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Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few
studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve
damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN.
The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN.
Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Ad-fibers, which mediated allodynic pain after neuronal
sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs
degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and
these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The
depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to
mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent
neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also
sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(1) neurons may contribute to
mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of
prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also
correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion–induced mechanical allodynia involves a
complicated cascade of cellular signaling alterations.
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1. Introduction

The transient receptor potential vanilloid subtype 1 (TRPV1), also
known as capsaicin receptor, is encoded in humans by the trpv1
gene. The TRP family of receptors (including several subtypes)61

and their physiological function are well established in the
literature.16,17,61 TRPV1 was first cloned by Caterina et al.17

and has been awell-known receptor. Transient receptor potential
vanilloid subtype 1 is a nonselective ion channel and a polymodal
nociceptor16,153 used to detect and regulate body temperature
as well as respond to heat and pain signals.128 Transient receptor

potential vanilloid subtype 1 acts as a thermoreceptor.16

Transient receptor potential vanilloid subtype 1 is expressed by
small-diameter nociceptors, and TRPV1 depletion has specifi-
cally been reported to result in thermal analgesia.16,61 The

molecular mechanisms of TRPV1-mediated thermal analgesia

are related to the cytotoxicity induced by increased calcium

permeability and the influx of Ca21 into TRPV1(1) nocicep-

tors.39,42 Patients with small-fiber neuropathy (SFN) experience

various nociceptive sensations64,160 such as reduced noxious

thermal sensation (thermal analgesia) and mechanical
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hypersensitivity (mechanical allodynia). This suggests that
TRPV1(1) nociceptors regulate both thermal and mechanical
nociception in SFN. This review article discusses the molecular
mechanisms of TRPV1 associated with mechanical allodynia.

1.1. Roles of transient receptor potential vanilloid subtype 1
in small-fiber neuropathy models

The skin is innervated by intraepidermal nerve fibers (IENFs) which
respond to external stimuli, and skin denervation is a common
clinicopathological manifestation of SFN.10,19,20,26,35,83,147 Neuro-
anatomically, these IENFs are mainly C-polymodal nociceptors
and Ad-fibers, which mediated allodynic pain confirmed by
neuropharmacological blockade,50,57,59 evoked potentials record-
ings,57,93,145 and genetic expression.57 Particularly, the C-
polymodal nociceptors are further categorized as mechano-heat-
responsive units and mechano-insensitive units (CMi) according to
the different electrical thresholds. Past studies suggested CMi
became sensitized by tissue damage (ie, skin denervation),130

nerve growth factor (NGF),113,114,141 and capsaicin administra-
tion.140 Therefore, the neuropathology of skin denervation pro-
vided a basis for evaluating the alteration of pain perception. The
combination of skin biopsy and protein gene product 9.5-
immunohistochemistry is a useful clinical diagnostic tool for
assessing skin denervation in patients with SFN. It has been
reported to provide reliable diagnosis and progress prediction in
SFN.68–71,97 This skin biopsy assessment has also been applied to
various animalmodels of SFN, particularly in cases of degeneration
of TRPV1(1) IENFs,45,51,53,58,126 which may sensitize their
neuronal soma in the dorsal root ganglia (DRG).50 The benefit of
these animal models of SFN is that they allow the simultaneous
assessment of skin denervation and the degree of neuronal soma
injury. For example, the different pathophysiological responses of
IENFs and TRPV1 (1) neuronal soma may have paradoxical
neurophysiological outcomes.50,51 However, studies using animal
models of diabetes-induced SFN have not addressed the factors
affecting the development of neuropathic pain by sensitized and/or
irritated large sensory neurons81,115 and identifying these factors
may delineate the role of TRPV1 in the development of mechanical
allodynia, which has a high incidence among patients with
diabetes-induced SFN.

