, and multivariate in the drilling process.
However, SVR is difficult to implement when processing large
data samples as a quadratic programming problem is solved.
This process takes a significant among of computation time.
Further, gradient boosting decision tree,7 random forest,8 and
other ensemble learning studies are useful for drilling rate
prediction. With the progress in research, the three-layer back
propagation (BP) neural network is the current mainstream
machine-learning algorithm used for predicting the drilling
speed.9−12 A regression model of influencing factors and the
drilling speed was established. However, its degree of fitting
requires improvement and optimization.13,14 Shi et al.15

proposed the extreme learning machine (ELM) and upper-
layer solution aware (USA) methods to predict the drilling rate,
where the prediction accuracy was higher than that of a BP
neural network. Ashrafi et al.16 found the best ROP value in
terms of the shortening drilling time and reducing the drilling
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cost. Owing to the error of multiple regression, the genetic
algorithm (GA), particle swarm optimization (PSO), biogeog-
raphy-based optimizer, and imperialist competitive algorithm
(ICA) were used to develop and train eight hybrid neural
artificial neural networks, and they were compared. Particle
swarm optimization multilayer perception and PSO-radial basis
function proved that the neural network has higher efficiency
and reliability in drilling rate prediction. Sabah et al.17 evaluated
the applicability of such a model for actual engineering
applications. A comparative experiment was conducted to
identify which machine-learning method provided the most
accurate and reliable ROP prediction; the multilayer perceptron
particle swarm optimization (MLP-PSO) model showed
excellent performance in all comparative experiments. Liao et
al.18,19 studied and analyzed the influence of rock strength on the
mechanical drilling speed. Therein, the parameters of thrust,
speed, flushing medium, and compressive strength were
analyzed using the artificial colony algorithm. The rock strength
was classified into three grades to improve the performance of
the mechanical drilling speed and to determine the best
parameters of the three levels. There are many factors that
affect ROP, which leads to increased complexity of the model
and an increase in the calculation amount. Thus, dimensionality
reduction is necessary as part of data preprocessing.
Eskandarian8 used the fscaret package in an R environment to
calculate the importance and ranking of input parameters.
According to the results of feature ranking, weight on bit (WOB)
and mud weight (MW) had the greatest influence on the ROP.
The experiment proved that the root-mean-squared error could
be reduced by appropriately extracting important features, and
the prediction accuracy of the model had been improved to a
certain extent. Anand20 determined that the diameter of drill bit
was the largest influencing factor, followed by the feed rate and
the spindle speed, through gray relational grade analysis. Hassan
et al.21 improved the real-time drilling operation using the ratio
of permeability to mechanical specific energy to evaluate the
feasibility and limitations of several models in practical
applications.

At present, the focus of optimization algorithm research is on
drilling efficiency improvement, ignoring the influence of
complex working conditions on control decision-making and
stability control. Due to the lack of drilling knowledge in general
models, technology and practical engineering cannot be deeply
integrated. To satisfy the dialectical relationship of mutual
connection and mutual restriction among various parameters, a
fuzzy control model was proposed, and its core fuzzy rule table
expresses this objective law. Owing to the complementarity of
fuzzy control and neural networks, a fuzzy neural network
(FNN) was applied in various fields of research.22−25

In this study, an FNN is applied to the forecast of drilling
ROP, and complex problems are solved by human thinking.
Artificial intelligence is used to identify possible correlations
among the parameters. The basic regression model is
constructed by combining fuzzy control with a neural network.
On this basis, this study uses the random forest algorithm to
extract feature importance and remove the least-important
factors to balance themodel complexity and the fitting effect and
allow the model architecture to be simplified. Finally, The FNN
model is optimized, and the features of the same dimension are
divided into fuzzy sets by a clustering algorithm; in the process of
fuzzification, the interval range of fuzzy sets is standardized to
increase the interpretability of linguistic values.

II. FEATURE SELECTION

Feature selection has always been a major problem in feature
engineering. Its purpose is to find the optimal feature subset.
Feature selection removes irrelevant and redundant data and
eliminates less relevant factors, which reduce the calculation
time. This improves the learning accuracy and promotes better
understanding of the learning model or data.26−28 Some
unimportant factors do not only increase the complexity of
modeling but also reduce the accuracy of prediction. Therefore,
the feature importance of influencing factors should be analyzed
and unimportant factors should be removed. To better retain the
physical meaning of the parameters, random forest is introduced
to perform importance ranking.

