
Automatic Diagnosis of Pathological Myopia from
Heterogeneous Biomedical Data
Zhuo Zhang1,2*, Yanwu Xu1, Jiang Liu1, Damon Wing Kee Wong1, Chee Keong Kwoh2, Seang-Mei Saw3,

Tien Yin Wong4

1 Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore, 2 School of Computer Engineering, Nanyang Technological

University, Singapore, Singapore, 3 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore, 4 Department of Ophthalmology,

Singapore Eye Research Institute, Singapore, Singapore

Abstract

Pathological myopia is one of the leading causes of blindness worldwide. The condition is particularly prevalent in Asia.
Unlike myopia, pathological myopia is accompanied by degenerative changes in the retina, which if left untreated can lead
to irrecoverable vision loss. The accurate diagnosis of pathological myopia will enable timely intervention and facilitate
better disease management to slow down the progression of the disease. Current methods of assessment typically consider
only one type of data, such as that from retinal imaging. However, different kinds of data, including that of genetic,
demographic and clinical information, may contain different and independent information, which can provide different
perspectives on the visually observable, genetic or environmental mechanisms for the disease. The combination of these
potentially complementary pieces of information can enhance the understanding of the disease, providing a holistic
appreciation of the multiple risks factors as well as improving the detection outcomes. In this study, we propose a
computer-aided diagnosis framework for Pathological Myopia diagnosis through Biomedical and Image Informatics(PM-
BMII). Through the use of multiple kernel learning (MKL) methods, PM-BMII intelligently fuses heterogeneous biomedical
information to improve the accuracy of disease diagnosis. Data from 2,258 subjects of a population-based study, in which
demographic and clinical information, retinal fundus imaging data and genotyping data were collected, are used to
evaluate the proposed framework. The experimental results show that PM-BMII achieves an AUC of 0.888, outperforming
the detection results from the use of demographic and clinical information 0.607 (increase 46:3%, pv0:005), genotyping
data 0.774 (increase 14:7%, pv0:005) or imaging data 0.852 (increase 4:2%, p~0:19) alone. The accuracy of the results
obtained demonstrates the feasibility of using heterogeneous data for improved disease diagnosis through our proposed
PM-BMII framework.
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Introduction

Pathological Myopia
Pathological myopia (PM) is one of the leading causes of visual

impairment worldwide[1–3] and is the most frequent cause of

visual impairment in Asian countries [4]. Known as high myopia

or degenerative myopia, pathological myopia is a type of severe

and progressive nearsightedness characterized by changes in the

fundus of the eye, due to posterior staphyloma and deficient

corrected acuity. It is commonly defined as having a spherical

equivalent (SE) of at least 26.0 diopters [5]. Pathological myopia

causes very rapid changes in vision, often requiring a change in

eyeglasses or contact lens prescriptions every 4 to 6 months. This

condition usually does not stabilize within normal limits, thus

affecting the curvature of the crystalline lens and increasing the

risk of retinal detachment. Myopia-related visual impairment has

been shown to affect productivity and quality of life. As patients

with pathological myopia are more prone to ocular abnormalities,

it is increasingly essential to manage the progression of degener-

ative myopia with early detection and treatment. Current clinical

practice in detecting pathological myopia relies heavily on the

manual screening and efforts of the clinicians, where a complete

eye exam usually takes up to 60 minutes. Such eye exams include

questions on the subject’s medical history and a physical eye

examination which includes tests for visual acuity, visual field and

refraction. For example, a slit lamp exam evaluates the anterior

sections and lens of the eye using microscope optics; tonometry

measures the pressure inside the eye; and ophthalmoscopy allows

observation of the back of the eye.

Pathological Myopia Diagnosis via Learning from
Heterogeneous Biomedical Data

Recently, there has been increasing interest in the development

of retinal imaging algorithms and computer-aided diagnosis (CAD)

systems to automatically detect pathological myopia from retinal

fundus images towards screening. For example, Liu et. al. [6]

presented the PAMELA system to detect pathological myopia in
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fundus images through the detection of parapapillary atrophy

(PPA) around the optic disc. Zhang et. al. [7] combined fundus

image data and demographic/clinical data to identify an optimal

set of essential features to improve the prediction of pathological

myopia. Moreover, with genotyping technologies out-pacing

Moore’s Law since 2008 [8], it has become much less costly to

obtain genomic information, in particular SNP (Single Nucleic

Polymorphism) data. SNP data provides partial view of a person’s

genetic profile, and the known disease associated SNPs can be

used as a form of genetic prior knowledge in gauging the likelihood

of disease occurrence.

