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In this study, we present a mathematical model of dengue fever transmission with hospitalization to describe 
the dynamics of the infection. We estimated the basic reproduction number for the infected cases in East Java 
Province for the year 2018 is 0 ≈ 1.1138. The parameters of the dengue model are estimated by using the 
confirmed notified cases of East Java province, Indonesia for the year 2018. We formulated the model for dengue 
with hospitalization and present its dynamics in details. Initially, we present the basic mathematical results 
and then show briefly the stability results for the model. Further, we formulate an optimal control problem 
with control functions and obtain the optimal control characterization. The optimal control problem is solved 
numerically and the results comprised of controls system for different strategies. The controls such as prevention 
and insecticide could use the best role in the disease eradication from the community. Our results suggest that 
the prevention of humans from the mosquitoes and the insecticide spray on mosquitoes can significantly reduce 
the infection of dengue fever and may reduce further spread of infection in the community.
1. Introduction

Dengue fever, which is known as vector-borne disease, is caused 
mainly by the dengue virus. It has the serotypes, such as DENV 1 to 
DENV4 that belong to Flavivirus. Most of the countries of the world 
are not safe from this disease. The most seriously affected areas of 
the world due to dengue are Americas, the subtropical regions, Eastern 
Mediterranean, Africa, and more especially the Western Pacific region 
and South-East Asia [1, 2, 3]. After Malaria, the dengue fever infection 
is considered to be the deadliest mosquito-borne or vector-borne dis-

ease with thousands of deaths and more than 390 million infections [1, 
2] worldwide. A report published in 2012 indicates that more than 100 
countries of the world are in risk due to the infection of dengue fever 
[4]. The dengue disease is spread by many kinds of mosquitoes such 
as Aedes and especially, the A. Aegypti. The classical dengue fever or 
the break bone fever relatively causes both mortality and mild morbid-

ity, and the infected one recovers in a short span of time of one to two 
weeks from the fever onset [5]. Some individuals develop dengue shock 
syndrome (DSS) or hemorrhagic fever (DHF) [6]. Worldwide annually, 
the higher number of dengue hemorrhagic fever (DHF) cases have been 
reported by World Health Organization (WHO), see for more details [7].
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The bites of the mosquitoes carrying the dengue virus (female 
mosquito) are the main transmission route to the human population [8]. 
The infection is obtained by taking the blood meal from an infected per-

son and further infected mosquitoes transfer the virus to other healthy 
individuals. Moreover, the recovery of a person from one particular 
DENV serotype leads immune permanently and partially or temporarily 
to the other serotypes [6].

For the dengue virus, until now no such effective treatment is avail-

able except some fluid replacement therapy, which can be initiated at 
the early stage while also there exist some traditional types of treat-

ments [9]. Besides the treatment unavailability for infected people with 
dengue virus, there is no effective vaccine in market until now to vac-

cinate the susceptible individuals. The WHO suggested some develop-

ments regarding vaccine for the dengue virus, although in the market 
there is no such effective vaccination against the dengue virus [10]. For 
the dengue vaccine, a published report in 2015 referred to the develop-

ment of the first vaccine in Mexico [10].

Mathematical models that addressed the dengue dynamics are nu-

merous in literature [11, 12, 13, 14] and the references therein. All 
these mentioned references are showing the dynamics of the dengue 
infections in different perspectives such the dynamical analysis, vacci-
https://doi.org/10.1016/j.heliyon.2021.e06023

Received 8 June 2020; Received in revised form 17 September 2020; Accepted 13 Ja

2405-8440/© 2021 Published by Elsevier Ltd. This is an open access article under t
nuary 2021

he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2021.e06023
http://www.ScienceDirect.com/
http://www.cell.com/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2021.e06023&domain=pdf
mailto:fatmawati@fst.unair.ac.id
https://doi.org/10.1016/j.heliyon.2021.e06023
http://creativecommons.org/licenses/by-nc-nd/4.0/


M.A. Khan and Fatmawati Heliyon 7 (2021) e06023
nation, and their optimal control analysis. Some recent research papers 
that reported the dengue infection with real data are given in [15]. A 
mathematical model of dengue infection is constructed in [16] that ad-

dressed the dengue infection with real data of Pakistan and presented 
some useful elimination strategies for mosquitoes infection. The dengue 
dynamics with the same serotypes and their reinfection have been ana-

lyzed in [17]. The dengue modeling in both deterministic and stochastic 
sense is briefly discussed in [18]. A hybrid methodology for the dengue 
forecasting is studied in [19]. The authors in [20] studied the dynamics 
of dengue fever and their coinfection with Zika, where the vaccination 
effect is shown for the dengue fever. The authors in [21] studied the 
dengue dynamics in rural Cambodia. A two-strain Tuberculosis model 
and the dengue virus are proposed in [22]. The dengue model and their 
optimal control analysis under the effect of Wolbachia Bacterium are 
studied in [23]. The dynamics of dengue fever modeling in a heteroge-

neous environment is considered in [24]. The dengue dynamics under 
the framework of temperature and mosquitoes control, and human mo-

bility are proposed in [25]. The dengue model with the notified cases 
of humans is considered in [26]. The application of the optimal con-

trol technique is also utilized by the researchers in variety of problems, 
see the published work [27, 28, 29]. For instant, the authors in [27] 
considered stochastic optimal control problems by using the method of 
spectral linear filter and presented the results. The dengue dynamics 
with asymptomatic carriers together with the applications of optimal 
control strategies have been studied in [28]. An SIR epidemic model 
with optimal impulse control is considered in [29].

