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Stem cell-based bone and dental regeneration: a view of
microenvironmental modulation

Chenxi Zheng', Ji Chen’, Shiyu Liu' and Yan Jin

In modern medicine, bone and dental loss and defects are common and widespread morbidities, for which regenerative therapy
has shown great promise. Mesenchymal stem cells, obtained from various sources and playing an essential role in organ
development and postnatal repair, have exhibited enormous potential for regenerating bone and dental tissue. Currently,

mesenchymal stem cells (MSCs)-based bone and dental regeneration mainly includes two strategies: the rescue or mobilization of
endogenous MSCs and the application of exogenous MSCs in cytotherapy or tissue engineering. Nevertheless, the efficacy of MSC-
based regeneration is not always fulfilled, especially in diseased microenvironments. Specifically, the diseased microenvironment
not only impairs the regenerative potential of resident MSCs but also controls the therapeutic efficacy of exogenous MSCs, both as
donors and recipients. Accordingly, approaches targeting a diseased microenvironment have been established, including
improving the diseased niche to restore endogenous MSCs, enhancing MSC resistance to a diseased microenvironment and
renormalizing the microenvironment to guarantee MSC-mediated therapies. Moreover, the application of extracellular vesicles (EVs)
as cell-free therapy has emerged as a promising therapeutic strategy. In this review, we summarize current knowledge regarding

the tactics of MSC-based bone and dental regeneration and the decisive role of the microenvironment, emphasizing the
therapeutic potential of microenvironment-targeting strategies in bone and dental regenerative medicine.
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INTRODUCTION

Bone and dental loss and defects caused by diseases and trauma
have become a global concern with high incidence, which
seriously affects the health and life quality of the whole
population and lays a heavy financial burden on society."?
Currently, autogenous bone transplantation is the gold standard
treatment for bone defects.>* For oral diseases, dental prostheses,
periodontal treatment and dental implants remain the main-
stream therapies.>> However, the application of autogenous bone
transplantation is seriously restrained by limitations of sources,
difficulty in graft harvest and morbidity of donor site.>” Moreover,
present therapies for oral diseases can only improve clinical
diagnostic parameters and halt disease progression but fail to
regenerate lost tissue.® Therefore, new technologies are in high
demand to achieve excellent regeneration of bone and dental
tissues.

Mesenchymal stem cells (MSCs), which can be isolated from
different tissues and possess self-renewal and multiple differentia-
tion potential, play an essential role in organ development and
postnatal repair.®'"" A variety of studies, via animal models and
clinical trials, have demonstrated that both endogenous and
exogenous MSCs hold enormous promise in regenerative
medicine for bone and tooth,’>™"® among which bone marrow
MSCs (BMMSCs) have received much attention. In addition,
adipose-derived MSCs (ADMSCs)'®'” and dental stem cells
(DSCs),'®1° including dental pulp stem cells (DPSCs), periodontal
ligament stem cells (PDLSCs), stem cells from human exfoliated

deciduous teeth (SHED), stem cells from the apical papilla (SCAP)
and dental follicle cells (DFCs), have emerged as attractive cell
sources for bone and dental regeneration due to their ease of
accessibility and relative abundance. In addition to differentiation
potential, the ability of MSCs to regulate the function of other cells
and to modulate the systemic inflammatory condition via cell-cell
interaction or paracrine mechanism also contributes to their
therapeutic efficacy.?®?' Presently, there are two main strategies
of MSC-based bone and dental regeneration: the rescue or
mobilization of endogenous MSCs and the application of
exogenous MSCs in cytotherapy or tissue engineering. Never-
theless, despite much progress, establishing safe, effective and
simple stem cell-based approaches for bone and dental repair and
regeneration remains a tremendous challenge,®'*'>?? especially
considering the adverse effects of a diseased microenvironment.”'

In recent years, the microenvironment has been uncovered to
exert enormous influence on the physical functions and patho-
logic changes as well as the therapeutic effects of stem cells.?>"%°
Physiologically, the niche where MSCs reside consists of a variety
of tissue components, cell populations and soluble factors, which
tightly regulate the behaviours of MSCs.2°2® Under pathological
conditions, such as osteoporosis and periodontitis, both the
viability and differentiation of MSCs are seriously impaired, leading
to disease aggravation and impaired tissue healing.?"??"'
Furthermore, in cytotherapy and tissue engineering, the micro-
environments of donors and recipients play a pivotal role in
determining the regenerative efficacy of transplanted MSCs,*%%3
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further indicating a critical role of cell-microenvironment interac-
tions in MSC-mediated bone and dental regeneration.

In addition to accumulating evidence identifying the promi-
nence of the microenvironment in MSC-based regenerative
therapies, solutions have been developed, such as the improve-
ment of the microenvironment to restore endogenous MSC
function, the enhancement of MSC resistance to a diseased
microenvironment, and the restoration of the recipient micro-
environment to benefit transplanted MSCs. Notably, after being
transplanted into recipients, MSCs act as potent microenvironment
modulators in both tissue engineering and cytotherapy.>*>®
Furthermore, cell-free therapies represented by the application of
MSC-derived extracellular vesicles (EVs) have become a promising
alternative to whole-cell treatment.>**' In this review, we overview
the principles and cutting-edge progress of MSC-based tactics in
bone and tooth regeneration and further highlight the involve-
ment of the microenvironment, especially under pathological
conditions. We also propose strategies to optimize MSC-based
regeneration of bone and dental tissues, mainly focusing on
modulating the microenvironment.

MSCS IN BONE AND TOOTH REGENERATION

Among the various stem cell types used for cytotherapy and tissue
engineering, MSCs are currently proposed as an attractive cell
source for bone and tooth regeneration due to their potential for
differentiation into osteoblasts or odontoblasts, ability to mod-
ulate systematic immunity, and lack of ethical controver-
sies.'?1%1322 | addition to being classically obtained from bone
marrow, MSCs can also be isolated from diverse neonatal and
adult tissues, which provide more accessible sources of MSCs for
bone and dental tissue regenerative therapies.'®*%*

BMMSCs

BMMSCs were first discovered by Friedenstein et a as a
subpopulation of non-haematopoietic stromal cells residing in
bone marrow that were able to self-renew and differentiate into
multiple cell types. Since then, BMMSCs have become the most
extensively studied MSCs for bone regeneration due to their
intimate involvement in bone physiology and pathology.>*
During adult life, bone homoeostasis maintenance depends
largely on the balance between bone formation and resorp-
tion,***” which, at the cellular level, is intensely modulated by
BMMSCs via differentiating into osteoblasts and regulating
osteoclasts’ activities.'>*® Pathologically, BMMSC dysfunction has
been revealed to be a critical cellular mechanism underlying
various bone disorders, especially osteoporosis.2'3%*' More
importantly, BMMSCs act as potent microenvironmental modula-
tors that exert enormous anti-inflammatory effects after systemic
transplantation, which benefit diverse tissues/organs, including
bone**3%4!  Accordingly, a variety of studies have shown
promising therapeutic potential of BMMSCs in osteopenia and

bone defects via cytotherapy or tissue engineering construc-
tion.33'41 49-52

|44

ADMSCs

Since their discovery by Zuk et al.>® in 2001, ADMSCs have been
increasingly demonstrated to hold great promises in regenerative
medicine. Similar to BMMSCs, ADMSCs display steady growth
kinetics in vitro and are able to differentiate into various cell types,
including osteocytes, chondrocytes and adipocytes.'®'” In addi-
tion, with a prevalence of lipoaspirates and less morbidity to the
host during procurement, ADMSCs are, to some extent, more
advantageous than BMMSCs due to easy accessibility and
abundant supply.'®'”* Furthermore, compared to BMMSCs that
are prone to pathological factors of bone, ADMSCs demonstrate
functional maintenance in various bone pathological conditions,
as demonstrated by the preservation of cell viability,
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Fig. 1 Stem cell populations derived from different dental tissues/
regions that constitute appealing MSC sources for bone and dental
regeneration. DFCs, stem cells from dental follicle; SHED, stem cells
from human exfoliated deciduous teeth; DPSCs, stem cells from
dental pulp; PDLSCs, stem cells from PDL; SCAP, stem cells from the
apical papilla

differentiation capacity,’>>>~>% and more importantly, therapeutic

efficacy.”®°! Recent studies have revealed the efficacy of ADMSCs
in repairing critical-sized bone defects, improving osteopenia and
constructing engineered bone grafts and have proposed these
cells as an excellent alternative to BMMSCs.>?~53