Each of these heterogeneous data sources (fundus, demograph-

ic/clinical, genetic) is likely to contain a different perspective on

the disease risk of an individual, based on the pathological,

environmental and genetic mechanisms of the disease. These

perspectives may potentially be complementary, such that a

combination of the data from these independent sources are able

to provide a more comprehensive and holistic assessment of the

disease [9]. Furthermore, data from these sources are becoming

increasingly available. Retinal fundus imaging can be found in

numerous primary community healthcare institutions as well as

optical shops. With the dramatic reduction in genotyping costs in

recent years, it is foreseeable that SNP data can be acquired at low

cost and with as ease as demographic clinical data in the near

future. The objective of our study is to develop a computational

tool in facilitating automatic predictions for applications such as

health screening when clinicians are not present but abundant

data is available.

In this work, we propose a computer-aided framework for the

detection of pathological myopia called PM-BMII (Pathological

Myopia diagnosis through Biomedical Image Informatics). The

PM-BMII framework uses a data-driven approach to exploit the

growth of heterogeneous data sources to improve assessment

outcomes. One challenge in this approach is the disparity of labels

used to describe such data. For example, imaging data is

represented by an image, while demographic/clinical data is

described by quantitative measurements or categorical data and

SNPs are coded by text representing the nucleotide combinations.

To address this challenge and combine such data meaningfully, a

SVM-based multiple kernel learning algorithm is proposed in our

PM-BMII framework.

SVM Based Multiple Kernel Learning
Over the past twenty years, Support Vector Machines (SVM)

[10,11] have become a ubiquitous tool in machine learning. SVM

algorithms distinguish themselves from other margin-maximizer

classifiers through the use of kernel functions, which transform the

input data before classification. In traditional SVM algorithms, a

single kernel function is applied on all input data. While

convenient and efficient for homogeneous data, the use of a single

kernel can result in compromises in performance when used in

models combining heterogeneous data type.

Recent extensions to the SVM framework have described the

use of multiple kernels. Such approaches, commonly known as

Multiple Kernel Learning (MKL) algorithms [12,13], allow us to

combine heterogeneous feature sets, each with their own adapted

kernel function, while optimizing the contribution of each sub-

kernel to the resulting classifier. Furthermore, in a standard single

kernel SVM, it is difficult to determine the importance of an

individual feature. The advantage of MKL is such that it generates

weights for each sub-kernel which can provide a useful represen-

tation of the relative discriminative power of each set of features.

Materials and Methods

Proposed Framework PM-BMII
In this work, we propose a computer-aided diagnosis framework

for the detection of pathological myopia called PM-BMII. The

framework automatically detects pathological myopia based on a

combination of heterogeneous sources, i.e. imaging data, demo-

graphic/clinical data, and genotyping data. We use an MKL-

based approach to optimize modeling, learning and classification.

Figure 1 illustrates the architecture of the proposed PM-BMII

framework.

SiMES Data Description
We evaluate the proposed PM-BMII framework on the

Singapore Malay Eye Study (SiMES) database [14]. SiMES

examined a population-based, cross-sectional, age stratified,

random sample of 3280 Malays (78.7% participation rate) aged

40 to 80 years living in Singapore. A subject’s demographic

variables, fundus photograph and blood sample for genotyping

were acquired during the clinic visit. The diagnosis of pathological

myopia was made at the same time. We use the clinical diagnosis

of PM as the gold standard to evaluate our approach.

In current clinical settings, fundus images are easily available at

polyclinics and even optical shops. Furthermore, the cost of

genotyping chips has decreased dramatically in recent years, a

trend of which would greatly increase the accessibility of a person’s

genotyping data in the near future. The objective of our study is to

develop a computational tool facilitating automatic prediction for

applications such as health screening when clinicians are not

present but abundant data is available.