Motivated from the literature above, we wish to consider a new 
formulation to the dengue fever modeling mathematically with the as-

sumption of hospitalization class. This new idea of the hospitalization 
of infected cases that are reported has been analyzed through a math-

ematical model. The data analysis is performed by using the infected 
cases that hospitalized. In order to find the real statistical values of 
the parameters for the model, we consider the real data of East Java 
Province, Indonesia for the year 2018 [30] and the subsequent results 
are obtained and discussed. We present deeply the dynamics of dengue 
fever dynamics with control strategies. We provide the recent litera-

ture on dengue fever that was conducted previously by researchers and 
also, a most recent work in Section of introduction. Next, we give a 
brief overview of the rest of the work of the paper. Brief mathemati-

cal modeling of the dengue virus is shown in section 2. The local and 
global stability at the disease-free equilibrium (DFE) are presented in 
Section 3. In section 4, we present the endemic equilibria and the back-

ward bifurcation. The parameter estimation of the dengue model and 
the sensitivity analysis are given in Section 5. We discussed in Section 6

briefly the formulation of an optimal control problem and the associ-

ated results. We present the numerical solution of the optimal control 
problem with control characterization briefly in Section 7. Finally, we 
summarized the results in Section 8.

2. Dengue model transmission

In this section, we describe a host-vector model for dengue trans-

mission. The host-vector model is divided into three mosquitoes pop-

ulations, susceptible (𝑆𝑣), exposed (𝐸𝑣), and infectious (𝐼𝑣), and five 
human (host) populations, susceptible (𝑆ℎ), exposed (𝐸ℎ), infectious 
(𝐼ℎ), hospitalized and/or notified infectious (𝑃ℎ) and recovered (𝑅ℎ). 
Thus, the total human population denoted by 𝑁ℎ is given as 𝑁ℎ =
𝑆ℎ +𝐸ℎ + 𝐼ℎ +𝑃ℎ +𝑅ℎ. Here, we consider the new class known as hospi-

talized individuals that are notified infected individuals and is shown by 
𝑃ℎ. The population in 𝑃ℎ class is assumed to be those who are recorded 
to the hospital and the people who are identified as confirmed dengue 
patients. However, we assume that the population in 𝐼ℎ class can also 
recover without having to enter 𝑃ℎ class. All the human hosts belonging 
to the class 𝑃ℎ(𝑡) are 100% protected so they do not produce infections 
in mosquitoes and do not contribute to the disease propagation. With 
the discussion above, we present the nonlinear system of differential 
2

Table 1. Biological meanings of parameters for dengue model (1).

Parameter Description

Λ𝑣 Recruitment rate of mosquito

𝛽 Average biting rate per mosquito per person

𝛼𝑣 Transmission probability from infected human to susceptible mosquito

𝜇𝑣 Natural death rate of mosquito

𝛾𝑣 Extrinsic incubation of mosquito

Λℎ Recruitment rate of human

𝛼ℎ Transmission probability from infected mosquito to susceptible human

𝛾ℎ Extrinsic incubation of human

𝜂 Rate of hospitalization and/or notification of infected human

𝑞1 Natural recovery rate of infected human

𝑞2 Recovery rate of hospitalized and/or notified infected human

𝛿 Disease related death rate of human

𝜇ℎ Natural death rate of human

equations describing the dynamics of host-vector dengue fever, which 
is given by:

𝑑𝑆𝑣

𝑑𝑡
= Λ𝑣 − 𝛽𝛼𝑣 𝑆𝑣

𝐼ℎ

𝑁ℎ

− 𝜇𝑣𝑆𝑣,

𝑑𝐸𝑣

𝑑𝑡
= 𝛽𝛼𝑣 𝑆𝑣

𝐼ℎ

𝑁ℎ

− (𝛾𝑣 + 𝜇𝑣)𝐸𝑣,

𝑑𝐼𝑣

𝑑𝑡
= 𝛾𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣,

𝑑𝑆ℎ

𝑑𝑡
= Λℎ − 𝛽𝛼ℎ𝐼𝑣

𝑆ℎ

𝑁ℎ

− 𝜇ℎ𝑆ℎ,

𝑑𝐸ℎ

𝑑𝑡
= 𝛽𝛼ℎ𝐼𝑣

𝑆ℎ

𝑁ℎ

− (𝛾ℎ + 𝜇ℎ)𝐸ℎ,

𝑑𝐼ℎ

𝑑𝑡
= 𝛾ℎ𝐸ℎ − (𝜂 + 𝑞1 + 𝜇ℎ)𝐼ℎ,

𝑑𝑃ℎ

𝑑𝑡
= 𝜂𝐼ℎ − (𝛿 + 𝑞2 + 𝜇ℎ)𝑃ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝑞1𝐼ℎ + 𝑞2𝑃ℎ − 𝜇ℎ𝑅ℎ, (1)

with the initial conditions

𝑆𝑣(0) = 𝑆𝑣0 ≥ 0,𝐸𝑣(0) =𝐸𝑣0 ≥ 0, 𝐼𝑣(0) = 𝐼𝑣0 ≥ 0,

𝑆ℎ(0) = 𝑆ℎ0 ≥ 0,𝐸ℎ(0) =𝐸ℎ0 ≥ 0, 𝐼ℎ(0) = 𝐼ℎ0 ≥ 0,

𝑃ℎ(0) = 𝑃ℎ0 ≥ 0,𝑅ℎ(0) =𝑅ℎ0 ≥ 0. (2)