DSCs

A variety of stem cell populations have been obtained from
diverse parts of the tooth with a common neural crest origin and
generic MSC-like properties, including the expression of specific
surface markers and potential to differentiate into mesenchymal
cell lineages'®' (Fig. 1). Remarkably, DSCs exhibit many
advantages, such as easy accessibility, abundant source and less
inconvenience to donors,'*** which constitutes an appealing
source of autologous MSCs, especially for the regeneration of pulp
tissue and periodontal ligament (PDL) and the production of
partial or whole tooth structures for biological implant
construction,'# 18194

DPSCs. Derived from pulp that is entrapped within the pulp
chamber and possessing good reparative and regenerative
abilities, DPSCs are the first DSCs to be discovered by Gronthos
et al® in 2000 with self-renewal capability and multilineage
differentiation potential. DPSCs are essential for postnatal tooth
homoeostasis and repair due to their ability to replenish
odontoblasts during the restoration of dentin.®*” In addition,
since DPSCs are of neural origin, these cells are able to
differentiate into functionally active neurons and glial cells upon
proper environmental stimulation.®®° In addition, DPSCs demon-
strate a distinguishing capacity to secrete neurotrophic factors
that contribute to neuroprotection and neurite outgrowth.®®°
More importantly, recent studies have revealed that DPSCs reside
in a neurovascular bundle niche.”® Intriguingly, in accord with
their perivascular residence, DPSCs possess strong angiogenic
ability,%® as shown by their abilities to secrete an array of
angiogenic regulatory factors and to generate capillary-like
structures under particular environmental conditions. Taken
together, the MSC-like and neurovascular properties of DPSCs,
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Fig. 2 Stem cell-based regenerative strategies for bone and dental tissue. Based on the cellular sources, stem cell-based bone and dental
regeneration mainly includes two categories: endogenous stem cell- and exogenous stem cell-mediated regeneration strategies. Both
resident and migratory endogenous stem cells have shown great potential in healing of bone and dental loss and defects. Alternatively, the
application of exogenous stem cells is promising for regenerating bone and dental tissue through either cytotherapy via systemic/
locoregional infusion or tissue engineering, including cell sheet, cell aggregate and scaffold-based tissue construction

owing to neural crest or glial origins during development and
subsequent fostering by the neurovascular niche during growth,
makes these cells an optimal population for bone and tooth
regeneration.”' "3

PDLSCs. PDL is a fibrous connective tissue located between the
cementum of the root and the alveolar bone socket wall, which
plays an important role in supporting the teeth via anchoring the
tooth to alveolar bone.>* PDLSCs, a stem cell subpopulation first
discovered by Shi et al”* from PDL, are responsible for the
physical maintenance and regeneration of periodontal tissue
structure and function. Upon in vitro culture, these cells possess a
clonogenic nature, express a variety of cementoblastic/osteoblas-
tic markers and are able to form mineralized nodules. Moreover,
after in vivo transplantation, PDLSCs are able to form cementum-
and PDL-like structures.”* Regarding periodontal defects, locally
transplanted PDLSCs migrated into the PDL section and success-
fully repaired defects, implying the potential of PDLSCs in
periodontal tissue regeneration.”>’® In addition, an optimal
protocol has been established with regard to the extraction,
expansion and characterization of human PDLSCs, which are
usually obtained from extracted orthodontic teeth or normal
impacted third molars.'® Furthermore, PDLSCs can also be obtained
from residual PDL on retained deciduous teeth’” or cryopreserved
human PDL,”® which expands the sources of PDLSCs.

SHED. In 2003, Miura et al.”? isolated a population of MSCs from
the pulp tissue of the crown of exfoliated deciduous teeth
differing from DPSCs and named them SHED. After in vivo
implantation, SHEDs are capable of forming dentin-like structures,
indicating their potential in pulp regeneration.”"®" In addition,
compared with DPSCs, SHEDs exhibit higher proliferative activity,
odontogenic and osteogenic differentiation potential, and osteo-
inductive ability.>#* In addition, SHEDs are able to differentiate
into neuronal and glial cells when cultured within neurogenic
inductive media.”?®* Furthermore, SHEDs can be harvested via a
relatively easy approach and maintain their regenerative potential
after cryopreservation for cell banking, as demonstrated by the
maintenance of surface antigens and differentiation properties
after 2 years of cryopreservation.’> Remarkably, our group
demonstrated that the implantation of SHED regenerated three-
dimensional whole dental pulp accompanied by blood vessels and
nerves in both animal models and patients with tooth trauma,”’
further supporting SHED as an attractive cell source for bone and
tooth regeneration.
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SCAP.  Since apical papilla tissue only exists during root devel-
opment before the tooth erupts into the oral cavity, SCAP is a
unique population of DSCs located at the tips of growing tooth
roots.34®8 These cells possess MSC properties, including clono-
genicity and the ability to differentiate into odontoblasts/
osteoblasts in vitro25% In addition, SCAP demonstrated higher
proliferation rates and stronger mineralization ability in vitro than
DPSCs.% Indeed, SCAP are able to regenerate a typical cementum/
PDL-like complex in vivo, further indicating their potential for
bone and dental tissue regeneration.’® In addition, SCAP have
been reported to form a root/periodontal complex after co-
transplantation with PDLSCs into tooth sockets of mini pigs.3652
Moreover, cells derived from inflamed periapical tissue also exhibit
typical MSC characteristics with highly osteogenic capacity in vitro
and in vivo,”' suggesting the maintenance of stemness. Consider-
ing that roots develop postnatally and that the root apical papilla
is clinically available from extracted wisdom teeth, SCAP can
provide a source of MSCs that are isolated in the process of
development and possess embryonic-like properties.'*>*

DFCs. As a loose connective tissue derived from ectomesench-
yme, the dental follicle surrounds the enamel and the dental
papilla of the developing tooth germ before tooth eruption, which
contains progenitors for osteoblasts, cementoblasts and PDL.°%%3
Specifically, DFCs form the PDL via differentiation into PDL
fibroblasts that secrete collagen and interrelate with fibres
between the adjacent bone and cementum. DFCs are able to
differentiate into cementoblasts under in vitro culture®*®® and to
generate cementum when implanted in vivo.”® In addition, DFCs
generated PDL-like tissue after in vivo transplantation®® and
produced periodontal tissues via epithelial-mesenchymal interac-
tion.” Notably, DFCs maintained MSC features in culture after
more than 30 passages and formed single or complex tissues in
the periodontium.”® Collectively, DFCs are a promising MSC source
for regenerative medicine.'*** Furthermore, similar to SCAP, DFCs
are a group of cells derived from developing tissue, thus
possessing higher plasticity than other DSCs.