The following data is used to evaluate the proposed PM-BMII

framework:

N Fundus Image Data: The images were acquired using a 45u
FOV Canon CR-DGi retinal fundus camera with a 10D SLR

backing, at an image resolution of 3072|2048 pixels

N Demographic/clinical Data: The eye screening record in

SiMES contains demographic/clinical data such as age and

gender, medical histories (e.g. diabetes etc.) and ocular

examination data. The clinical diagnosis of pathological

myopia is used as the gold standard label in this study.

N Genotyping (SNP) Data: subjects were genotyped on Illumina

610quad arrays, followed by a stringent quality control (QC)

Figure 1. Architecture of PM-BMII framework.
doi:10.1371/journal.pone.0065736.g001
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procedure [15]. The QC process excludes the subjects with a

missing call rate w5%, filters out monomorphic SNPs, non-

autosomal SNP and SNPs with minor allele frequency (MAF)

v5%. A Hardy-Weinberg equilibrium (HWE) test was also

conducted to detect genotyping artifacts [16]. The final SNP

data set contains 2,542 individuals with 557,824 SNPs on 22

autosomal chromosomes.

Knowledge-based Feature Selection in SNP Data
It has been shown that there is an interplay between genetic

factors and environmental influences [17] in myopia, with an

estimated heritability of myopia at 0.306 [18]. A set of myopia

related genes were discovered in linkage studies [19–21], and

recent genome wide association studies (GWAS) further identified

several loci highly associated with pathological myopia [22–26].

This valuable knowledge forms a smart prior in our framework, and

using such a smart prior for feature selection enables us to overcome

the curse of dimensionality raised by the overwhelming number of

SNPs as compared to samples. We propose a holistic approach to

identify myopia-related SNPs using the following steps:

N Identify susceptibility loci from a group of myopia-related

genes

N We use the OMIM (Online Mendelian Inheritance in Man)

database [27] to obtain disease related SNPs. OMIM contains

information on known genetic disorders and over 12,000

genes, with carefully examined reference literature. We

searched OMIM with query item myopia [TI] and found 40

entries, from which a list of myopia-related SNPs were

extracted as shown in table 1.

N Obtain susceptibility loci from recent published genome wide

association study

N We used the NHGRI GWAS catalog [28] to search for PM-

associated SNPs discovered by recent Genome Wide Associ-

ation Studies [22–26]. The SNPs and their references are listed

in Table 2.

N Match tag SNPs genotyped in SiMES data

N The SNPs identified in the above steps may not appear as

markers genotyped in SiMES data. Based on the fact that

Illumina 610quad arrays are derived from the International

HapMap Project [29] with one tag SNP every 5–6 kb across

the genome in the CEU,CHB+JPT and YRI populations, we

use GVS (Genome Variation Server) [30] to find correspond-

ing tag SNPs. The GVS database contains 11.8 million SNPs

with corresponding genotyping data and provides a set of tools

for the analysis of SNP data. For each SNP identified in Steps

1 and 2, we set a range of 3 kb both up- and down-stream with

a LD-score r2
w0:8 as the search criteria to catch the

corresponding tag SNPs.

Figure 2 illustrates the steps described above. A detailed list of

the extracted SNPs are listed in Table 1 and 2. In total 87 SNPs

are matched in SiMES genotyping data and these SNPs are used

to form a sub-feature space for learning.

Demographic and Clinical Data Preprocessing
Both environmental and genetic factors have been associated

with the onset and progression of myopia. Some of the known

environmental risk factors of myopia include close up work,

educational level, IQ, outdoor activity, academic achievement and an introvert

personality [17]. These risk factors are partially represented in the

demographic and clinical variables obtained from the population

study protocol. The data is cleaned by removing subjects or

variables with more than 5% missing values. We digitized the

categorical parameters and scaled all variables to range of [0,1].

The clean set contains 44 parameters as listed in Table 3, with

2,258 subjects data matched with image and SNP data.

We conducted a univariant analysis for all parameters. P-values

are obtained by conducting the Student’s T-test for numerical

variables and the Chi-square test for categorical variables. The

following parameters were found to be associated with patholog-

ical myopia with P-value v0:05 : Age (p~0:019), Job Category

(p~0:007), Income (p~0:003), Type of place living in (pv0:0005),

Education (pv0:0005), Ever Smoke and Current Smoke (both pv0:005).