In the above model, the recruitment rates of vector and host are 
respectively given by Λ𝑣 and Λℎ. The parameter 𝛽 is the biting rate of 
the mosquitoes. The transmission probability among infected humans 
and susceptible mosquitoes is shown by 𝛼𝑣. The natural mortality rate 
for humans is given by 𝜇ℎ while for mosquitoes are 𝜇𝑣. The parameter 
𝛾𝑣 represents the incubation period of mosquitoes populations while 
for the humans we consider 𝛾ℎ. The transmission probability among 
susceptible humans and infected mosquitoes is given by 𝛼ℎ. The notified 
or hospitalized confirmed dengue infected cases are shown by 𝜂. The 
natural recovery of infected individuals given by 𝑞1 while those are 
notified confirmed dengue cases recovered at a rate of 𝑞2. The death 
due infection of dengue fever is shown by 𝛿. The detailed definition of 
the parameters involved in model (1) is shown briefly in Table 1. In the 
following section, we explore some of the important properties of the 
model (1). Next, we show the invariant regions for the given dengue 
model (1). Consider the feasible region Θ = Θ𝑣 ×Θℎ ⊂ℝ3

+ ×ℝ5
+, with

Θ𝑣 =
{
(𝑆𝑣(𝑡),𝐸𝑣(𝑡), 𝐼𝑣(𝑡)) ∈ℝ3

+ ∶𝑁𝑣(𝑡) ≤ Λ𝑣

𝜇𝑣

}
,

and

Θℎ =
{
(𝑆ℎ(𝑡),𝐸ℎ(𝑡), 𝐼ℎ(𝑡), 𝑃ℎ(𝑡),𝑅ℎ(𝑡)) ∈ℝ5

+ ∶𝑁ℎ(𝑡) ≤ Λℎ

𝜇ℎ

}
.

We have the following results for this feasible region.

Lemma 1. The region given by Θ = Θ𝑣×Θℎ ⊂ℝ3
+×ℝ

5
+ is positively invariant 

for the dengue model (1) with the non-negative initial conditions in (2).
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Proof. The summation of the mosquitoes and human populations of 
the dengue model (1) leads to

𝑑𝑁𝑣

𝑑𝑡
=Λ𝑣 − 𝜇𝑣𝑁𝑣

and

𝑑𝑁ℎ

𝑑𝑡
= Λℎ − 𝜇ℎ𝑁ℎ − 𝛿𝑃ℎ ≤Λℎ − 𝜇ℎ𝑁ℎ.

Hence, 𝑑𝑁𝑣(𝑡)
𝑑𝑡

≤ 0, if 𝑁𝑣(0) ≥ Λ𝑣

𝜇𝑣
and 𝑑𝑁ℎ(𝑡)

𝑑𝑡
≤ 0, if 𝑁ℎ(0) ≥ Λℎ

𝜇ℎ
. So, 𝑁𝑣(𝑡) ≤

𝑁𝑣(0)𝑒−𝜇𝑣𝑡+
Λ𝑣

𝜇𝑣

(
1 −𝑒−𝜇𝑣𝑡

)
and 𝑁ℎ(𝑡) ≤𝑁ℎ(0)𝑒−𝜇ℎ𝑡+

Λℎ

𝜇ℎ

(
1 −𝑒−𝜇ℎ𝑡

)
. Thus, 

the region given by Θ is positively invariant. Also, if 𝑁𝑣(0) >
Λ𝑣

𝜇𝑣
and 

𝑁ℎ(0) >
Λℎ

𝜇ℎ
, then either the solutions enter Θ in finite time, or 𝑁𝑣(𝑡)

tends to Λ𝑣

𝜇𝑣
and 𝑁ℎ(𝑡) tends to Λℎ

𝜇ℎ
asymptotically. So, the regions given 

by Θ attract all the solutions in ℝ8
+. □

3. Stability analysis disease free case

This section explores the stability results for the dengue model given 
by at the disease free equilibrium (DFE) 𝐸0. We set the right hand side 
of the dengue model (1) equals to zero and obtain the following expres-

sions

𝐸0 =
(
𝑆0
𝑣 ,0,0, 𝑆

0
ℎ
,0,0,0,0

)
=
(Λ𝑣

𝜇𝑣

,0,0,
Λℎ

𝜇ℎ

,0,0,0,0
)
.

We compute the basic reproduction number 0 by using the next gener-

ation matrix approach for the dengue model (1). Consider the infected 
compartments in dengue model (1) are 𝐸𝑣, 𝐼𝑣, 𝐸ℎ, 𝐼ℎ, 𝑃ℎ and follow 
the instruction given in [31] and also its applications in [32, 33], the 
matrices 𝐹 and 𝑉 are obtained as follows:

𝐹 =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 𝛽𝛼𝑣𝜇ℎΛ𝑣

Λℎ𝜇𝑣
0

0 0 0 0 0
0 𝛽𝛼ℎ 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, and V =

⎛⎜⎜⎜⎜⎜⎝

𝑘1 0 0 0 0
−𝛾𝑣 𝜇𝑣 0 0 0
0 0 𝑘2 0 0
0 0 −𝛾ℎ 𝑘3 0
0 0 0 −𝜂 𝑘4

⎞⎟⎟⎟⎟⎟⎠
,

where 𝑘1 = (𝛾𝑣+𝜇𝑣), 𝑘2 = (𝛾ℎ+𝜇ℎ), 𝑘3 = (𝜂+𝑞1+𝜇ℎ) and 𝑘4 = (𝛿+𝑞2+𝜇ℎ). 
The required basic reproduction to the given model is obtained through 
the spectral radius of the matrix 0 = 𝜌(𝐹𝑉 −1), which is given by the 
following equation

2
0 =

𝛽2𝛼ℎ𝛾ℎ𝜇ℎ𝛼𝑣𝛾𝑣Λ𝑣

𝑘1𝑘2𝑘3Λℎ𝜇
2
𝑣

.