STEM CELL-BASED REGENERATIVE STRATEGIES FOR BONE
AND DENTAL TISSUE

Regeneration with endogenous stem cells

Despite the enormous efforts devoted to exogenous MSC
transplantation for tissue regeneration, an alternative therapeutic
strategy is to take advantage of endogenous MSCs, which reside

SPRINGER NATURE



Microenvironment and stem cell-based regeneration
Zheng et al.

[ Diseased microenvironment J

Endogenous stem cells

=
O

Self-renewal Differentiation

> CIonogenicityl
> Proliferationl
> ApoptosisT

> Osteogenesis l
> AdipoenesisT

[ Declined regeneration ability ]

Exogenous stem cells

> Survivall
> Stemnessl
> Modulatory

> Proliferationl
> Differentiationl
> Immune

modulatoryl functionl

[ Impaired therapeutic efficacy ]

Fig. 3 Microenvironmental impact on stem cells in bone and dental regeneration. Under pathologic microenvironmental conditions, the
survival and functions of endogenous stem cells are impaired, as shown by declined self-renewal ability and disturbed differentiation
potential, leading to development of bone diseases and declined regeneration ability. On the other hand, the therapeutic efficacy of
transplanted exogenous MSCs are compromised by the diseased microenvironments of the donors where they are harvested and of the
recipients where they are applied due to the impairment of stemness and immune modulatory function

within specific tissues and are able to self-renew and produce
specific cell types®™'°" (Fig. 2). Compared with exogenous MSC
transplantation, tissue regeneration mediated by endogenous
MSCs is less expensive and labour intensive and avoids surgical
injury and rejection risk.”®®'®" Nevertheless, in mammals, the
regenerative capabilities of endogenous MSCs progressively
decline during postnatal development, leading to limited innate
repairing capacity.'®’ Moreover, under pathological conditions,
such as osteoporosis and periodontitis, the function of endogen-
ous MSCs is severely impaired, as characterized by decreased
proliferation and osteogenic differentiation capabilities.?'23192
Accordingly, pharmacological approaches have been developed
to rescue MSC deficiency in bone and oral tissue loss.
Mechanistically, studies have revealed a variety of molecular
mechanisms underlying gene expression regulation in bone that
forms a complex signalling network, including mammalian target
of rapamycin signalling,'®'%* Notch signalling,*' nuclear tran-
scription factor-kappaB (NF-KB) signalling'® and Wnt signal-
ling,"®® which suggested multiple intervention targets in restoring
MSC functions. Accordingly, a variety of agents targeting the
above signalling pathways have been demonstrated to be
effective in rescuing endogenous MSC impairment and promoting
bone and dental regeneration, such as rapamycin,'>'%* DAPT,*'
PDTC,'® and dickkopf-1."% In addition, antioxidants, including
NAC,'977% resveratrol,"'®""" and melatonin,'’? which protect
MSCs from oxidative damage, have been successfully used to
restore MSC function and improve osteopenia and periodontitis.
Furthermore, approaches targeting epigenetic regulation mechan-
isms, such as histone modification regulators DZNep,''® pargy-
line"™ and KDM5A,""> and microRNA expression regulation,' "6~ "°
have exerted therapeutic efficacy on osteoporosis, fracture healing
and oral tissue regeneration. In addition to modulating in situ
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MSCs, the mobilization of endogenous MSCs from other sites of
the body to an injury site to replenish deficient resident MSCs also
contributes to tissue regeneration.'?°"'?2 In this regard, LLP2A-Ale,
which acts as a migration stimulator, has been used to accelerate
bone formation in oestrogen deficiency-induced osteoporosis via
directing MSCs to bone formation surfaces.”®> Moreover, the
combination of stromal cell-derived factor-1 with a protein-
releasing scaffold promoted chemotaxis-induced MSC homing,
leading to the repair of bone'** and periodontal'®® defects.
Scaffold-releasing agents to enhance endogenous MSC functions
also include transforming growth factor (TGF)-3'?® and fibroblast
growth factor-2,'?” which benefit bone and tooth regeneration.
More importantly, the modulation of the specific microenviron-
ment where stem cells reside in vivo is an effective way to
regulate endogenous MSC behaviour, which will be discussed in
detail in the following sections.

Regeneration with exogenous stem cells

Within recent decades, the transplantation of exogenous MSCs
through different routes has been widely explored in bone and
dental regenerative medicine (Fig. 2). A promising strategy is the
systemic application via primarily intravenous infusion and
intraperitoneal delivery, which exerts therapeutic effects on
various disorders, including osteoporosis, bone fracture, osteoar-
thritis and jaw osteonecrosis. Mechanistically, through homing to
recipient bone marrow or fracture sites, infused MSCs promote
osteogenesis by differentiating into osteoblasts, inducing endo-
genous osteoblastogenesis and modulating osteoclast-mediated
bone resorption.**'?573% |n this regard, genetic or pharmacolo-
gical approaches that enhance the homing of MSCs could
strengthen their therapeutic efficacy on bone loss and
defects.’®'"'33 More importantly, systemically transplanted MSCs
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exhibit enormous potential to modulate systemic immunity,
especially by suppressing inflammation to restore the recipient
microenvironment, which also contributes to their therapeutic
effects'36,37,1347'|37

As alternatives to single cell suspension injection, cell sheets and
aggregates provide novel strategies for cell delivery without
scaffolds, enabling stable engraftment and long-term viability of
transplanted cells.'*®*'*? With the application of temperature-
responsive culture dishes, cultured cells could be non-invasively
harvested as whole sheets together with their deposited
extracellular matrix (ECM), which can be directly transplanted to
host tissues in vivo or used to produce tissue constructs
in vitro.'*®"%® In addition, transplanted cell sheets spatiotemporally
release growth factors and modulatory cytokines, further con-
tributing to tissue regeneration.>*'** To date, BMMSC-based cell
sheets have been successfully used to promote bone regeneration
in defects®*'® and strengthen implant bone bonding.'** In
addition, PDLSC sheets have been demonstrated to promote
periodontal regeneration in various animal species.'**™'*° After
in vivo grafting of monolayered or layered PDLSC sheets, the
cement/PDL complex was observed along with well-oriented
collagen fibres, leading to the repair of periodontal defect. More
importantly, clinical trials conducted on periodontitis patients
further indicate the periodontal regeneration potential of PDLSC
sheets.'*%1>"

Moreover, cell aggregates produced via micro-mass pellet
culture of groups of cells under certain conditions have emerged
as an attractive strategy in regeneration medicine due to
structural and functional similarity to native tissue.>*'*!'42
Compared with single cells or cell sheets, cell aggregates contain
more ECM and thus may possess more biological and inductive
activities.'**'*? BMMSC-based aggregates could promote bone
formation in a metaphyseal defect model of ovariectomized (OVX)
rats,”® and PDLSC aggregates showed promise in healing period-
ontal defects.’®>'>3 In addition, the application of composite cell
aggregates with PDLSCs and jaw-derived BMMSCs resulted in the
generation of functional PDL-like tissue both ectopically in nude
mice and orthotopically in minipig.'>* Notably, a clinical trial
conducted by our group revealed that SHED aggregates could
regenerate complete pulp tissues in patients with pulp necrosis,
which were equipped with blood vessels and nerves.”' More
importantly, after SHED implantation, the recipient immature
permanent teeth showed increased root length and decreased
apical foramina width, suggesting that the regenerated pulp acted
as normal pulp with the ability to maintain continued root
development.”’