Studies have used highly selective neurotoxins to TRPV1 such
as topical capsaicin21,36,66,78 and systemic resiniferatoxin (RTX)
treatment14,56,77 to induce skin denervation, confirming the role
of thermal transmission in SFN.16,17,153 Genetic knockout of
TRPV1 has resulted in similar outcomes.78,87,101 In another study,
highly selective and highly potent neurotoxins depleted TRPV1,
inducing pure SFN that spared large sensory nerves.51 Further-
more, Pan et al.118 and our research group51 demonstrated that
TRPV1(1) nociceptors had a paradoxical effect on thermal and
mechanical sensitivity after systemic neurotoxicity was induced in
the naı̈ve rodent. The genetic depletion of TRPV1 also reversed
mechanical allodynia that was induced in a neurogenic in-
flammation model.87 Collectively, it is believed the role of TRPV1
in SFN may involve several neuronal and immune re-
sponses,50,52,90,92,118 suggesting that alteration of TRPV1
pathophysiology is a critical factor.

1.2. Transient receptor potential vanilloid subtype 1-
expressing peptidergic vs nonpeptidergic nociceptors

Small-diameter nociceptors are categorized into 2 types accord-
ing to their neurotrophic characteristics: peptidergic and non-
peptidergic nociceptors. TRPV1 is predominantly expressed by

peptidergic nociceptors53,125 and less commonly coexpressed
by nonpeptidergic nociceptors.50 The peripheral processes of
these peptidergic and nonpeptidergic nociceptors terminate on
skin response to different types of noxious stimuli.50,52,53 The
colocalized ratios of TRPV1 and peptidergic(1) nociceptors are
correlated with different neurophysiological outcomes. For
example, approximately 20%–50% of calcitonin gene–related
peptide (CGRP) (1) nociceptors coexpress TRPV1 in the DRG of
rodents,53,125 and the reinnervation of CGRP (1) IENFs reverses
thermal analgesia after TRPV1 depletion,51,53 which may due to
TRPV1 depletion alter the expression of neuronal phenotypes
and neurophysiological functions.151,152 By contrast, denervation
of substance P(1) IENFs reportedly results in a loss of thermal
response ability because of the low density of IENFs and high
colocalization (40%–60%) with TRPV1.53,125 These peptidergic
neuronal soma exhibit the same pathology as their peripheral
IENFs.51 In addition to thermal transmission, the depletion of
these peptidergic neurons after TRPV1 depletion improved
periodontitis,13 arthritis,47 and orthodontic force–derived me-
chanical irritation157 by altered inflammatory response. Collec-
tively, the elimination of peptidergic neurons after TRPV1
depletion may alter systemic neurophysiological function which
involved inflammatory responses.

Pathological evidence indicates that the ratio of TRPV1
colocalized with different phenotypic nociceptors is a critical
factor for different neuropathic behaviors. For example, TRPV1
has limited expression by nonpeptidergic (also called purinergic)
P2X3 nociceptors, and specifically, P2X3(1) nociceptors sensi-
tized by highly potent neurotoxins respond to mechanical
allodynia15,62 because of the burst release of adenosine tri-
phosphate (ATP) from denervated skin and injured DRG
tissues.50 The other desensitized nonpeptidergic nociceptors
that coexpress with TRPV1 also exhibit similar neuropathic
behaviors. For example, the downregulation of the prostatic acid
phosphatase (PAP), which is highly coexpressed with P2X3(1)
nociceptors (up to 87%) and approximately 50% coexpressed
with TRPV1, correlates with the development of mechanical
allodynia.65,162 In addition to TRPV1 (1) neuronal soma and their
peripheral IENFs correlated to the noxious stimulation, pre-
synaptic TRPV1 (1) central terminals on the spinal cord
suggested modulated the postsynaptic current activities.55,105

This neurophysiological modulation by TRPV1 is further con-
firmed by c-fos activation on postsynaptic spinal interneurons
after TRPV1 activation at the periphery.46,119 The expression of
TRPV1 (1) central terminals and interneurons showed their
neurophysiological plasticity that suggested commonly contrib-
ute to painful sensation, which was regulated by the pathways
from the ventromedial medulla and thalamus in brainstem and
diencephalon, respectively, to spinal TRPV1 (1) interneurons.22

Particularly, TRPV1 activation expressed by spinal GABAergic
interneurons mediated mechanical allodynia by the disinhibition
of long-term depression in the spinothalamic tract.75 Collectively,
topographical TRPV1 expression played an important role in
plastic neuronal activity for pain transmission.