Table 1. Partial Data Set Samples

diameter no. 1 2 3 4 5 6

drill diameter 311.2 310.2 250.8 165.1 444.5 149.2
drilling time 108.4 125.5 167.5 121.2 105.4 25.2
depreciation rate per meter 0.0006 0.0011 0.0011 0.0025 0.0006 0.0130
ROP 3.45 1.79 1.60 2.58 14.11 0.91
drilling parameter WOB 260 280 280 200 80 200

speed 57 60 65 88 60 60
displacement 50 50 48 55 60 40
riser pressure 20 20 20 15 18 16

properties of drilling fluid density 1.22 1.22 1.24 1.17 1.17 1.25
funnel viscosity 49 49 58 47 56 48
sediment concentration 0.2 0.2 0.2 0.2 0.2 0.2
API filter vector 4 3.6 3.4 5 6 3.4

bit hydraulic parameter bit pressure drop 2.2 2.22 2.06 5.14 1.87 1.44
annular pressure loss 17.8 1.78 17.94 9.86 16.13 14.56
jet impact force 3456.7 3485.0 3237.9 5692.68 3748.42 2266.7
jet speed 56.67 56.67 54.4 88.46 53.4 45.33
bit water power 110.05 110.95 98.96 282.92 112.44 57.73
bit specific water power 1.45 1.46 1.3 3.72 1.48 1.26
minimum return speed of the drill pipe 0.82 0.82 0.79 0.91 0.99 1.32
minimum return speed on the drill string 1.64 1.64 1.58 1.81 1.97 1.91
pump power utilization 11 11.09 10.31 34.29 10.41 9.02
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II.I. Random Forest Algorithm. Random forest is an
integrated learning algorithm.29,30 It has good tolerance for
outliers and strong robustness. Its principle is to extract parts of
the samples repeatedly from the sample set to generate multiple
decision trees. The feature importance is evaluated using data
out of bag (OOB). The verification error of the jth decision tree
is calculated as Ej using data outside the bag. The first
characteristic of the data outside the bag under evaluation is
randomly disrupted, and the verification error Eij′ of the jth
decision tree is calculated again. Subsequently, the sum of the
squares of the differences of these two verification errors is
computed using the following equation

f E E( )i
j

n

ij j
2∑= ′ −

(1)

where n is the number of decision trees. The value of n can be
used as a reference value of the importance of a single feature;
that is, the larger the value, the greater the impact of the
disturbing feature, and the more important the feature.
Table 1 shows a partial sample set of 21 dimensional data,

which includes fixed parameters (drill diameter, drilling time,
depreciation rate per meter), drilling parameters (WOB, speed,
displacement, riser pressure), drilling fluid performance
(density, funnel viscosity, sediment concentration, API filter
vector), and bit hydraulic parameters (bit pressure drop, annular
pressure loss, jet impact force, etc.).
The drilling data of the Shunbei oilfield provide compre-

hensive and referential influencing factors. According to the
results shown in Figure 1, there are 20 groups of characteristics
in the data. The most important factor is WOB, the degree of
importance of which reaches 0.487. Other relatively large factors
are the rotational speed, displacement, riser pressure, bit
diameter, and pure drilling time. These six characteristics are
used as an input. The importance of the six parameters is shown
in Table 2.

III. METHODOLOGY
III.I. General Description of Fuzzy Control. There are

essential differences between the human brain and a computer.
The human brain can handle and judge fuzzy phenomena.31,32

Fuzziness generally exists in human thinking and language
communication, which is a manifestation of uncertainty. When
human beings describe natural phenomena, they have a fuzzy
concept in their brain. After learning and understanding an
experience, they make a fuzzy division of the general objective
law and make a better decision; this process is defined as
“fuzzification”. Usually, an expert system is based on expert
experience. Fuzzy control is based on human thinking, taking an
appropriate strategy to control a complex process.

III.II. Basic Principle of the Fuzzy Neural Network. Each
layer of the FNN corresponds to the steps of the Mamdani-type
fuzzy control system,33 as shown in Figure 2.
The first layer is the input layer, and each component of the

input vector corresponds to each node of the first layer, which
transmits the input value x x x x, , , n1 2= [ ··· ] to the next layer.
The second layer is the fuzzification layer, where each input

corresponds to its own membership function. Each membership
function represents the value of language variables. The
membership function is represented by a Gaussian function

ei
j x c( ) /i ij ij

2 2
μ = σ− −

(2)

Figure 1. Feature importance ranking.