The combination of cells with scaffolds and bioactive factors,
which is a classical tissue engineering strategy, is also promising
for bone and dental regeneration.>**’"'* Typically, bone scaffolds
are made of biomaterials, including bioactive ceramics, biode-
gradable metals, biodegradable polymers and calcined bone,
which serve as 3D structures that lead to cell migration,
proliferation and differentiation.”> Moreover, pharmacological
modification of scaffolds enables the release of biological
molecules, such as angiogenic factors and osteogenic factors,
thus modulating the activity and function of seeded cells and
endogenous cells.”?'?? The transplantation of BMMSC sheets
combined with polycaprolactone-calcium phosphate (PCL-CaP)
scaffolds in vivo resulted in the formation of neo cortical and well-
vascularised cancellous bone in rats.”*® In addition, the application
of calcined bovine bone coated with BMMSC sheets repaired
critical size bone defects in osteoporotic rats.>> Moreover, PDLSC
sheets combined with B-tricalcium phosphate (3-TCP)/collagen
scaffolds or PCL-CaP scaffolds promoted periodontal regeneration
with newly formed cementum and well-oriented PDL fibres.'#¢'>¢
Based on current information available, an exogenous MSC-based
regenerative strategy constitutes a promising approach for
healing bone and dental loss and defects.
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MICROENVIRONMENTAL IMPACT ON STEM CELLS IN BONE
AND DENTAL REGENERATION

The microenvironment, which acts as “soil”, has been increasingly
recognized to exert tremendous effects on MSCs, the “seeds” in
organs, especially under pathological conditions and in cell
therapies (Fig. 3). As discussed above, endogenous MSCs reside
in a dynamic and complex niche consisting of neighbouring cells,
ECM and plentiful neurovascular bundles, which tightly control
MSC behaviours.?”””° In addition, resident MSCs are modulated by
the circulatory microenvironment through hormones, metabolites,
inflammatory cytokines and other soluble factors3' Notably,
microenvironmental alterations play a pivotal role in the initiation
and deterioration of skeletal and dental diseases.”>” Under
pathologic microenvironmental conditions, the survival and
functions of endogenous MSCs are impaired, leading to declined
regeneration capacity and extensive bone loss.' On the other
hand, the regenerative ability of transplanted exogenous MSCs is
strongly influenced by the donor microenvironmental condition
where they are harvested and the recipient microenvironmental
niche where they home.2' Consequently, achieving therapeutic
efficacy in diseased microenvironments with host comorbidities
constitutes a major challenge to MSC-based regeneration at the
present time. Further understanding of the impacts exerted by the
diseased microenvironment on MSCs and the underlying mechan-
ism would promote the optimization of strategies that regenerate
bone and oral tissue via targeting endogenous MSCs and
transplanting exogenous MSCs.

Impairment of endogenous stem cells by pathogenic
microenvironment

As important systemic factors, steroid hormones, such as sex
hormones (oestradiol and testosterone) and glucocorticoids, are
responsible for modulating bone development and postnatal
remodelling. Pathologically, hormonal disorders, particularly the
dramatic decline in sex hormones in aged people and post-
menopausal women, cause an imbalance between osteoblasto-
genesis and osteoclastogenesis, leading to the loss of bone mass
and strength. Studies have demonstrated that a deficiency in
oestrogen and androgen impairs the proliferation and osteogenic
differentiation of BMMSCs, as shown by diminished clonogenic
assay, mineral nodule formation and osteogenic marker expres-
sion.'*®7'% |n addition, the ability of MSCs to generate new bone
ectopically is also compromised by ovariectomy.?” In addition, the
differentiation potential of BMMSCs is shifted towards adipocytes,
leading to bone marrow fat accumulation and bone loss.>%'®!
Mechanistically, in addition to indirect effects via immune
reactions, oestrogen could directly maintain MSC functional
homoeostasis through binding to its receptors.'®>'%> Moreover,
oestrogen deficiency causes a dramatic accumulation of reactive
oxygen species (ROS), which act as an important mediator in
BMMSC specification impairment'%1%%162163 3nd induce the
apoptosis of BMMSCs.'* Recently, epigenetic mechanisms,
including histone methylation,''® histone acetylation'®® and
microRNAs, 19160161165 have been revealed to also participate in
oestrogen  deficiency-mediated BMMSC  impairment. In
glucocorticoid-induced osteoporosis, the most prevalent form of
secondary osteoporosis, excessive use of glucocorticoid also
suppresses BMMSC proliferation and impairs the osteogenic
potential of BMMSCs, resulting in bone loss.'®’

Another pronounced microenvironmental factor influencing
bone homoeostasis is organismal metabolism. At the cellular level,
the energy metabolic profiles, mainly referring to the states of
glycolysis and OXPHOS, are highly influential on the fate of stem
cells during development and regeneration.'®~'®® Notably,
BMMSCs rely on glycolysis to maintain stemness while requiring
glucose uptake and transformation into OXPHOS-privileged status
when undergoing osteogenic differentiation.'”®'”" Nevertheless,
excessive exposure to glucose causes BMMSC dysfunction with
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increased senescent phenotypes,'’?'”* which is associated with

the adverse impacts of hyperglycaemia on BMMSCs, as shown in
diabetic patients. Diabetes, a common metabolic disease char-
acterized by high blood sugar, impairs multiple organ systems,
including bone and oral tissue, leading to an increased risk of
osteoporosis, fractures and periodontitis."’* The overall bone
turnover rate is downregulated under hyperglycaemic conditions,
especially bone formation parameters, as shown by reduced
osteoblast numbers and decreased osteoid quantities. A pivotal
mechanism underlying the diabetic osteogenesis decline is the
accumulation of advanced glycation end products, which impair
viability and osteogenic differentiation of BMMSCs by directly
activating the receptor® In addition, oxidative stress also
contributes to BMMSC dysfunction caused by hyperglycaemia.'”
In addition, hyperglycaemia increases mitochondrial accumulation
of P53, which recruits Bax and activates molecular events of
apoptosis, leading to a decline of the number of BMMSCs.'7®
Furthermore, diabetes is an established risk factor for periodontal
diseases with increased prevalence and severity.'”” The multiple
differentiation potential of PDLSCs derived from periodontitis
patients with diabetes mellitus was dramatically impaired,'”®
which may involve activation of the receptor for AGEs'’® and
oxidative stress."8°

Despite the essential role of inflammation in bone fracture
healing, a pro-inflammatory microenvironment is a pivotal
pathogenetic mechanism underlying various osteopenic disor-
ders.'®! Indeed, the induction of bone loss by pro-inflammatory
cytokines occurs not only in inflammatory and autoimmune
diseases but also in oestrogen-deficient, hyperglycaemic and
aging conditions as key secondary detrimental factors.'®*'8182 |n
particular, inflammatory cytokines, including tumour necrosis
factor-a (TNF-a) and interferon-y (IFN-y), synergistically induce
osteogenic differentiation dysfunction of BMMSCs,'®%'®2 which
involves signalling pathways and/or epigenetic modulations. In
addition, the inflammatory microenvironment causes overproduc-
tion of ROS due to the compromised function of the mitochondrial
electron transport chain and antioxidant system, which also
contributes to the impairment of BMMSC lineage allocation.
Moreover, high levels of TNF-a have been demonstrated to induce
apoptosis and inhibit the proliferation of MSCs, leading to
augmented bone loss and delayed fracture healing.>*'®° Further-
more, the inflammatory microenvironment acts as a key
contributor to the decreased osteogenic differentiation of PDLSCs
in periodontitis by intervening with the expression of signalling
molecules'® and posttranscription modulation.’®* 8> Intrigu-
ingly, the chronic inflammation of periodontitis impairs endoplas-
mic reticulum function and induces endoplasmic reticulum stress,
leading to defective osteogenic differentiation of PDLSCs.'%?
Taken together, the diseased microenvironment plays an impor-
tant role in MSC dysfunction, which provides pivotal targets for
treating bone and oral diseases via rescuing endogenous MSCs.