Notably, the neurophysiological functions of small-diameter
nociceptors depend on the regulation of neurotrophin signals; the
reinnervation of CGRP (1) peptidergic IENFs normalizes the
thermal noxious sensation that underlies the activation of NGF-
TrkA signaling.48,52,53 TrkA is the high-affinity receptor of NGF
that regulates the neurophysiological functions of peptidergic
nociceptors. NGF-TrkA signaling also regulates the neurophys-
iological functions of nonpeptidergic PAP (1) nociceptors
through high PAP/TrkA colocalization ratios (approximately
70%).162 However, 2 studies have reported that the activation
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of NGF-TrkA signaling has no effect on TRPV1 recovery, despite
TRPV1/TrkA colocalization ratios of approximately
30%–50%.52,79 Furthermore, NGF has been found to normalize
neuropathic manifestations through distinct neurotrophin
receptor–dependent pathways.52 For example, NGF has para-
doxical effects, such as upregulation of TrkA, the peptidergic
nociceptor–dependent neurotrophin receptor, and down-
regulation of the nonpeptidergic nociceptor–dependent Ret re-
ceptor.52 Evidence from pharmacological interventions indicates
that the activation of Ret receptors mediates both thermal and
mechanical noxious sensations and that TrkA receptors have no
effect on mechanosensation. Notably, the expression of different
neurotrophin cognate receptors such as activating transcription
factor 3 (ATF3) is associated with intranuclear signaling, sug-
gesting that these injury-dependent molecules expressed by
different neurotrophin cognate receptors are critical factors in the
development of neuropathic pain.

The different phenotypes of small-diameter nociceptors have a
wide spectrum of profiles colocalized with TRPV1 that exhibit
distinct neurophysiological functions, such as the induction of
both thermal analgesia and mechanical allodynia after TRPV1
depletion, which is mediated by 2 distinct noxious pathways
regulated by specific neurotrophins and their cognate
receptors.52

1.3. Correlation of neuronal soma injury after transient
receptor potential vanilloid subtype 1 depletion with
neurotrophic receptor expression and pain development

Transient receptor potential vanilloid subtype 1 depletion and the
degeneration of IENFs cause a cascade of responses in the
neuronal soma. For example, ATF3 is amember of the ATF/CREB
transcription factor superfamily.40 Activating transcription factor 3
dimerizes with c-Jun, which responds to neuronal irritation and
outgrowth on different types of neurons.91 In addition, ATF3 acts
as an effector molecule in small-diameter nociceptors that
respond to maladaptive behaviors of neuropathic pain.12,50,127

Recently, comprehensive studies have demonstrated increased
ATF3 upregulation in DRG neurons following various nerve
injuries and exposure to noxious stimuli.12,25,32,41,112,127,156,161

ATF3 upregulation by small-diameter nociceptors is specific and
differential, and the phenotypic profiles of ATF3 providemolecular
explanations for manifested behaviors. For example, ATF3 has
been reported to be preferentially upregulated by small-diameter
nociceptors, suggesting the susceptibility and topographical
relationship of ATF3 to neuropathic pain.33,50,52,162 Although
ATF3 is preferentially expressed by small-diameter nociceptors
after TRPV1 depletion, this ATF3 upregulation is distinct. For
example, ATF3 was reported to be predominantly expressed by
nonpeptidergic nociceptors such as P2X3 (1) and PAP (1)
nociceptors rather than by CGRP (1) peptidergic nocicep-
tors.50,162 In addition, ATF3 upregulation was linked to skin
denervation and phenotypic changes in nonpeptidergic noci-
ceptors. Another study reported opposite results; ATF3 was
predominantly expressed by peptidergic CGRP (1) nociceptors
rather than isolectin B4 (1) nonpeptidergic neurons.108

Transient receptor potential vanilloid subtype 1 depletion by
neurotoxicity is a comprehensive neuropathological effect of the
skin denervation response to transcription factors in neuronal
soma, suggesting that ATF3 activity as a pain indicator directly
reflects nerve injury and that expression by nonpeptidergic
nociceptors is necessary for pain development. However, ATF3
has also been documented to act as a simplified marker for injury
rather than a pain marker.134 Furthermore, extracellular signaling

is coordinated with intracellular ATF3 responses. The enhance-
ment of extracellular purinergic signaling occurs in parallel with
TRPV1 depletion and the burst release of ATP from injured DRG
tissues.50 Notably, extracellular ATP also acts as a gliotransmitter
to mediate glial activation in pain development60,80 through
communication with microglia and astrocytes and neuronal
interactions, which are also factors affecting pain development.80

Thus, the burst release of ATP from injured tissues is also
associated with the neuroinflammation that mediates neuro-
pathic manifestations.