Table 2. Feature Importance

no. features importance degree

1 WOB 0.486897
2 speed 0.122810
3 displacement 0.088386
4 riser pressure 0.077281
5 drill diameter 0.042577
6 drilling time 0.039879

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c02107
ACS Omega 2021, 6, 24351−24361

24353

https://pubs.acs.org/doi/10.1021/acsomega.1c02107?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02107?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02107?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c02107?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c02107?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Each node in the third layer represents a fuzzy rule, which is
used to match the antecedents of the fuzzy rule and to calculate
the applicability of the rule

Lmin , , ,i
i i

n
i

1 2
n1 2α μ μ μ= { } (3)

The fourth layer is the clarity layer, which converts the fuzzy
value into the clarity value and outputs it

y
i

m

i i
1

∑ ωα=
= (4)

III.III. K-Means Algorithm. The FNN is trained using three
parameters: the center value, the width of the membership
function, and the weight of the last layer. To obtain better
results, the input is processed, and the traditional method of
random initialization or equidistant division of the membership
function is improved. The data with high similarity are divided
into classes by clustering, which better represents the initial
language value variables so that the model can achieve a better
training effect. This partition is also called hard clustering.34 The
data set is divided into k parts by K-means clustering, and K
clustering points are found as the central values of the
membership function. These central values are introduced
into the network as the parameters of the initialization
membership function.
Given the sample set D x x x, , ..., m1 2= { }, the k-means

algorithm minimizes the square error of clustering

E x
i

k

x C
i

1
2
2

i

∑ ∑ μ= || − ||
= ∈ (5)

xi C x C
1

i i
μ = ∑

| | ∈ is the mean vector of clusterCi. The smaller the

E value, the higher the similarity of samples in the cluster.
The data of each dimension are clustered, and each dimension

adopts five membership functions. The center values of the first
and last membership functions are the upper and lower bounds
of the value, respectively. The K-means clustering results are
shown in Figure 3.
The initial value of the membership function width is as

follows

c c i k
1
2

( 1 ) (0 1)i i iσ = + − < < −
(6)

The membership function of the neural network training is
initialized after clustering, and the result is shown in Figure 4,

where all of the information is retained. During the training, the
neural network parameters should only be adjusted slightly to
obtain satisfactory results. Figure 5 shows the effect of randomly
initializing the center value and the width of the Gaussian
function. It can be observed that a lot of information will be lost
after random initialization, which may seriously affect the model
accuracy.

III.IV. Model Training. The loss function is used to measure
the degree of the prediction error. Because the number of
training sets is limited, we choose the square loss function, which
is convenient to calculate

E Y F X
1
2

( ( ))2= −
(7)

where Y and F(X) represent the desired output and the actual
output, respectively.
Because the square error loss enlarges the distance between

the predicted value and the real value in the calculation, the

Figure 2. Fuzzy network model.

Figure 3. K-means clustering results.

Figure 4. Initial membership.
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output with a larger error is given greater punishment, which is
conducive to the calculation of the error gradient. The
parameters are updated by error BP

k k
E

i r( 1) ( ) ( 1, 2, ..., )i i
i

ω ω β
ω

+ = − ∂
∂

=
(8)

C k C k
E
C

i m j n

( 1) ( )

( 1, 2, ..., ; 1, 2, ..., )

ij ij
ij

β+ = − ∂
∂

= = (9)

k k
E

i m j n

( 1) ( )

( 1, 2, ..., ; 1, 2, ..., )

ij ij
ij

σ σ β
σ

+ = − ∂
∂

= = (10)

where ω represents the last layer weight of the network, and its
physical significance is thatωi is equivalent to the central value of
the output Y membership function, Cij and σij represent the
center and the width of the membership function, and β
represents the learning rate.
III.V. Training Process Improvement. In the process of

training the membership function, the center value and the
width of the membership function will constantly increase or
decrease. This is because the direction of the gradient descent
does not change during training. Therefore, the network should
be improved by adding a limited interval in each Gaussian
membership function, and the central values of the five
membership functions are [−11, −9], [−7, −3], [−2, 2], [3,
7], and [9, 11], respectively.