Influence of donor microenvironment on harvested stem cells

Different MSCs reside in different niches, which not only contain
tissue-specific structures and components but also possess
distinct properties due to contact with the systemic circulation
and the external environment. In particular, oral tissues that are
exposed directly to the outside environment are more prone to be
affected by the surroundings. Despite the common characteristics,
studies have found that MSCs derived from different sources are,
to some extent, functionally distinct, leading to therapeutic
discrepancies in cytotherapy. For example, compared to BMMSCs,
DPSCs and SHED that are derived from neural origins are capable
of differentiating into functionally active neurons and glial cells
with proper environmental cues and can secrete neurotrophic
factors for neuroprotection and neurite outgrowth.®%° In this
regard, DPSCs and SHED may be more advantageous for neural
regeneration. In addition, SHEDs showed stronger proliferative
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ability than DPSCs, with higher expression of genes involved in
cell proliferation and ECM formation.2*® In addition, PDLSCs
possess higher differentiation potential than gingival MSCs
(GMSCs),'® while SCAP demonstrate high proliferative activity
than DPSCs and PDLSCs2° Molecularly, the discrepancy of
different tissue-derived MSCs involves signalling pathways and
epigenetic mechanisms. During osteogenic differentiation, Wnt
signalling is more essential for BMMSCs, while the BMP pathway
plays a more important role in ADMSCs, which leads to different
responses of BMMSCs and ADSMCs to microRNA regulation.'"®
Further deciphering the distinct transcriptional and posttranscrip-
tional regulation of different MSCs would help clarify the
specificity of tissue-specific MSCs, thus promoting the develop-
ment of MSC-based cell therapy.

As discussed above, a diseased microenvironment induces
endogenous MSC dysfunction, which is also reflected in their
therapeutic efficacy when used as exogenously transplanted
MSCs. Accordingly, the influence of the donor microenvironment
on MSCs is a critical issue to be considered when applying
cytotherapy, especially autologous cell transplantation. Intrigu-
ingly, recent studies have revealed that under pathological
conditions, different tissue-derived MSCs showed different phe-
notypes, which may result in discrepancies in their therapeutic
efficacy. Although PDLSCs are the first choice of MSCs for
periodontal regeneration, these cells are more easily impaired
by the inflammatory microenvironment than GMSCs in terms of
both in vitro osteogenic differentiation ability and in vivo bone
formation.'®® Notably, ADMSCs are more functionally stable than
BMMSCs, which are prone to bone pathogenesis and display
impaired regenerative potential. Unlike BMMSCs, ADMSCs derived
from aged and oestrogen-deficient osteoporotic donors preserve
cell viability and osteogenic differentiation potential in vitro and,
more importantly, maintain regenerative abilities for bone loss
and defects when transplanted in vivo.>>=¢%'87188 Eyrthermore,
ADMSCs derived from OVX mice have been demonstrated to
preserve anti-inflammatory capacity and alleviate bone loss in
OVX recipients via systemic delivery, which implies that ADMSCs
are a promising source for osteoporotic cytotherapy with
resistance to a diseased microenvironment.® Mechanistically,
ADMSCs derived from osteoporotic donors maintain stemness,
energy metabolism status and antioxidative defence system as
well as preserved expression levels of immunomodulatory
genes.> Considering the difference between distinct MSC types
in cellular properties and resistance to diseased microenviron-
ments, evaluation and selection of MSC sources is therefore
beneficial for fulfilling the therapeutic efficacy of MSC-based bone
and dental regeneration.

Impact of recipient microenvironment on transplanted stem cells
In recent years, studies have gradually recognized the profound
effects of recipient microenvironmental status on the therapeutic
efficacy of MSCs.2'”? Since it is easier for MSCs to generate new
bone in immunocompromised mice, studies have revealed that
the recipient pro-inflammatory T cells suppress the regenerative
potential of MSCs through the synergistic effects of IFN-y and TNF-
a, which inhibit MSC osteogenesis and induce MSC apoptosis.>*
Correspondingly, the systemic injection of T-regulatory cells
(Tregs), which inhibits recipient immune responses and inflamma-
tion in immunocompetent mice, could significantly promote the
repair of calvarial defects by locoregionally transplanted MSCs.3*
Moreover, the modulation of transplanted MSC performance by
the recipient inflammatory microenvironment also occurs in the
cytotherapy of systemically infused MSCs, although with more
complicating effects. The immunosuppressive function of MSCs
in vivo requires the presence of recipient IFN-y together with
other pro-inflammatory cytokines.3> Recently, researchers have
revealed that recipient cytotoxic cells are essential for the
initiation of MSC-induced immunosuppression.'®® Nevertheless,
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Fig. 4 Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Diseased microenvironments, such as
hormonal disorders, hyperglycaemia and inflammation, severely impair the therapeutic efficacy of both endogenous and exogenous stem
cell-based regeneration of bone and dental tissue. Accordingly, microenvironmental therapeutics, including improvement of the endogenous
niche, selection and modification of donor stem cells, and restoration of recipient microenvironment, have shown great promises in
optimizing stem cell-based bone and dental regeneration. Furthermore, extracellular vesicles are emerging as promising cell-free strategies

for bone and dental regeneration

under excessive inflammation conditions, such as the arthritic
milieu, the immunomodulatory ability of MSCs is abrogated,
leading to therapeutic failure."® Accordingly, it is likely that a
balanced recipient inflammatory microenvironment is pivotal to
elicit MSC-mediated immunomodulation and bone healing, which
is the case for osteoporotic models such as ovariectomy and
systemic lupus erythaematosus (SLE).>”/'3¢

Considering that osteoporotic remedy is not always achieved
even under an inflammatory microenvironment, it is possible that
other microenvironmental factors also control the therapeutic
effects of MSCs on bone and dental disorders. Given that diabetes
is a high risk factor for bone and dental diseases and that
hyperglycaemia severely impairs the function of endogenous
MSCs, our group further elucidated the influence of the recipient
glycaemic microenvironment on cytotherapy mediated by trans-
planted MSCs. We found that recipient diabetes hinders the
therapeutic efficacy of systemically injected MSCs on osteoporosis,
which indicates that the metabolic status of the recipient
microenvironments also constitutes a critical factor determining
the efficacy of MSC-based therapies.®® Accordingly, the injection
of insulin to restore recipient glucose homoeostasis before the
infusion of MSCs could recover the therapeutic effects of MSCs to
treat diabetic osteopenia.® Molecularly, adenosine
monophosphate-activated protein kinase signalling is involved
in the impairment of MSC-mediated immunomodulation by
recipient hyperglycaemia.®® Taken together, the recipient micro-
environment plays a pivotal role in controlling MSC-mediated
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regenerative therapy, which needs to be further elucidated to
promote the development of broadly applicable strategies for
bone and dental tissue regeneration.