Semantic Image Feature Analysis for Fundus Image
Semantic image features, also known as high-level features,

differ from low-level local features as they are global features

which are location-independent. In this work, the bag-of-words

(BOW) model approach from computer vision [31] is introduced

for semantic image feature extraction.

BOW is a simplified representation used in natural language

processing and information retrieval by treating local image

features as words. In natural language processing, a bag-of-words

is a sparse vector of occurrence counts of words; that is, a sparse

histogram over the vocabulary. Correspondingly, in computer

vision, a bag-of-words is a sparse vector of occurrence counts of a

vocabulary of local image features (codebook), which is a location-

independent global feature. The properties of local features, such

as intensity, rotation, scale and affine invariants can also be

preserved. Figure 3 illustrates the described method.

Many visual features can be extracted from grids or superpixels

[32] to form local features, such as histogram of oriented gradients

(HOG) [33], biologically inspired features (BIF) [34] and color

histograms [35] which are related to edges, textures and intensity,

respectively. In this work, SIFT (Scale-invariant feature transform)

[36] features are used as local features. SIFT has been widely used

in object detection and classification, due to its intensity, rotation,

scale and affine invariant properties. In this implementation, the

Harris-Laplacian (HAR) and Hessian-Laplacian (HES) detectors

[37] were used to generate SIFT features from each retinal fundus

image. This is mainly because both detectors produce comple-

mentary features: HAR locates corner features, while HES extract

blob features. Each SIFT feature was represented as a 128-

dimensional histogram and each dimension was quantized into an

integer between 0 and 255.

To reduce computational costs and avoid feature noise from the

retinal image field of view limits, the images were resized to a

height of 256 pixels by keeping the original aspect ratio, and only

feature points within 0.95 radius to the center were collected for

further processing. In addition, the SIFT feature extraction was

performed on the green channel only, since the retinal images are

less well differentiated in the red and blue channels.

After obtaining all the SIFT features from training images, k-

means clustering was used to generate the codebook by randomly

selecting half of the training images, with each cluster centroid

representing a visual word. After which the BOW global features

(i.e., occurrence counts of the visual words in a retinal image) of

each training and testing image were obtained in the quantization

procedure. To balance the dimensions of different features, we

empirically set k = 100. L1-normalization is performed to stan-

dardize features before training and testing.

Data Fusion
The features extracted from each of the three heterogeneous

data sets were merged via subject matching. The final dataset

Biomedical Image Informatics & Pathological Myopia
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contains 2,258 subjects with demographic/clinical data, fundus

image and SNP data. Among the 2,258 individuals, 58 had been

diagnosed with pathological myopia while the rest were normal.

The distribution of pathological myopia subjects in the dataset is

representative of the prevalence of pathological myopia in the

population. The range of each feature dimension was normalized

to the range of [0, 1] in order to avoid magnitude differences

among the dimensions.

Learning Algorithms
In this study, we apply SVM-based multiple kernel learning

(MKL) to train the classifier in the proposed PM-BMII framework.

The learning problem can be formulated as follows. Given a

training set of instance-label pairs (fi,yi),i~1,2,:::l where fi[Rn

represents the features of a subject, and yi[f{1,1g denotes its

label, such that 1 denotes the presence of pathological myopia, and

21 denotes the absence of the disease, the basic SVM [10,11]

formulation requires the solution of the following optimization

problem:

min
v,m,j

1

2
vT vzC

Xl

1

ji, ð1Þ

subject to yi(v
T w(fi)zm)§1{ji,ji§0

where a feature fi is mapped into a higher dimensional space by

the function w. SVM finds a linear separating hyperplane with the

maximal margin in this higher dimensional space. Cw0 is the

penalty parameter of the error term. K(fi,fj)~w(fi)
T w(fj) is called

the kernel function.

In our experiments, when only one type of feature set (e.g., SNP)

is used, a linear kernel K(fi,fj)~f T
i fj based basic SVM classifier is

utilized, where the corresponding label of fi is determined by

vT w(fi)zm.

When incorporating feature sets from multiple data sources,

Table 1. Pathological Myopia (PM) related SNPs found from Genetic Linkage Studies.