Intracellular signal cascades of ATF3 involve activation of the c-
Jun/c-Jun N-terminal kinase (JNK) signal pathway during axonal
transportation activity, which may mediate neuronal stress
signals.91 In addition to ATF3, activating transcription factor 2
(ATF2) acts as a responding molecule in pathological manifes-
tations.158 It is activated by JNK in diabetic neuropathy.99

Although few studies have reported an association between
ATF2 expression and TRPV1 expression,30 ATF2 is a potential
upstreammolecule that regulates TRPV1-mediated inflammatory
pain.

1.4. Transient receptor potential vanilloid subtype 1
depletion results in neuroinflammatory pain

Skin denervation and neuronal soma injury are typical neuro-
pathological characteristics of SFN. They result in neurogenic
inflammation, also referred to as neuroinflammation, which is
associated with neuropathic behavior. Tumor necrosis factor-a
(TNFa) is a major pleiotropic cytokine that mediates neuro-
inflammation through activation of the TNF receptor 1 (TNFR1)
ligand receptor.143,163 TNFa and TRPV1 are considered 2 critical
mediators of inflammatory pain, suggesting that functional
TRPV1 is required for the development of inflammatory pain
mediated by TNFa.120 Blocking TNFa/TNFR1 signaling is a new
therapeutic strategy for inflammatory diseases and is particularly
effective in alleviating injury-induced neuropathic pain.23,28,31,110

Notably, one study reported that Ret receptor–mediated noci-
ceptive behavior was reversed by TNFR1 loss,159 suggesting that
the interaction of TNFa with nociceptors rather than with TRPV1
is a more critical factor for the development of neuropathic be-
havior.92 However, colocalized studies of TNFR1 (1)/TRPV1 (1)
neurons have demonstrated that TNFR1 may play a silent role in
neuropathic behavior after TRPV1 depletion by the highly potent
neurotoxin RTX. Instead, TNFa sensitizes Ret (1) neurons, which
mediate mechanical allodynia after TRPV1 depletion by neuro-
toxins; for example, RTX induces a burst of TNFa that further
sensitizes and upregulates Ret (1) neurons in addition to
TRPV1.92 Moreover, TNFa-deficient mice have been found to
exhibit fewer nonpeptidergic Ret (1) neurons, suggesting that
Ret/TNFa signaling is required in neurotoxin-induced neuropa-
thy, which is mediated by a TRPV1-independent pathway. One
study also demonstrated that TNF receptor 2 (TNFR2), another
receptor of TNFa, is a major responding effector that mediates
TRPV1-dependent inflammatory pain.24 The collective evidence
indicates that TNFa initiates upstream signaling and that, in
concert with its cognate receptors, has a broad spectrum of roles
in the development of neuropathic pain.

Interleukin-6 (IL-6) and interleukin-1b (IL-1b) belong to another
category of cytokines involved in neuroinflammation. Reduction
of IL-6 and IL-1b may relieve neuropathic pain through
attenuated TRPV1 expression.5,86 In several neuropathicmodels,
the parallel expression of TRPV1 and cytokines was correlated
with pain development.29,86,95,109,139,144 These findings suggest
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that proinflammatory cytokine–mediated pain sensation requires
TRPV1 activation.

TNFa neutralization is currently used for clinical treatment of
autoimmune diseases,85 and TNFa-inhibitory drugs are also
used to inhibit glial cell activation in neuropathic pain treat-
ment.100 Neuroinflammation induces neuropathic behavior
through TNFa-mediated activation of glial cells.7,135 TNFa
sensitizes Ret (1) neurons, which mediate neuropathic behavior
through an alternative pathway. Generally, glial cell line–derived
neurotrophic factor (GDNF) is used as an analgesic agent that
acts as a ligand to the Ret receptor, regulating its function and
morphology.43,98,133 An NGF inducer, 4-methylcatechol (4-
MC),63,76,121 has been demonstrated to suppress neuropathic
behavior52 and enhance neuroregeneration.51,54,63 However,
NGF also induced neurogenic inflammation followed by mechan-
ical allodynia, which mediated by unsilencing nicotinic acetyl-
choline receptor subunit a-3 (CHRNA3) (1) peptidergic
nociceptors124 and activated previous silent nociceptors.44

Noteworthy, the elimination of CHRNA3 (1) nociceptor after
TRPV1 depletion72 sparing NGF-induced neurogenic
inflammation.