The basic reproduction number 0 expresses an average number of 
secondary human infections produced by one infective human individ-

ual during his/her infectious period. It expresses an average number of 
secondary infections in mosquitoes and human hosts produced by one 
infective individual (either mosquito or human) during their infectious 
period. It determines that an emerging infectious disease spread in a 
community or population and determines that what proportion of the 
population should be immunized by vaccination for the disease erad-

ication. In biological models if 0 > 1, the infection will be spread in 
the population otherwise no when 0 < 1. In general, when the value of 
0 is large then it is harder to control the epidemic. Next, we demon-

strate the local stability of the disease free equilibrium (DFE) at 𝐸0 in 
the following:

Theorem 1. The DFE 𝐸0 is a locally asymptotically stable equilibrium of 
the system (1) whenever 0 < 1.

Proof. In order to prove the given theorem, we need to obtain the 
Jacobian matrix by evaluated the model (1) at the DFE 𝐸0 , and we 
have
3

𝐽 (𝐸0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇𝑣 0 0 0 0 − 𝛽𝛼𝑣Λ𝑣𝜇ℎ
Λℎ𝜇𝑣

0 0

0 −𝑘1 0 0 0 𝛽𝛼𝑣Λ𝑣𝜇ℎ
Λℎ𝜇𝑣

0 0
0 𝛾𝑣 −𝜇𝑣 0 0 0 0 0
0 0 −𝛽𝛼ℎ −𝜇ℎ 0 0 0 0
0 0 𝛽𝛼ℎ 0 −𝑘2 0 0 0
0 0 0 0 𝛾ℎ −𝑘3 0 0
0 0 0 0 0 𝜂 −𝑘4 0
0 0 0 0 0 𝑞1 𝑞2 −𝜇ℎ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be seen from the above matrix 𝐽 (𝐸0), the eigenvalues −𝜇𝑣, −𝜇ℎ, 
−𝜇ℎ, and −𝑘4 are obviously negative while the remaining four eigen-

values with negative reals parts can be obtained through the following 
equations:

𝜆4 +𝜛1𝜆
3 +𝜛2𝜆

2 +𝜛3𝜆+𝜛4 = 0,

where

𝜛1 = 𝑘1 + 𝑘2 + 𝑘3 + 𝜇𝑣,

𝜛2 = 𝑘3𝜇𝑣 + 𝑘2
(
𝑘3 + 𝜇𝑣

)
+ 𝑘1

(
𝑘2 + 𝑘3 + 𝜇𝑣

)
,

𝜛3 = 𝑘2𝑘3𝜇𝑣 + 𝑘1

(
𝑘3𝜇𝑣 + 𝑘2

(
𝑘3 + 𝜇𝑣

))
,

𝜛4 = 𝑘1𝑘2𝑘3𝜇𝑣

(
1 −2

0

)
.

The coefficients given by 𝜛𝑖 for 𝑖 = 1, 2..., 4 are positive for obviously for 
𝜛𝑖, for, i = 1, 2, 3 while 𝜛4 can be positive or negative based on the value 
of the 0. For the DFE case, the value of the basic reproduction number 
should be less than 1, so the last coefficient is positive when 0 < 1. So, 
all coefficients 𝜛𝑖 for 𝑖 = 1, 2..., 4 positive, then they should satisfy the 
Rough-Hurtwiz criteria, which can be easily satisfied, for the conditions 
supplied 𝜛1𝜛2𝜛3 > 𝜛2

3 +𝜛2
1𝜛4, where 𝜛𝑖 > 0 for all 𝑖 = 1, 2, ...4. This 

conditions say Φ = 𝜛1𝜛2𝜛3 −𝜛2
3 −𝜛2

1𝜛4 > 0 is satisfied and is given 
by,

Φ= 𝑘21
(
𝑘2 + 𝑘3 + 𝜇𝑣

)[
𝑘2

(
2𝑘3(1 +2

0)𝜇𝑣 + 𝑘23 + 𝜇2
𝑣

)
+ 𝑘22

(
𝑘3 + 𝜇𝑣

)
+𝑘3𝜇𝑣

(
𝑘3 + 𝜇𝑣

)]
+𝑘31

[
𝑘2

(
𝑘3(2 +2

0)𝜇𝑣 + 𝑘23 + 𝜇2
𝑣

)
+ 𝑘22

(
𝑘3 + 𝜇𝑣

)
+ 𝑘3𝜇𝑣

(
𝑘3 + 𝜇𝑣

) ]
+𝑘1

(
𝑘32

(
𝑘3(2 +2

0)𝜇𝑣 + 𝑘23 + 𝜇2
𝑣

)
+ 𝑘3𝑘2(2 +2

0)𝜇𝑣

(
𝑘3 + 𝜇𝑣

) 2

+𝑘23𝜇
2
𝑣

(
𝑘3 + 𝜇𝑣

))
+ 𝑘1𝑘

2
2
(
𝑘3 + 𝜇𝑣

)(
𝑘3(22

0 + 3)𝜇𝑣 + 𝑘23 + 𝜇2
𝑣

)
+𝑘2𝑘3

(
𝑘2 + 𝑘3

)
𝜇𝑣

(
𝑘2 + 𝜇𝑣

)(
𝑘3 + 𝜇𝑣

)
> 0.