Genes Location OMIM ID PM SNP Source

MYP2 18p11.31 160700 rs1034762, rs1635529, rs1793933, rs3803183, rs17122571 Young, Ronan, Drahozal et al. (1998),
Mutti et al. (2007), Metlapally et al.
(2009)

MYP3 12q21-q23 603221 rs3832846, rs17853500, rs3759223, rs10860860, rs2946834,
rs6214

Young, Ronan, Alvear et al. (1998), Lin
et al. (2010), Metlapally et al. (2010)

MYP7 11p13 609256 rs1506, rs592859, rs608293, rs628224, rs662702, rs667773,
rs694617, rs1540320, rs1806155, rs1806158, rs1806159,
rs1806180, rs1894620, rs2071754, rs2239789, rs3026389,
rs3026401

Hammond et al.(2004)

MYP11 4q22-q27 609994 rs113432966, rs112669274, rs112391551, rs112356377,
rs111691784, rs111322719

Zhang, Guo et al. (2005)

MYP12 2q37.1 609995 rs111706042 Paluru et al. 2005

MYP13 Xq23-q25 300613 rs113695792, rs111774596 Zhang, Guo et al. 2006

MYP14 1p36 610320 rs113328794 Stambolian et al. (2004)

TGIF 18p11.31 602630 rs121909066, rs121909067, rs121909068, rs121909069,
rs121909070, rs28939693

Gripp et al. (2000)

doi:10.1371/journal.pone.0065736.t001

Table 2. Pathological Myopia (PM) associated SNPs found in
Genome-wide Association Studies (GWAS).

Genes Location PM SNP Source

GJD2 15q14 rs634990 Solouki et al. 2010, Nature
Genet.

RASGRF1 15q25 rs939661 Hysi et al. 2010, Nature Genet.

CTNND2 5q15 rs6885224,
rs12716080

Li et al. 2011, Ophthalmology

MIPEP 13q12.12 rs9318086 Shi et al. 2011b, AJHG

ZC3H11B 1q41 rs4373767 Fan et al. 2012, PloS Genetics

LAMA2 6q22.33 rs12193446

CD55 1q32.2 rs1572275

ZNF644 1p22.2 rs6680123 Shi et al. 2011a, Plos Genetics

MYP11 4q25 rs10034228,
rs1585471

Li et al. 2011, Hum Mol Genet.

BLID 11q24.1 rs577948 Nakanishi et al. 2009, Plos
Genetics

GLULP3 rs12275397

doi:10.1371/journal.pone.0065736.t002

Figure 2. Knowledge-based SNP selection in genotyping data.
doi:10.1371/journal.pone.0065736.g002
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multiple kernel learning (MKL) is applied to learn the adapted

kernel function for each feature set, and to optimize the

contribution of each sub-kernel for the resulting classifier. In such

cases, a convenient approach is to consider that K(fi,fj) is actually

a convex combination of the basis kernels:

K(fi,fj)~
XM

m~1

dmKm(fi,fj),dm§0 and
XM

m~1

dm~1, ð2Þ

where M is the total number of kernels. Each basis kernel Km may

either use the full set of features describing samples or subsets of

features stemming from different data sources [12]. Within this

MKL framework, the problem of data representation through the

kernel is then transferred to the selection of weights dm. In PM-

BMII, we use basis kernels based on each single data source, and

demonstrate that models based on a combination of multiple

sources are better than those using a single data source. For

efficiency, one linear kernel is initialized for each feature type.

There are many MKL solver toolboxes which are publicly

available, such as SimpleMKL [38] and Group Lasso [39]. The

LIBLINEAR toolbox [40] is used to train linear SVM models for

each individual data source, and the Group Lasso [39] toolbox is

used to train MKL models.

Experimental Methods for PM-BMII
To demonstrate that the combination of multiple data sources

can enhance detection accuracy in our PM-BMII framework, we

report and compare the diagnosis performance of 7 methods using

the following different features and their combinations:

1. Demographic/clinical data only (referred to as D)

2. SNP data, genetic information only (referred to as G)

3. low-level direct image features only (referred to as I)

4. combined demographic/clinical data and SNP data (DzG)

5. combined demographic/clinical data and image features

(DzI)

6. combined SNP data and image features (GzI)

7. combined all three data source, DzGzI (PM-BMII)

For fair comparison, we performed 10 independent tests, with

two rounds of stratified cross-validation conducted per test. This

was carried out in the following way. In each test, all subjects were

randomly divided into non-overlapping sets of equal size, A and B.