C C L C H

C C

, if( )

, otherwise

new new new

new old

= < <

=

l
m
ooo
n
ooo

|
}
ooo
~
ooo (11)

where L and H are the upper and lower limits of the
corresponding limited interval.
The width of the membership function is limited to [1, 4].

if L C H, ( )

, otherwise

new new new

new old

σ σ

σ σ

= < <

=

l
m
ooo
n
ooo

|
}
ooo
~
ooo (12)

The normalized membership function will retain the informa-
tion of each language value to the maximum extent and will not
cause information loss owing to improper training. When the
training exceeds this limited interval, the last value will be
retained to ensure that the model can clearly express the
meaning of each fuzzy language (FL) value.

IV. CASE ANALYSIS
When the Shunbei oilfield was discovered, it became an
important area of resource strategy alternation in the west of

Sinopec. Affected by the fault movement, the bottom hole
temperature of the northwest oilfield is high, and the
controllable parameters are constantly changing in the process
of drilling.35 To find the optimal combination of parameters,
according to the previous random forest feature extraction
importance results, six relatively important performance indexes
are selected: WOB, speed, displacement, riser pressure, drilling
time, and bit diameter as the inputs, and ROP as the output. The
data are fitted by training the parameters of the membership
function and the weight of the last layer. The number of
membership degrees is set to follow the rationality; too much or
too little will have a certain impact on the model. If the number
of the fuzzy language value is less, the sensitivity to the data will
be reduced. However, large size data will lead to high complexity
of the model. Specifically, when the input quantity is large, the
number of fuzzy rules will increase exponentially. The number of
fuzzy language values is five to balance the influence of the two

Figure 5. Random initialization membership.

Table 3. Partial Sample Set

no. WOB (kn) speed (rpm) displacement (L/s) pressure (MPa) time (h) diameter (mm) ROP (m/h)

1 80 60 30 18 105.67 311.2 14.08
2 280 65 37.2 11.5 113.66 310.2 1.92
3 100 70 35 15 107 250.88 5.04
4 80 50 30 21 102.5 215.9 6.38
5 80 40 40 20 195 250.88 6.54
6 120 70 33 19 45 250.88 2.97
7 40 50 55 20 45 311.2 21.07
8 60 42 30 18 217 250.88 5.79

Figure 6. Fuzzification process.
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aspects in which each input is divided into five parts. Five
linguistic variables are represented by five Gaussian membership
functions, which are represented by “lowest”, “low”, “medium”,
“high”, and “highest”. Therefore, the basic model of the FNN is
constructed.
IV.I. Data Preprocessing. The data of Shunbei No. 1 and 5

fault zones in Shaya County, Xinjiang, are used as training
samples. A total of 1100 sets of data from 45 strata including
Triassic Halahatang formation, Permian aqia group, Carbon-
iferous Kalashayi formation, and Carboniferous Bachu for-
mation are used as samples. Six parameters that have a great
influence on ROP are selected as a training sample set to verify
the established parameter optimization model using the FNN,
thus, determining the feasibility of the method. Table 3 shows
some sample data.
The acquired samples need to be processed to convert the

actual continuous field into a finite integer discrete field and to
adjust the variables so as to match the adjacent modules well.
Figure 6 shows the process of mapping the object theory domain
to the fuzzy theory domain.

The physical and fuzzy universes are set to X e e,min max= [ ]
and Y 10, 10= [− ], respectively. Hence, the general formula of
continuous universe is expressed as follows

y
e e

x
e e20

2max min
0

max min=
−

−
+i

k
jjj

y
{
zzz

(13)

where emax and emin, respectively, correspond to the maximum
and minimum values of each feature subset. The quantitative
factors of mapping the physical universe to the fuzzy universe are
as follows

y
e e

20

max min
=

− (14)

IV.II. Cross Validation. To ensure that the model does not
generate random errors owing to the random allocation of
training and test sets from the original data, we performed 10-
fold cross validation. The data set was evenly divided into 10
parts, 9 of which were considered as the training set and the
remaining 1 as the test set for an experiment. Thereafter, one
copy from the training set was taken in turn as the new test set
and the original test set was put into the training set. This was
performed in turn in 10 sets. The model with the smallest
absolute mean error was considered as the final model, whereas
the average of the absolute mean error of the results of 10
experiments was used to evaluate the model.
The model was built using Python language in the Anaconda

development environment. In the experiment, the data were

Table 4. R2 of 10 Experiments of the FNN Model under the Action of Different Optimizers

no. 1 2 3 4 5 6 7 8 9 10

R2 Adam optimizer 0.9706 0.9718 0.9411 0.9701 0.9705 0.9618 0.9714 0.9705 0.9684 0.9715
SGDM optimizer 0.9639 0.9724 0.9408 0.9667 0.9711 0.9701 0.9712 0.9679 0.9614 0.9698