Thus, the condition of Rough-Hurtwiz criteria ensures the local asymp-

totical stability of the dengue model given by (1) at the DFE 𝐸0 . □

4. Endemic equilibria

This section presents the endemic equilibria of the dengue model (1) 
denoted by 𝐸∗

1 and is given

𝐸1 = (𝑆∗
𝑣 ,𝐸

∗
𝑣 , 𝐼

∗
𝑣 ,𝑆

∗
ℎ
,𝐸∗

ℎ
, 𝐼∗

ℎ
,𝑃 ∗

ℎ
,𝑅∗

ℎ
),

where

𝑆∗
𝑣 =

Λ𝑣

𝜆∗𝑣 + 𝜇𝑣

, 𝐸∗
𝑣 =

𝜆∗𝑣Λ𝑣

𝑘1
(
𝜆∗𝑣 + 𝜇𝑣

) , 𝐼∗𝑣 =
𝛾𝑣𝜆

∗
𝑣Λ𝑣

𝑘1𝜇𝑣

(
𝜆∗𝑣 + 𝜇𝑣

) ,
𝑆∗
ℎ
=

Λℎ

𝜆ℎ + 𝜇ℎ

, 𝐸∗
ℎ
=

Λℎ𝜆ℎ

𝑘2
(
𝜆∗
ℎ
+ 𝜇ℎ

) , 𝐼∗
ℎ
=

Λℎ𝛾ℎ𝜆
∗
ℎ

𝑘2𝑘3
(
𝜆∗
ℎ
+ 𝜇ℎ

) ,
𝑃 ∗
ℎ
=

𝜂Λℎ𝛾ℎ𝜆
∗
ℎ

𝑘2𝑘3𝑘4
(
𝜆∗
ℎ
+ 𝜇ℎ

) , 𝑅∗
ℎ
=

Λℎ𝛾ℎ𝜆
∗
ℎ

(
𝑘4𝑞1 + 𝜂𝑞2

)
𝑘2𝑘3𝑘4𝜇ℎ

(
𝜆∗
ℎ
+ 𝜇ℎ

) , (3)

where

𝜆∗𝑣 =
𝛽𝛼𝑣𝐼

∗
ℎ

𝑁∗ , 𝜆∗
ℎ
=

𝛽𝐼∗𝑣 𝛼ℎ

𝑁∗ . (4)

ℎ ℎ
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Fig. 1. Backward bifurcation plot for the dengue model (1).

Inserting the expression in (3) into (4), we get the following,

𝑔1𝜆
∗2
ℎ + 𝑔2𝜆

∗
ℎ
+ 𝑔3 = 0,

where

𝑔1 = 𝑘1Λℎ𝜇𝑣

(
𝑘4

[
𝜇ℎ

(
𝛾ℎ + 𝑘3

)
+ 𝑞1𝛾ℎ

]
+ 𝜂𝛾ℎ

(
𝜇ℎ + 𝑞2

))
×(

𝑘4
(
𝛽𝛼ℎ𝛾ℎ𝜇ℎ + 𝜇𝑣

(
𝜇ℎ

(
𝛾ℎ + 𝑘3

)
+ 𝑞1𝛾ℎ

))
+ 𝜂𝛾ℎ𝜇𝑣

(
𝜇ℎ + 𝑞2

))
,

𝑔2 = 𝑘2𝑘3𝑘4𝜇ℎ

(
𝑘4

[
2𝑘1Λℎ𝜇

2
𝑣

(
𝜇ℎ

(
𝛾ℎ + 𝑘3

)
+ 𝑞1𝛾ℎ

)
+𝛽𝛼ℎ𝛾ℎ𝜇ℎ

(
𝑘1Λℎ𝜇𝑣 − 𝛽𝛼𝑣𝛾𝑣Λ𝑣

)
]
])

+2𝑘2𝑘3𝑘4𝜇ℎ𝜂𝑘1Λℎ𝛾ℎ𝜇
2
𝑣

(
𝜇ℎ + 𝑞2

)
,

𝑔3 = 𝑘1𝑘
2
2𝑘

2
3𝑘

2
4Λℎ𝜇

2
ℎ
𝜇2
𝑣

(
1 −2

0

)
.

Here, 𝑔1 > 0, 𝑔3 depends on the sign of 0, and is positive when 0 < 1
and is negative for the case when 0 > 1. We establish the following 
result:

Theorem 2. The dengue model given by (1) has:

(i) if 𝑔3 < 0 ⟺0 > 1, then there exists a unique endemic equilibrium,

(ii) if 𝑔2 < 0 and 𝑔3 = 0 ⟶0 = 1, then we have a unique endemic equi-

librium,

(iii) if 𝑔3 > 0 ⟶0 < 1, 𝑔2 < 0 and their discriminant is positive, then two 
endemic equilibria exist

(iv) no possibilities of equilibria otherwise

Remark 1. It can be seen from the first point (i) of Theorem (2) that 
for the case of 0 > 1, we have clearly a unique positive endemic equi-

librium. The third item of the above Theorem (2) shows the possible 
existence of the backward bifurcation when 0 < 1. In order to deter-

mine this possibility of backward bifurcation for the dengue model (1), 
we set 𝑔22 − 4𝑔1𝑔3 = 0, and then solving for the critical values of 0 de-

scribed by 𝑐 which is given through the following expression

𝑐 =

√√√√1 −
𝑔22

4𝑔1𝑘1𝑘22𝑘
2
3𝑘

2
4Λ𝜇

2
ℎ
𝜇2
𝑣

.