Studies have also shown that 4-MC inducesGDNF synthesis54

and normalizes the upregulation of Ret (1) neurons and
neuropathic behavior.52 The normalization of TNFa and Ret
receptors could be targeted in the development of a pharmaco-
logical intervention that could provide a new therapeutic direction
in the treatment of SFN beyond glial cell activation. The signaling
interactions between TNFa and Ret require further investigation.

1.5. Role of microdomains in transient receptor potential
vanilloid subtype 1 signaling transduction

The cell membrane microdomain is a microstructure whose
structural integrity is essential in functional physiology. The
structural alteration of microdomains is correlated with neuronal

pathogenesis, such as that of peripheral pathology,34,84,148

antagonizes hyperalgesia,27 and inhibits endocannabinoid-
mediated analgesic systems.129 Microdomains have a complex
composition of lipid derivatives132 and have received increasing
attention for their relation to nociceptive modula-
tion.18,37,82,88,132,136 Microdomains are also involved in the
modulation of nociceptive development.96,132,150 Growing evi-
dence suggests that TRPV1 is a microdomain component that
modulates nociceptive transmission, particularly through inter-
action with nociceptive molecules.11,96,131,149 Microdomain
signaling requires the hydrolysis of phosphatidylinositol 4,5-
bisphosphate [PI(4,5)P2],149 a process also involved in PAP-
mediated antinociception through the prevention of TRPV1-
sensitized noxious sensations.65,149 Molecular intervention be-
tween TRPV1 and PAP involves a PI (4,5) P2 signal. TRPV1
depletion is associated with PAP downregulation, which results in
higher PI (4,5) P2 availability, which acts as an agonist of TRPV1 to
modulate TRPV1 activity.4,123 PI (4,5) P2 metabolism is also
involved in inhibiting the mechanosensitive receptors modulated
by TRPV1 activation.8 Furthermore, PAP downregulation is
associated with an imbalance in analgesic adenosinergic
signaling.65,162 For example, adenosine receptors mediate
cellular analgesia through adenosine ligand–activated adeno-
sine receptors.9,138,164 In particular, adenosine A1 receptor (A1R)
activation plays a key role in SFN.65,67,90 Downregulation of PAP
(1) neurons reduces their ectonucleotidase activity, which in turn
reduces the hydrolysis of AMP to adenosine, resulting in the in-
hibition of cellular analgesia.65

One study found that microdomain disruption by cholesterol
depletion with methyl-b-cyclodextrin (MbC) preserves PAP-
mediated antinociception through PI (4,5) P2 hydrolysis,90

indicating that TRPV1 and PAP are located in cholesterol-rich
microdomains. These findings suggest that intracellular signal
alterations also contribute to pain modulation. However, another
study demonstrated that TRPV1 depletion had paradoxical