Table 5. Average R2 of FNN in 10 Experiments at Different
Learning Rates under the Action of Different Optimizers

learning rate 0.1 0.2 0.4 0.6

R2 Adam 0.9602 0.9668 0.9598 0.9644
SGDM 0.9605 0.9655 0.9523 0.9502

Figure 7. Changes in the membership function of input (a−f) language value variables.
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divided by the model_selection module in the sklearn library.
Then, 10 experiments were conducted to evaluate the
generalization ability of the FNN on the data set independence
of the training data through cross validation. The mini batch
gradient method was used for the training model. The initial
learning rate was set to 0.2. Under the action of different
optimizers, the network parameters affecting model training and
model output were updated and calculated to approximate or
attain the optimal value. The determination coefficient R2 was

used as the evaluation standard of the model. Table 4 shows the
R2 values of 10 experiments. Table 5 shows the average R2 of 10
experiments of FNN at different learning rates.
The experimental results demonstrate that most of the

accuracy of the Adam optimizer is slightly higher than that of the
SGDM optimizer. Therefore, the updated model of the Adam
optimizer is selected in this experiment.

IV.III. Results andDiscussion.Themembership changes of
the input language value variables are shown in Figure 7. The
dotted line represents the membership function after iterations,
and the solid line is the initial membership function, which can
clearly express the changes in each membership function. After
training, the membership function width of ROP, displacement,
riser pressure, and drilling time becomes narrower, and the
adjacent intersection area is smaller, indicating that the
sensitivity is higher. The membership function of the diameter
also becomes narrower, but the distribution is relatively uniform.
The membership function of WOB is relatively wide, and there
is no clear change in the width after the update, indicating that it
has a strong adaptability to parameter changes and good
robustness. However, the central value of membership changes
greatly, and the semantic value changes noticeably.

Table 6. Several Fuzzy Rules Obtained by FNN

input variable

diameter WOB rotational speed displacement

no. input FL membership input FL membership input FL membership input FL membership

1 215.9 high 0.9092 60 low 0.7234 60 low 0.7214 25 lowest 0.7168
2 215.9 high 0.9092 60 low 0.7234 60 low 0.7214 25 lowest 0.7168
3 311.2 highest 0.6844 80 medium 0.8635 40 lowest 0.9786 32 medium 0.9985
4 149.2 low 0.3432 35 lowest 0.9204 25 lowest 0.5385 14 lowest 0.5248
5 149.2 low 0.3433 40 lowest 0.6844 25 lowest 0.5385 12 lowest 0.4843

input variable output variable

drilling time riser pressure ROP

no. input FL membership input FL membership output FL membership

1 85 high 0.7970 20 high 0.9873 4.5022 lowest 0.8438
2 247 highest 0.8394 30 highest 0.2940 12.876 low 0.7168
3 153 medium 0.6874 20 high 0.9873 25.926 medium 0.9004
4 82.5 low 0.6413 20 high 0.9873 2.9886 lowest 0.5057
5 50 lowest 0.7864 20 high 0.9873 2.9060 lowest 0.5162

Figure 8. Train error of the FNN.

Figure 9. Predicted value and the actual output of FNN.
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The Shunbei 5−5 h well, with a drilling depth of 8520 m, is an
ultradeep well drilled in the Shunbei oilfield, which has set the
deepest drilling record in Asia.36 The fuzzy language (FL) value
of some stratum data in the region was selected to extract the
fuzzy rules from the model. Several extracted fuzzy rules are
listed in Table 6.
To verify whether the extracted fuzzy rule table is correct

considering the fitting effect of the model, the FNN training set
error and the test set fitting effect are shown in Figures 8 and 9.
Figure 8 shows the initial decline curve of the training result of