STRATEGIES TO OPTIMIZE STEM CELL-BASED BONE AND
DENTAL REGENERATION VIA TARGETING THE
MICROENVIRONMENT

Despite the enormous advancement achieved in recent years,
stem cell-based bone and tooth regeneration are still faced with
many challenges, especially low and uncertain efficacy.®'*'>2?
Microenvironments play a critical role in controlling both
endogenous and exogenous MSC-mediated healing of bone
and dental loss and defects, which underlies the failure of MSC-
based therapies in diseased microenvironments.?' Accordingly,
we envisage that strategies targeting the microenvironment will
greatly promote the fulfilment of MSC therapeutic potential (Fig.
4). On the one hand, approaches aimed at correcting the diseased
microenvironment could facilitate endogenous MSC-based
regeneration.>*'®' On the other hand, enhancing the resistance
of MSCs to diseased microenvironment and/or pre-normalizing
recipient microenvironment would enhance the therapeutic
efficacy of transplanted exogenous MSCs.?! In addition, consider-
ing that scaffolds act as niches for seeded cells, modification of
biomaterial-based scaffolds to recreate the specific and instruc-
tive microenvironment is beneficial for MSC-based tissue
engineering.®
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Improvement of the microenvironment to restore endogenous
stem cell function

Considering the aetiological role of diseased microenvironment-
induced MSC dysfunction in bone and dental disorders, a
promising strategy to facilitate endogenous MSC-based bone
and tooth repair is to manipulate the stem cell microenvironment,
which is less expensive and labour intensive and avoids surgical
injury and rejection risk. Recently, tantalizing evidence has
emerged that therapeutics via microenvironmental interventions
could potently restore normal host conditions that rejuvenate
endogenous MSCs for bone and dental healing. The application of
hormonal replacement therapy for postmenopausal women with
oestrogen or a combination of oestrogen and progestogen is
protective against osteoporosis,’®’ which is in part due to the
restoration of MSC functions. Specifically, the osteogenic potential
of MSCs derived from osteoporotic patients can be promoted by
oestrogen treatment but not by testosterone, as shown by
increased calcium deposition and osteogenic gene expression,'®?
indicating a critical role for oestrogen in maintaining MSC
functions. In addition to improving MSC-mediated osteogenesis,
supplementation with oestrogen also enhances MSC-induced
apoptosis of osteoclasts by preserving Fas ligand (Fasl) expres-
sion.'®? Further studies are needed to establish medication usage
to mimic the physical pattern of hormone secretion.'’

Recently, caloric restriction that lowers glucose metabolism and
nutrient intake has been increasingly recognized as a rejuvenative
intervention in many organisms to rescue functional decline in
various human organs.'®® Notably, life-long caloric restriction has
been demonstrated to prevent age-induced bone loss, while
short-term caloric restriction exerted no effects.'®*'®> For MSCs,
the downregulation of glucose levels in the in vitro culture
microenvironment dramatically protected MSCs from replicative
senescence after serial passages with strengthened proliferation
and osteogenic potential.'””? In addition, metabolic control of
hyperglycaemia via the long-term infusion of insulin preserved
bone mineral density and lowered fracture risk in diabetic
patients.'*®"'®” Moreover, pharmacological intervention by meta-
bolic regulators has been reported to restore impairment of
BMMSC-mediated osteoblastogenesis and alleviate bone disor-
ders. For example, treatment with resveratrol via oral feeding or
intraperitoneal injection alleviated the in vivo skeletal senescent
phenotype with improvement of resident BMMSCs osteogenic
potential."'®'®® In addition, the administration of resveratrol
restored ligature/lipopolysaccharide-induced alveolar bone loss,
with inhibition of inflammation and oxidative stress.''’ Moreover,
the administration of metformin in drinking water or through local
injection promoted BMMSC osteogenic differentiation, resulting in
facilitation of bone lesion regeneration in diabetic rats'®® and
prevention of bone ageing.2*°

The above findings have highlighted the prevalence of
inflammation in bone and dental disorders and the impairment
of MSCs by the pro-inflammatory microenvironment. Accordingly,
anti-inflammation therapy constitutes an important approach for
bone and dental regeneration via restoring endogenous MSC
functions. Indeed, genetic deletion of TNF-a exerts protective
effects on bone mass under diseased conditions.?®" At the cellular
level, the impaired osteogenic differentiation ability of BMMSCs
derived from oestrogen-deficient mice was rescued by treatment
with neutralizing antibodies that deplete either TNF-a or IFN-y.'8?
Further in vivo infusion of these antibodies also rescued resident
BMMSC dysfunction and alleviated OVX-induced osteoporosis,
with enhanced effects when used together.'®? Notably, the
application of anti-TNF-a at earlier and later stages of oestrogen
deficiency-induced osteoporosis exerted preventive and curative
effects on bone loss, respectively.'® Pharmacologically, anti-
inflammatory drugs have been demonstrated to improve bone
and dental diseases via rescuing resident MSC homoeosta-

sis.'83292 Systemic administration of aspirin via oral feeding
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downregulated the systemic concentration of TNF-a and IFN-y,
thus restoring MSC functions and abrogating oestrogen-deficient-
induced bone loss.'®2°% Furthermore, aspirin treatment restored
deficient osteogenic differentiation of PDSLCs under an inflam-
matory microenvironment, which upon in vivo injection, rescued
periodontitis.'®* Clinical translation of these microenvironmental
therapies will help optimize endogenous MSC-based bone and
dental regeneration.

Cell source evaluation and cellular modification to obtain feasible
stem cells

As discussed above, different sources of MSCs display distinct
resistance to diseased microenvironments, suggesting that the
selection of cell sources is essential for optimizing regenerative
therapies. To date, BMMSCs are the most popular candidates in
bone regeneration therapy both via cytotherapy and tissue
engineering.> However, BMMSC functions are prone to a diseased
skeletal microenvironment, leading to therapeutic efficacy impair-
ment of autologous cells.?>”7 In contrast, ADMSCs derived from
bone pathological donors (i.e. ageing or oestrogen deficiency)
preserve functional homoeostasis and therapeutic effects in
locoregional bone regeneration and systemic cytotherapy for
osteoporosis, indicating more resistance to a diseased microenvir-
onment than BMMSCs.>>"%"187:188 | addition, PDLSCs, which are
recognized as the standard stem cell source for periodontal
regeneration, are also more vulnerable to pro-inflammatory
microenvironments than GMSCs.'® Therefore, further elucidation
of the discrepancy among different MSC types could provide
better knowledge on how to select cell sources, especially for
autologous cellular therapy.