Thus, the backward bifurcation can occur for the values of 0 such 
that 𝑐 <0 < 1. Using the values given in Table 2, except 𝛿 = 0.01932, 
𝜂 = 0.0272, we give the backward bifurcation diagram in Fig. 1.
4

Table 2. Fitted and estimated values for the parame-

ters of the model (1).

Parameter Units Baselines value References

Λ𝑣 day−1 3839.9 Fitted

𝛽 day−1 1.1971 Fitted

𝛼𝑣 - 0.8541 Fitted

𝜇𝑣 day−1 0.0244 Fitted

𝛾𝑣 day−1 0.7186 Fitted

Λℎ day−1 1525.1426 Estimated

𝛼ℎ - 0.6794 Fitted

𝛾ℎ day−1 0.5550 Fitted

𝜂 day−1 0.0904 Fitted

𝑞1 day−1 0.0154 Fitted

𝑞2 day−1 0.0840 Fitted

𝛿 day−1 0.0969 Fitted

𝜇ℎ day−1 1∕70.97 × 365 Estimated

5. Parameter estimation and global sensitivity analysis of dengue 
model

5.1. Parameter estimation

In this subsection, we estimate the parameters of the model (1) to 
the cases of dengue fever in East Java, Indonesia. Based on data ob-

tained from the East Java Provincial Health Office, it was reported that 
the incidence rate of Dengue Hemorrhagic Fever (DHF) in East Java 
in 2016 was 64.8 per 100,000 population, an increase compared to 
2015 which was 54.18 per 100,000 population, while the incidence 
rate of DHF in 2017 was 20 per 100,000 population [34]. Although 
in 2017, cases of DHF have decreased compared to the previous year, 
but awareness of the surge in cases in the next year needs to be im-

proved. However, in 2017 the total number of DHF in East Java reached 
7,854 people, while in 2018 it reached 9,452 people [30]. From this, it 
appears that there is an increase in the number of DHF in 2018 com-

pared to 2017. Hence, the cumulative monthly reported of DHF cases 
from January to December 2018 are used to parameterize the model 
(1).

In order to get a good fit to the real data, we estimate the pa-

rameters using the least square curve fitting technique except for the 
recruitment rate of human Λℎ and the natural death rate of human 
𝜇ℎ. The parameter 𝜇ℎ is calculated as the inverse of the average lifes-

pan of the population in East Java so that 𝜇ℎ = 1∕70.97 per year, 
where 70.97 years is the average lifespan the population of East Java 
Province [35]. The parameter Λℎ is computed as follows. Since the to-

tal population of East Java province was 39,507,370, in 2018, we have 
Λℎ∕𝜇ℎ = 39, 507, 370 is the maximum human population without the dis-

ease, therefore Λℎ = 556, 677.0466 per year. The other parameters are 
obtained using least-square curve fitting method. The fitted and esti-

mated parameter values of the model (1) are set out in Table 2. The 
result of fitting model (1) to the actual data of dengue incidence is 
displayed in Fig. 2. The red-circle shows the monthly dengue cases re-

ported in East Java Indonesia while the solid line denotes the model fit. 
These infected cases are the hospitalized reported cases that have been 
hospitalized in East Java Indonesia for the year 2018. Using the parame-

ter values stated in Table 2, the basic reproduction number in East Java 
is 0 ≈ 1.1138. The application and uses of the least square curve fitting 
technique has been used by many researchers for epidemiological mod-

els, see for example [32, 36]. Our computed reproduction number has a 
closed value to those published work in [36] (see 2

0 = 1.1104) and [32] 
(see 2

0 = 1.014). Some of the parameter such 𝜇𝑣, 𝜇ℎ are related closely 
to [32] but in other parameters obtained in this paper have a little up 
and down but considered to be close to [32]. Our estimated parame-

ters such as 𝜇𝑣, 𝛼𝑣 are related closely to the work published in [16] but 
for the other values there is not a big difference except for the case of 
bitting rate 𝛽.
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Fig. 2. Data fitting of cumulative hospitalized humans using model (1).

Table 3. Partial rank correlation coef-

ficient (PRRC) values of 0 with corre-

sponding p-values.

Parameter PRCC values p values

𝛽 0.7386 0.0000

𝛼ℎ 0.4565 0.0000

𝛾ℎ 0.3013 0.0000

𝜇ℎ 0.1782 0.0002

𝛼𝑣 0.4494 0.0000

𝛾𝑣 0.3217 0.0000

Λ𝑣 0.5208 0.0000

𝜇𝑣 -0.7876 0.0000

Λℎ -0.4826 0.0010

𝜂 -0.1352 0.1963

𝑞1 -0.1746 0.0003

5.2. Global sensitivity analysis

We performed the global sensitivity analysis using Partial rank cor-

relation coefficient (PRRC) in order to determine the most important 
value that affect the basic reproduction number 0. Using the parame-

ters values given in Table 2, the sensitivity analysis is performed and the 
values are obtained and have been given in Table 3 while the PRCC plot 
is shown in Fig. 3. It can be seen from Table 3 that the most sensitive 
parameter is 𝜇𝑣 while the other sensitive parameters are 𝛽, Λ𝑣, Λℎ, 𝛼ℎ
etc. Increasing the death rate of the mosquitoes can reduce the dengue 
infection. Further, the bite of mosquitoes can be reduced by closing the 
doors when entering the room and use air conditioner to cool the room. 
The practical and the recommended environmental management strat-

egy is to eliminate unnecessary container habitats that collect water 
(such as plastic jars, bottles, cans, tires, and buckets) in which Aedes ae-

gypti can lay their eggs. The bite of the mosquito can be reduced when 
using the bet net and other necessary measure.