the FNN. The standard training error was set to 10−3. The
fluctuation is large in the early stage of decline because of the
membership function update. When the error is large, the range
of the change of the membership function increases. Therefore,
the language value variable corresponding to each element is
modified. When the error is small, the membership function is
determined. The fitting effect of the test set is shown in Figure 9,
where output 1 is the output result of the model, output 2 is the
actual output result of the test set, and error is the absolute value
of the difference between the actual output and the model

output. The absolute value of the average error is 0.5090. The
model has a good fitting effect for different wells in the same
block. Thus, the fuzzy rules extracted from Table 2 are
confirmed to be applicable.
To verify the superiority of the FNN, the simulation results of

the FNN were compared to those of traditional SVR,6 BPNN,9

and MLP-PSO17 models. The Gaussian kernel function is used
for SVR, penalty parameter C is set to 1.25, slack variable ε is set
to 0.05, and the stop condition set to the training error is less
than 10−3. The number of layers of the BP neural network is set
to three layers, the number of neurons in the input layer is six,
and the number of neurons in the output layer is one. The
sigmoid function is used as the activation function. MLP-PSO
overcomes the disadvantages that can occur with the gradient
descent in the training method, such as slow learning rates and
trapping at local minima, and uses PSO to update the weights
and offsets between neurons. In this experiment, the following
PSO parameters were used: population size of 80; individual
learning factor C1 and social learning factor C2 of 0.7; inertial
weight of 0.9; and standard training error of 10−3. In addition,

Figure 10. Predicted value and the actual output of SVR.

Figure 11. Predicted value and the actual output of BPNN.
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the search range of space is adjusted, and the training error is
used as the fitness function. The BPNN and MLP-PSO models
are used to train and test the sample data after normalization.
Figures 10−12 compare the predicted and actual values of three
methods, respectively.
Table 7 shows the average R2 values from 10 experiments of

BPNN fitting for 9 different parameter settings. The number of
neurons in the hidden layer is set to 10, 12, and 15, and then the
R2 values with learning rates of 0.1, 0.2, and 0.4 are calculated.

Figure 12. Predicted value and the actual output of MLP-PSO.

Table 7. Determination Coefficient Values of BP Neural
Network Fitting under Different Parameter Settings

R2 learning rate

number of neurons 0.1 0.2 0.4
10 0.7403 0.7386 0.7273
12 0.8128 0.8315 0.9197
15 0.6901 0.8128 0.7401

Figure 13. Relationship between predicted and actual values.
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Figure 13 shows the relationship between the actual value and
the predicted value from the four different models. The abscissa
represents the predicted value, the ordinate represents the actual
value, and the diagonal line represents the approximation degree
between the predicted and actual values. The closer the line is to
the data set, the better the fitting effect, corresponding to higher
prediction accuracy. The average R2 of 10 experiments using the
four methods is calculated. Figure 14 compares the prediction
error of the four methods. In terms of the fitting effect, FNN is
better than other methods, which proves the superiority of the
model.

V. CONCLUSIONS
In this paper, the coupling relationship between the parameters
in the process of drilling is considered, and an FNN model is
established. Six parameters, such as WOB and rotational speed,
are optimized using data from Shunbei No. 1 and 5 fault zones in
Shaya County, Xinjiang. By matching the credibility of the total
premise of each rule, the total output of each rule is obtained by
performing small operations. Based on the obtained exper-
imental results, the contributions of this study are as follows:

1. The random forest algorithm was used to calculate the
importance of features. As a result, six features with
greater importance were obtained, which reduced the
complexity of the model. In the process of the fuzzy layer
of FNN, K-means was used to initialize the central value of
the membership degree, and the FNN model was
optimized.

2. Using big data processing to express data relevance in the
form of experience could effectively solve the changes in
the output values of various parameters in different
ranges. Therefore, the proposed algorithm is more
reflective of human thinking than traditional algorithms.

3. According to the training error of the training set and the
fitting effect of the test set, the performance of the
improved fuzzy neural network model is better than that
of the traditional BP neural network, MLP-PSO, and SVR
model.

4. The simulation results show that the proposed method
has a good prediction effect on ROP in the construction
process of the area, and the model can provide technical

reference for drilling automation in the Shunbei oil and
gas field.

In this study, we considered that the norm restricted interval
only depends on a fuzzy interval of the clustering results. So the
range of the interval needs to be further optimized. Although the
fuzzy neural network has strong coupling between the fitting
effect and the expression input, more input will cause a
significantly large fuzzy rule table. Thus, scholars should focus
on reducing the computational complexity.
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