In addition to innate divergence between different MSC
populations, pre-conditioning provides an efficacious approach
to enhance MSC resistance to the diseased recipient microenvir-
onment and improve MSC-based bone and dental regeneration.
Genetic modification may enormously affect MSC functions via
changing the expression of key genes involved in stem cell
properties, which, however, may not be suitable for clinical
application.”""33 Alternatively, epigenetic reprogramming via
treatment with posttranscriptional modifiers has shown promise
in achieving long-lasting resistance of MSCs to recipient micro-
environmental impacts.''>'"® For example, miR-26a overexpres-
sion rescued the impaired capacity of oestrogen-deficient mouse-
derived MSCs in ectopic bone formation and in healing critical-
sized calvarial bone defects.''® In addition, the histone methyla-
tion inhibitor DZNep enhanced MSC osteogenic potential under
in vitro pathogenic conditions,''® which need further studies to
evaluate the in vivo effects. On the other hand, pharmacological
intervention with small molecule compounds has shown promise
in enhancing MSC regenerative potential. Pretreating MSCs with
aspirin before in vivo transplantation enhanced MSC resistance to
the recipient inflammatory microenvironment, resulting in sig-
nificant improvement of MSC-based ectopic bone regenera-
tion>*?°* In addition, melatonin treatment promoted MSC
osteogenesis abilities, resulting in enhanced local bone regenera-
tion mediated by MSCs both in ectopic sites and in critical-sized
calvarial bone defects.?®* Notably, pre-conditioning with melato-
nin strengthened the therapeutic effects of systemically trans-
planted MSCs for OVX-induced osteoporosis with restoration of
recipient bone remodelling, indicating an enhancement of their
resistance to oestrogen-deficient and inflammatory microenviron-
ments.2®* In addition, it has been demonstrated that metformin
pretreatment helped maintain MSC immunomodulation ability
under high glucose conditions, leading to preservation of MSC
therapeutic efficacy on osteoporosis with hyperglycaemia.*®
Intriguingly, a low concentration of IFN-y has been demonstrated
to be essential for priming donor MSC immunomodulation
property®>>?®> and to promote MSC-based bone formation.?
With the above approaches, the ability of MSCs to resist diseased
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Table 1. Clinical trials of stem cell-based therapies for dental regeneration
Indication Cell source Phase, patients Results/status Clinical trial
Endodontic inflammation SHED N/A, n=80 Unknown status NCT01814436
DPSCs N/A, n=30 Completed (no results posted) NCT02842515
Stem and progenitor cells Phase 3, n =29 Active, not recruiting NCT02437708
Periapical periodontitis Umbilical cord-derived MSCs N/A, n=38 Completed (no results posted) NCT03102879
Periodontitis DPSCs N/A, n=29 Completed (no results posted) NCT03386877
Phase 1/2, n=40 Unknown status NCT02523651
PDLSCs Phase 1, n=35 Unknown status NCT01357785
Phase 1/2, n=80 Unknown status NCT01082822
BMMSCs Phase 1/2, n=30 Completed (no results posted) NCT02449005
GMSCs Phase 1/2, n=30 Recruiting NCT03137979
MSCs Phase 1/2, n=10 Completed (no results posted) NCT00221130
Alveolar bone loss DPSCs Phase 1, n=10 Enrolling by invitation NCT02731586
Buccal fat pad derived stem Phase 1, n=20 Unknown status NCT02745379
cells Phase 1, n=20 Unknown status NCT02745366
Oral mucosa MSCs Phase 1/2, n=12 Unknown status NCT02209311
GMSCs N/A, n=20 Completed (no results posted) NCT03638154
Cleft lip and palate DPSCs Phase 3, n=62 Not yet recruiting NCT03766217
NA, n=5 Completed (satisfactory bone healing) NCT01932164
Cleft of alveolar ridge Buccal fat pad derived stem cells Phase 1, n=10 Completed (no results posted) NCT02859025
Jaw bone atrophy MSCs Phase 1, n=13 Enrolling by invitation NCT02751125

microenvironments will be strengthened, which helps guarantee
the therapeutic efficacy of these cells.

Restoration of recipient microenvironment to benefit transplanted
stem cells
Considering the role of recipient microenvironments in determin-
ing the therapeutic efficacy of transplanted stem cells, pre-
normalizing the microenvironment to provide a favourable
regeneration condition is another promising strategy to optimize
MSC-based bone and tooth regeneration. Before local transplanta-
tion of MSCs into the injury area, the application of the anti-
inflammatory agent aspirin specifically around the transplantation
location inhibited the regional pro-inflammatory condition with
downregulation of IFN-y and TNF-a. As a result, MSC-mediated
repair of critical-sized calvarial bone defects was promoted.®* In
addition, for MSC-based systemic cytotherapy, the short-term
application of a proteasome inhibitor, bortezomib, at arthritis
onset enhanced MSC therapeutic efficacy for arthritis via inhibiting
the diseased inflammatory microenvironment.®® Moreover, for
diabetic recipients, the therapeutic effects of MSCs may be
promoted by controlling the hyperglycaemic microenvironment.
During systemic MSC injection, intensive infusion of insulin, which
helped maintain a normal condition, guaranteed the effects of
MSCs to treat osteopenia.>® Notably, the one-time injection of
insulin at a low dose just prior to MSC infusion could enable MSCs
to alleviate osteoporosis in diabetic recipients, which indicated the
feasibility of building up a normoglycaemic “window” for MSC
transplantation.>

Another approach to normalize the diseased recipient micro-
environment is through the delivery of cells. For MSC-mediated
ectopic bone regeneration, infusion of Tregs modulated the
recipient inflammatory microenvironment, leading to improved
regeneration in immunocompetent recipients.>* Notably, MSCs
are able to modulate the recipient microenvironmental condition
via cell-cell contact and paracrine secretion of a variety of
cytokines and EVs.3>3%4! Indeed, MSC-mediated bone healing via
locoregional transplantation could be enhanced by synchronized
systemic MSC infusion, which inhibited recipient immunological
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responses and decreased inflammatory levels."*® Similarly, under
certain conditions, multiple systemic infusions of MSCs have
superior effects to one-time MSC infusion due to the modulatory
effects of MSCs.2”2°® Moreover, the two-time infusion of MSCs
has been proven as effective in the treatment of diabetic
osteoporosis, during which the first restored normoglycaemic
conditions to create a beneficial microenvironment so that the
second infused MSCs could ameliorate osteopenia.®®

In addition to cytotherapy, establishing a favourable micro-
environment is also an effective approach to promote the
regenerative efficacy of MSC-based tissue engineering. The cell
sheet/aggregate technique, which delivers cells with intact surface
adhesion molecules and cell-cell interactions, has been recog-
nized to establish a beneficial microenvironment for exogenously
transplanted MSCs.2%° Moreover, the bone regeneration potential
of MSC aggregates could be enhanced by licochalcone A, a small
molecular compound promoting ECM secretion and MSC osteo-
genic differentiation, resulting in facilitated healing of metaphy-
seal defects in oestrogen-deficient recipients.”® On the other hand,
bioactive biomaterials with the ability to create a beneficial
ambient microenvironment have been increasingly applied in
tissue engineering along with bioactive molecular modification.
The application of strontium-substituted calcium silicate bioactive
ceramic scaffolds facilitated bone regeneration in osteoporotic
recipients.?'® In addition, akermanite bioceramics significantly
promoted the healing of critical-sized calvarial defects in
oestrogen-deficient mice and that calcium, magnesium and
silicon-containing akermanite bioceramics enhanced the osteo-
genesis and angiogenesis of OVX mice-derived MSCs.2"! Further-
more, mesoporous bioglass/silk fibrin scaffolds combined with
delivery of platelet-derived growth factor B and bone morphoge-
netic protein-7 (BMP-7) have shown notable pro-regenerative
effects on osteoporotic femoral defects.?'? In addition, the use of
calcium phosphate cement scaffolds loaded with icariin could
create a beneficial niche in oestrogen-deficient conditions to
increase the osteogenesis and angiogenesis of MSCs, thus
promoting MSC-based osteoporotic fracture healing.?'®> Taken
together, the restoration of recipient microenvironments is a
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feasible way to optimize MSC-based bone and dental

regeneration.