The effect of some sensitive parameters such as 𝛽, 𝛼ℎ and 𝜇𝑣 that can 
decrease the number of infected and hospitalized individuals in the long 
run are plotted in Figs. 4, 5 and 6. Decreasing the value of the rate of 
mosquitoes by making use of bed nets and some other preventive mea-

sure the population of infected and hospitalized people are decreased, 
see Fig. 4. Similarly the parameter 𝛼ℎ which denotes the probability of 
transmission among susceptible and infected humans, and the parame-

ter 𝜇𝑣 the death rate of mosquitoes also reduces rapidly the infection in 
the infected and hospitalized population, see Figs. 5 and 6.

6. Optimal control problem

The optimal control formulation for the epidemic models is to use 
proper control measure to identify the possible elimination of the dis-

ease from the society. In mathematical biology, the epidemic models 
5

Fig. 3. Global sensitivity analysis and PRCC results for 0 .

and their controls have been documented with considering different 
diseases, see for example [37, 38, 39, 40]. In order to have an opti-

mal control problem for our considered model (1), we, in this section, 
describe an extension for dengue model (1) with control variables. We 
incorporate two intervention strategies, namely, prevention (𝑢1) and in-

secticide (𝑢2) efforts as control variables in the model. The use of the 
control for dengue infection as a prevention only has been considered 
in the work [33, 41]. The control 𝑢2 insecticide spraying only has been 
considered in dengue control model given in [42]. The use of both the 
control for dengue control in the population is considered in [36, 43]. 
The prevention efforts include the use of mosquito nets, mosquito re-

pellent like DEET, and treat clothes with repellent, while insecticide 
includes spraying and fogging against mosquitoes. The system of differ-

ential equations describing the controlled model is written as,

𝑑𝑆𝑣

𝑑𝑡
= Λ𝑣 − (1 − 𝑢1)𝛽𝛼𝑣 𝑆𝑣

𝐼ℎ

𝑁ℎ

− 𝜇𝑣𝑆𝑣 − 𝑏𝑢2𝑆𝑣,

𝑑𝐸𝑣

𝑑𝑡
= (1 − 𝑢1)𝛽𝛼𝑣 𝑆𝑣

𝐼ℎ

𝑁ℎ

− (𝛾𝑣 + 𝜇𝑣)𝐸𝑣 − 𝑏𝑢2𝐸𝑣,

𝑑𝐼𝑣

𝑑𝑡
= 𝛾𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣 − 𝑏𝑢2𝐼𝑣,

𝑑𝑆ℎ

𝑑𝑡
= Λℎ − (1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣

𝑆ℎ

𝑁ℎ

− 𝜇ℎ𝑆ℎ,

𝑑𝐸ℎ

𝑑𝑡
= (1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣

𝑆ℎ

𝑁ℎ

− (𝛾ℎ + 𝜇ℎ)𝐸ℎ,

𝑑𝐼ℎ

𝑑𝑡
= 𝛾ℎ𝐸ℎ − (𝜂 + 𝑞1 + 𝜇ℎ)𝐼ℎ,

𝑑𝑃ℎ

𝑑𝑡
= 𝜂𝐼ℎ − (𝛿 + 𝑞2 + 𝜇ℎ)𝑃ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝑞1𝐼ℎ + 𝑞2𝑃ℎ − 𝜇ℎ𝑅ℎ, (5)

where the parameter 𝑏 represents the death rate of mosquito due to 
insecticide.

This case study seeks to minimize the number of dengue-infected 
hosts and vector while keeping the costs of implementing the controls 𝑢1
and 𝑢2 as low as possible. This goal can be represented by the following 
objective function as

𝐽 (𝑢1, 𝑢2) =

𝑡𝑓

∫
0

(
𝐸𝑣 + 𝐼𝑣 +𝐸ℎ + 𝐼ℎ +

𝑐1
2
𝑢21 +

𝑐2
2
𝑢22

)
𝑑𝑡, (6)

where 𝑡𝑓 is the final time and 𝑐1 and 𝑐2 are positive weights. We do 
not include the hospitalized and/or notified infectious individuals (𝑃ℎ) 
explicitly in the objective function due to it has assumed that the 𝑃ℎ

population is not going to infect the others. However, the 𝑃ℎ population 
will decrease if the 𝐼ℎ population decreases.
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Fig. 4. Effect of parameter 𝛽 on the infected and hospitalized individuals.

Fig. 5. Effect of parameter 𝛼ℎ on the infected and hospitalized individuals.

Fig. 6. Effect of parameter 𝜇𝑣 on the infected and hospitalized individuals.
6



M.A. Khan and Fatmawati Heliyon 7 (2021) e06023
In the present work, we implement a quadratic objective functional 
in order to measure the control cost, since the costs of the intervention 
are nonlinear. This assumption is based on the fact that there are no 
linear relationship among the effects of intervention and the cost of in-

tervention of the infective populations, such quadratic costs have been 
widely used by the authors, see for more details [44, 45]. Some more 
related work where the authors considered the quadratic objective func-

tional, see [46, 47, 48] and the references therein. The term 𝑐1𝑢21 and 
𝑐2𝑢

2
2 describe the cost of control efforts on minimizing the prevention 

and insecticide respectively.