In the first round, we used all the positive subjects and the same

number of randomly selected negative subjects from set A as

training set, due to the imbalanced in the number of positive (PM)

and negative (normal) subjects. The trained model is then used for

testing set B. The second round was conducted in the same

approach but with subjects from set B used for training and those

from set A used for testing. In total, 20 groups of evaluation results

were collected for each of the 7 methods for analysis.

Analysis Methods used for PM-BMII
We assess the classification performance using the area under

the ROC (receiver operating characteristic) curve (AUC) which

evaluates the overall performance and a balanced accuracy with a fixed

85% specificity. The balanced accuracy (�PP), sensitivity (Pz) and

specificity (P{) are defined as

�PP~
PzzP{

2
,Pz~

TP

TPzFN
,P{~

TN

TNzFP
, ð3Þ

where TP and TN denote the number of true positives and

Table 3. List of Demographic & clinical variables used in PM-BMII.

Age Blood LDL Cholesterol Can read

Age Group Blood HDL Cholesterol Can write

Gender Triglycerides Alcoholic drink categories

Height Hypertension Ever Smoke

Weight Hypertension treatment & control Current smoker

Diastolic Blood Pressure Albumin-Creatinine ratio Angina

Systolic Blood Pressure Diabetes I Heart Attack

Pulse Pressure Diabetes II Stroke

Mean arterial pressure Job Categories Hypercholessterolemia

BMI Race Thyroid Condition

Blood Creatinine Marital Categories Chronic Kidney Disease indicator

Blood Glucose Income Categories hyperlipidemia

Blood HbA1c Categories Type of place living in Metabolic syndrome

Blood Glycosylated Haemoglobin Place of birth Microalbuminuria

Blood Total Cholesterol Education categories

doi:10.1371/journal.pone.0065736.t003

Figure 3. Semantic image feature extraction.
doi:10.1371/journal.pone.0065736.g003
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negatives, respectively, and FP and FN denote the number of false

positives and negatives, respectively.

Results and Discussion

Table 4 shows the results for the different input data, both single

and combined, on their ability to detect pathological myopia,

measured using the specificity, sensitivity and area under the ROC

curve (AUC). The mean and standard variation (SD) values of

AUC of each method were calculated based on the results

obtained from the 20 sets of cross validation testing as described in

the above Methods section. At the screening-based specificity

setpoint of 0.85, in comparing only the models from single sources,

the results show that the use of imaging data provided the best

prediction of pathological myopia (Sensitivity Pz~0:71), com-

pared to that of SNP data (Sensitivity Pz~0:52) and showed a

large improvement over detection using only demographic data

(Sensitivity Pz~0:27). Comparatively, detection using only

demographic/clinical data was the least accurate compared to

the other single sources.

When multiple (2 or more) data sources are combined, the

general trend shows that the sensitivities from combining sources

outperforms their component sources at specificity of 0.85, with

the best performing model based on the combination of SNP data,

demographic/clinical data and imaging data in the PM-BMII

framework (Sensitivity Pz~0:77).

This trend can also be observed using the calculated AUC

metrics, with the corresponding ROC plots presented in Figure 4

and box plot of AUC distribution based on the 20 rounds of cross

validation tests shown in Figure 5. The PM-BMII prediction

model combining demographic/clinical data, SNP data and

imaging data generated the best AUC metrics (AUC~0:888),

outperforms all other source combinations or single sources.

Compared to the single sources, the use of PM-BMII resulted in

significant improvements over demographic/clinical data D
(increase 46:3%, pv0:005) and genetic information G (increase

14:7%, pv0:005). It also tended toward better classification than

using imaging data I alone (increase 4:2%, p~0:19). Furthermore,

the results also show PM-BMII performs better than the combined

models obtained from the combinations of any two sources,

resulting in improvements of 12:1% (pv0:05), 2:9% (p~0:55) and

1:5% (p~0:75) in AUC over DzG, DzI and GzI respectively.