CELL-FREE STRATEGIES IN BONE AND DENTAL REGENERATION
As discussed above, MSCs possess a strong ability to secrete EVs
containing a wide variety of proteins, lipids, and nucleic acids,
which play a key role in mediating cell-cell communication.
Notably, EVs have emerged as a promising alternative to whole-
cell therapy with considerable potential in bone and dental
regeneration.?’*2'® Exosomes, the most extensively studied EV
type, have been increasingly recognized as the main components
of the secretome mediating MSC therapeutic effects on osteo-
porosis, the systemic injection of which alleviates osteopenia as
efficiently as MSCs.3**" In particular, both MSCs and exosomes
exert long-lasing therapeutic effects, with one-time injection
resulting in restoration of bone mass for months3%*' The
underlying mechanism may be the modulation of recipient
epigenetic states via transfer of microRNAs and proteins.3*#! In
addition, the application of MSC-derived exosomes alone or
combined with scaffolds has exhibited the potential to promote
bone regeneration for fracture, defects, osteoarthritis and
osteonecrosis.*>2'772! Furthermore, exosomes exhibit preserved
therapeutic efficacy in a diseased microenvironment, as shown in
the healing of critical-sized bone defects in OVX rats.??? The ability
of exosomes to resist recipient pathogenic microenvironments has
been further proven, as these molecules maintain therapeutic
potential for osteoporosis under autoimmune conditions, such as
SLE and systemic sclerosis.>>*" Given the diversity of EVs, further
elucidation of the therapeutic prospects of other EVs is needed,
which will promote the establishment of cell-free regeneration
strategies.

Within recent years, EV-based cell-free strategies have shown
encouraging therapeutic potential with superiority to single
molecule drugs, whole cells, and synthetic liposome or nanopar-
ticle formulations. EVs are easily obtained and stored sustainably
and reproducibly and remain relatively stable when infused
in vivo. In addition, by transferring a variety of secreted factors,
EVs are able to exert synthetical effects on the recipient
microenvironment with high safety. In addition, the use of
engineered EVs enables the application of multiple factors with
favourable biocompatibility and biostability and shows less risks
for differentiation abnormalities or neoplastic transformation.
Collectively, the translation of MSC-derived EVs into clinically
feasible therapeutics will become a thriving strategy in bone and
dental regeneration, which will stimulate an enormous amount of
preclinical and clinical researches in the near future.

CLINICAL TRIALS OF MSC-BASED BONE AND DENTAL
REGENERATION

In recent years, an increasing number of clinical trials have been
conducted to assess the clinical feasibility of MSC-based
regenerative therapies for bone and dental diseases (Table 1).
Uncontrolled clinical trials have demonstrated that the intra-
articular injection of ADMSCs is a safe and effective therapeutic
approach for patients with knee osteoarthritis that significantly
improves pain, function and daily living activities.””> For the
treatment of osteonecrosis of the femoral head (ONFH), the
application of bone marrow-derived mononuclear cells (BMMCs)
that are highly enriched with BMMSCs leads to a notable
alleviation of clinical symptoms, improved hip function and
delayed collapse, thus constituting a safe, efficacious and
minimally invasive treatment approach, especially for patients at
early stages of ONFH.>**?” |n addition, in one clinical study,
patients with calvarial defects underwent a cranioplasty procedure
using a combination of ADMSCs and beta-tricalcium phosphate
granules, which promotes reconstruction of large cranial
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defects.??® In addition, the clinical relevance of MSCs in dental
regeneration has also been assessed. In a randomized controlled
clinical study conducted by our group, SHED aggregates could
regenerate complete pulp tissues in patients with pulp necrosis,
which is equipped with blood vessels and nerves.”! More
importantly, after SHED implantation, the recipient immature
permanent teeth showed increased root length and decreased
apical foramina width, indicating that the regenerated pulp acted
as normal pulp to maintain continued root development.”’ For
patients with severe mandibular ridge resorption, researchers
inserted BMMSCs into the resorbed alveolar ridge together with
biphasic calcium phosphate granules as scaffolds, which induced
significant new bone formation that was adequate for dental
implant installation.?® Furthermore, a single-centre, randomized
trial was conducted to assess the efficacy of PDLSCs in
combination with bovine-derived bone mineral materials for the
treatment of periodontal intrabony defects. No statistically
significant differences were detected between the experimental
group and the control group, which needs to be further validated
by multicentre randomized controlled studies.?*°

However, despite the promising results of these studies, there
are still many obstacles limiting the use of MSCs in clinical bone
and dental regeneration. Many of the completed clinical trials
registered in ClinicalTrials.gov have not provided results, which
may restrain the clinical transformation of MSC-based regenera-
tive therapies. In addition, the development of internationally
recognized, standardized guidelines on cell selection, expansion,
storage and shipping are needed to provide clinically applicable
cell sources. Another aspect that needs to be addressed is the lack
of a standardized procedure for cytotherapy or the application of
MSC-based tissue engineering products. More importantly, the
fulfilment of the function of transplanted cells requires techno-
logical advances that optimize the retention, viability, homing,
differentiation ability and modulatory capacity of MSCs in vivo.

CONCLUSION

Over the past several years, MSC-based regeneration strategies
have shown great promise for healing bone and dental loss and
defects, both via endogenous restoration and exogenous trans-
plantation. Notably, the therapeutic efficacy of MSC-mediated
regeneration is under tight control of the microenvironment,
which not only regulates resident MSCs under both physical and
pathological conditions but also modulates transplanted MSCs in
cytotherapy and tissue engineering. As a result, achieving MSC-
based bone and dental regeneration in diseased microenviron-
ments remains a major challenge. Accordingly, microenvironment-
targeting therapeutic strategies that may promote the optimiza-
tion of MSC-based bone and dental healing in diseased
microenvironments have been established. In this regard, several
tactics have demonstrated enormous potential, including
improvement of the endogenous microenvironment to revitalize
innate MSCs, modification via pharmacological or epigenetic
approaches to enhance exogenous MSC resistance, and restora-
tion of the recipient microenvironment to benefit transplanted
MSCs. Notably, EVs/exosomes have emerged as attractive alter-
natives to MSCs in both cytotherapy and tissue engineering with
pro-regenerative potential and microenvironment modulatory
abilities (Fig. 4).

While much progress has been achieved, several issues remain
to be explored. First, further studies regarding the microenviron-
mental modulation of MSC-based tissue regeneration and under-
lying molecular mechanisms are needed to pinpoint the specific
contributions of the microenvironment to MSC-based therapies
and identify key molecules and signalling pathways involved.
Second, the application of novel techniques to improve MSC-
based bone and dental regeneration, such as modifying
biomimicking materials via nanotechnology to establish a bionic
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microenvironment®3'"23* and strengthening MSC recruitment via

an aptamer-targeting technique to promote oriented transplanta-
tion, is needed.”**?* Third, given the control of the microenvir-
onment over MSCs, it is advisable to analyse the recipient
microenvironment status and accordingly formulate therapeutic
time points prior to MSC transplantation to strengthen the efficacy
of infused MSCs. Last but not least, in addition to prolonging the
survival of transplanted MSCs, recent studies have revealed that
the apoptosis of MSCs may constitute a critical mechanism
underlying their therapeutic efficacy in certain disorders,'8823¢
which may provide novel insights into MSC-based regenerative
therapies. In summary, understanding the effects of microenvir-
onmental modulation on MSCs will shed more light on the
pathogenesis and therapeutics of bone and tooth, which will
promote the establishment of optimized MSC-based strategies for
bone and dental regeneration.
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