Figure 1. Mechanism of thermal analgesia and mechanical allodynia induced by transient receptor potential vanilloid subtype 1 (TRPV1) depletion in small-fiber
neuropathy. TRPV1 receptors were depleted by highly selective neurotoxins such as resiniferatoxin (1) and induced thermal analgesia and mechanical allodynia
through 2 distinct pathways. The depletion of TrkA receptors, whichwere expressed by peptidergic calcitonin gene–related peptides and substance P (1) neurons
(2), resulted in thermal analgesia (3). By contrast, nonpeptidergic TRPV1 (1) neurons upregulated activating transcription factor 3 (ATF3) expression, which
reflected underlying injury of neuronal soma (4), resulting in a burst of TNFa (5). TNFa had no effect on TNFR1 because it was depleted as a result of its high degree
of colocalization with TRPV1 (6) but sensitized Ret receptors (7), leading to the development of mechanical allodynia (8). TRPV1 colocalized with prostatic acid
phosphatase and A1Rwithin the same cell membranemicrodomain. TRPV1 depletion caused an imbalance in analgesic adenosinergic signaling that induced the
downregulation of prostatic acid phosphatase (9), which resulted in reduced hydrolysis of adenosine by AMP (10). This in turn reduced the capacity of A1R-
mediated cellular analgesia (11). Structural disruption of microdomains by cholesterol depletion is associated with reduced PI (4,5) P2 hydrolysis (12), which leads
to mechanical allodynia (13).
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effects on nociceptive transmission; for example, TRPV1 de-
pletion from microdomains induced neuropathic pain.65 Micro-
domains labelled by flotillin 1 (FLOT1) and flotillin 2 (FLOT2) as well
as microdomains within sensory neurons have an abundance of
FLOT1 and FLOT2. A1R also coexpresses with FLOT1 and
FLOT2, and these FLOT1 (1) and FLOT2 (1) neurons are
depleted after TRPV1 depletion associated with the development
of mechanical allodynia.90 These findings suggest that micro-
domains containing cellular analgesic molecules on sensory
neurons act as functional units for pain transduction.

In addition, microdomains contain nociceptive receptors such
as P2X3,37,106,154 and P2X3 may act as the downstream
molecule of PI (4,5) P2.102,103 Moreover, PI (4,5) P2 modulation
of P2X3 may occur through autocrine signaling because of the
high colocalization of PAP and P2X3 in DRG neurons.162 These
collective findings indicate that TRPV1 depletion initiates a
cascade of signaling alterations caused by the neuronal injury
response to degeneration of peripheral IENFs after neurotoxin-
induced SFN.

1.6. Clinical implications for pain management of lipid
derivatives of microdomains

Most SFN studies have focused on investigating the responses
and contributions of sensitized small-diameter nociceptors after
those nociceptors suffer injury and irritation.49,50,111,117,142

Microdomains act as functional units of nociceptive transmission
and could contribute to the development of new first-line
pharmacotherapeutic treatments. Microdomains are composed
of cholesterol, sphingomyelin, and gangliosides,122,132 and
studies have demonstrated that the TPRV1 activity is affected
by altered ganglioside synthesis132,137,150 and sphingomyelin
inhibition.132,150 Sphingomyelin signaling modulates nociception
through the activation of p75 neurotrophin receptors,73,74 and
NGF regulates TrkA receptor activation through alteration of
these lipid derivatives.89 In addition, some G protein–coupled
receptors are intracellular components of microdomains and are
involved in nociceptive development.104,107 The elimination of
lipid metabolic constituents is a potential target for the pain
management of lipid metabolism disorders related to
microdomain-attributed peripheral neuropathy.34,89,116,146 Lipid
derivatives inmicrodomains were demonstrated to be sensitive to
drug-induced disruption of microdomains.38 Therefore, targeting
the cytoplasm membranes surrounding microdomains could
constitute a new therapeutic direction. Multiple doses of drugs
may be required for the depletion of lipid derivatives because of
the dynamic replenishment of cholesterol from intracellular
stores.94

2. Conclusions

Transient receptor potential vanilloid subtype 1 acts as a polymodal
nociceptor that responds to different noxious stimuli. Commercial
capsaicin dermal patch (Qutenza) with 8% (wt/wt) capsaicin has
high efficacy for treatment SFN3,155 such as diabetic peripheral
neuropathy.1 Local analgesia by a high concentration of capsaicin
because of axonal degeneration by cytoskeleton disassembling17

andmitochondrial fission,21 which showed “defunctionalization” of
nociceptor peripheral fibers including the transient loss of
membrane potential, inability to axonal transport of neurotrophic
factors, and reduction of IENFs.2 Noteworthy, administration
routes determined the survival of TRPV1 (1) neuronal soma and
nociceptive-related neuropeptides expression at different nervous
tissues.6 It believed TRPV1 agonist administration through different

routes had distinct effects on neurophysiological responses. This
article reviews the role of TRPV1 in SFN. In particular, it discusses
the depletion of TRPV1 by highly potent neurotoxins such as RTX,
which induces a cascade of extracellular and intracellular signaling
alterations caused by peripheral skin denervation and injury to
central sensory neurons. Figure 1 summarizes the putative
mechanisms of neuropathic manifestations induced by TRPV1
depletion.
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