Our experimental results also suggest an advantage in

combining any two sources over the use of their component

sources. For example, the use of SNP and retinal image

information DzG produced an AUC of 0.792, which is better

than the individual AUCs from D 30:4% (pv0:005) and G 2:3%
(p~0:34) respectively. This trend can also be observed for the

other two combinations GzI and DzI over their components.

In this work, we have tested the use of different combinations of

data for the detection of pathological myopia. These data sources

can be described as imaging data, SNP data and demographic/

clinical data. Based on the results of the experiments, the following

observations can be made:

1. PM-BMII approach of combining imaging, SNP and demo-

graphic/clinical data outperformed single data sources and

two-source combinations

2. In our experiments, we have shown that the combination of

imaging, genomic and demographic data in the PM-BMII

framework was able to achieve an AUC of up to 0.888. The

PM-BMII prediction results outperform the models based on

other data combinations, as well as the individual component

sources.

3. Advantages in combining different data types

Table 4. Sensitivity and AUC results for the various sources
combinations.

source
combination
type

sensitivity
(specificity
= 0.85) AUC mean

AUC
SD

SNP(G) Single 0.52 0.774 0.038

retinal image(I) 0.71 0.852 0.044

demographic/
clinical(D)

0.27 0.607 0.044

G+I Two 0.73 0.875 0.032

D+G 0.56 0.792 0.037

D+I 0.71 0.863 0.033

D+G+I Multiple 0.77 0.888 0.032

Results show PM-BMII is better able to detect pathological myopia compared to
the other individual or combined sources.
Notes:
D Demographic/clinical data; G SNP data, genetic information; I low-level
direct image features.
DzG combined demographic/clinical data and SNP data.
DzI combined demographic/clinical data and image features.
GzI combined SNP data and image features.
DzGzI combined all three data source -(PM-BMII).
doi:10.1371/journal.pone.0065736.t004

Figure 4. ROC (receiver operating characteristic) curve of
various methods.
doi:10.1371/journal.pone.0065736.g004

Figure 5. Boxplot of AUC to compare various methods.
doi:10.1371/journal.pone.0065736.g005
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4. Furthermore, the experiments also support combining different

data types for pathological myopia prediction. In the

experiments based on the combinations of any two different

types, we observed that the results were better than the models

which only use the individual data components. This was most

obvious in the use of demographic/clinical data D, which when

used in conjunction with any other data type registered an

improvement of at least 30:4% (pv0:005) in pathological

myopia detection. Although the use of individual data can

possibly be used for detection, our results show that it is

advantageous to include at least one other data type in the

model. This suggests that the data types are indeed

complementary.

5. Usefulness of demographic/clinical data

6. The results show that the performance of PM-BMII (DzGzI)

is comparable to that of using SNP and imaging information

GzI. However, the addition of demographic/clinical data D
to genetic information G or D to I does show a trend of

improving accuracy. This suggests that in the overall PM-BMII

framework the inclusion of demographic/clinical data D may

not be strictly necessary, particularly when both genetic

information G and imaging information I are included, and

further suggests some possible redundancy in the use of

demographic/clinical data D with genetic and imaging

information GzI. Nonetheless, a model that is built using

imaging information I or SNP data G alone would benefit from

the inclusion of demographic/clinical data D.

7. We observe the limited significance of adding SNP and

demographics data into the prediction model, with a modest

4:2%(p~0:19) improvement of AUC. This may be due to the

limited number of subjects in our study. Increasing data

available in future studies could allow us to draw more

significant conclusions.

Conclusions
Demographic/clinical data, imaging data and SNP data can

provide different perspectives towards disease detection. With the

large quantity of potential data that can be obtained, the challenge

is to combine these data in a holistic fashion to make the best use

of their individual advantages. Computer-based informatics

methodologies offer such an opportunity to intelligently fuse these

data sources. We have proposed PM-BMII, a framework powered

by MKL, for Pathological myopia diagnosis by combining

heterogeneous biomedical data, including demographic data,

imaging data and SNP data. Our experiments show that the

PM-BMII framework is able to detect pathological myopia with

high accuracy, and supports the use of data fusion over any single

or two-source combination. These promising results encourage

further exploration of the PM-BMII framework for the detection

of other ocular diseases.
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