Our aim is to find an optimal control pair 𝑢∗1 and 𝑢∗2 such that

𝐽 (𝑢∗1 , 𝑢
∗
2) = 𝑚𝑖𝑛

⏟⏟⏟
Γ

𝐽 (𝑢1, 𝑢2), (7)

where Γ =
{
(𝑢1, 𝑢2) |0 ≤ 𝑢1 ≤ 𝑢max

1 ,0 ≤ 𝑢2 ≤ 𝑢max
2

}
. In this region, when the 

value of a control is zero, then no investment in control has been made. 
Moreover, when the values of the controls are 𝑢max

𝑖
, 𝑖 = 1, 2, then the 

control effort have been carried out maximally.

The conditions are necessary for determining the optimal controls 𝑢∗1
and 𝑢∗2 that satisfy condition (7) with constraint model (5) will be found 
via Pontryagin’s Maximum Principle [49]. This principle converts equa-

tions (5), (6), and (7) into a problem of minimizing the Hamiltonian 
function 𝐻 , pointwise with respect to (𝑢1, 𝑢2), i.e.,

𝐻 =𝐸𝑣 + 𝐼𝑣 +𝐸ℎ + 𝐼ℎ +
𝑐1
2

𝑢21 +
𝑐2
2

𝑢22 +
8∑

𝑖=1
𝜌𝑖 𝑔𝑖,

where 𝑔𝑖 denotes the right-hand side of model (5). The adjoint variables 
𝜌𝑖 for 𝑖 = 1, 2, … , 8 satisfy the following co-state system.

6.1. The existence of the optimal control

The existence of the optimal control problem (5) can be analysed 
by using the result established in [50]. It is clear that the system (5) 
is bounded above. Hence, we can use the result in [50] for the control 
system (5) if the following conditions are satisfied.

𝑁1: The state variables and the corresponding set of the controls are 
non-empty.

𝑁2: The control set Γ is closed and convex.

𝑁3: The right side of the control system (5) is linear with respect to 
control variables.

𝑁4: There exist nonnegative constants 𝑙1 and 𝑙2 and 𝑛 > 1 such that the 
integrand 𝐿(x, 𝑢1, 𝑢2) of (6) is convex and satisfies

𝐿(x, 𝑢1, 𝑢2) ≥ 𝑙2 + 𝑙1(|𝑢1|2 + |𝑢2|2) 𝑛2 , (8)

with 𝐿(x, 𝑢1, 𝑢2) =𝐸𝑣 + 𝐼𝑣 +𝐸ℎ + 𝐼ℎ +
𝑐1
2 𝑢

2
1 +

𝑐2
2 𝑢

2
2.

In order to prove the existence of system (5), we refer to the Theorem 
9.2.1 from Lukes [51]. The condition 𝑁1 is satisfied with the compli-

ance of the state and the controls variables which is non-empty and 
bounded. The condition 𝑁2 can be fulfilled by definition of the control 
set Γ. The condition 𝑁3 is valid due to the linear dependence of the 
state system on controls 𝑢1 and 𝑢2. Finally, the integrand 𝐿 is clearly 
convex with respect to the controls 𝑢1 and 𝑢2. To prove the bound on 𝐿, 
let 𝑙2 = min(𝐸𝑣+𝐼𝑣+𝐸ℎ+𝐼ℎ) and 𝑙1 = min(𝑐1, 𝑐2) and 𝑛 = 2, then we have

𝐿(x, 𝑢1, 𝑢2) =𝐸𝑣+𝐼𝑣+𝐸ℎ+𝐼ℎ+
𝑐1
2
𝑢21 +

𝑐2
2
𝑢22 ≥ 𝑙2 + 𝑙1(|𝑢1|2 + |𝑢2|2) 𝑛2 , (9)

where 𝑐1, 𝑐2, 𝑙1, 𝑙2 > 0 and 𝑛 > 1. Therefore, we obtain the following re-

sult.

Theorem 3. There exists an optimal control pair 𝑢∗1(𝑡) and 𝑢∗2(𝑡) such that

𝐽 (𝑢∗1 , 𝑢
∗
2) = 𝑚𝑖𝑛

⏟⏟⏟
Γ

𝐽 (𝑢1, 𝑢2),

subject to the control system (5) with the initial conditions (2).
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6.2. Characterization of the optimal control

In this present section, we apply the Pontryagin’s Maximum Princi-

ple to solve the optimal control problem [49]. The consequence of the 
maximum principle is stated by the following theorem.

Theorem 4. Assumed that 𝑆∗
𝑣 , 𝐸∗

𝑣 , 𝐼∗𝑣 , 𝑆∗
ℎ
, 𝐸∗

ℎ
, 𝐼∗

ℎ
, 𝑃 ∗

ℎ
and 𝑅∗

ℎ
be the 

optimal solution with controls 𝑢∗
𝑖

for 𝑖 = 1, 2 for the control system (5). Then 
there exists adjoint variables 𝜌𝑖 for 𝑖 = 1, 2, ...8 that satisfying

𝜌1 = 𝜌1

(
(1 − 𝑢1)𝛽𝛼𝑣𝐼ℎ

𝑁ℎ

+ 𝜇ℎ + 𝑏𝑢2

)
−

𝜌2(1 − 𝑢1)𝛽𝛼𝑣𝐼ℎ
𝑁ℎ

,

𝜌2 = −1 + 𝜌2
(
𝑏𝑢2 + 𝛾𝑣 + 𝜇𝑣

)
+ 𝜌3𝛾𝑣,

𝜌3 = −1 + 𝜌3(𝑏𝑢2 + 𝜇𝑣) +
𝜌4(1 − 𝑢1)𝛽𝛼ℎ𝑆ℎ

𝑁ℎ

−
𝜌5(1 − 𝑢1)𝛽𝛼ℎ𝑆ℎ

𝑁ℎ

𝜌4 = (𝜌2 − 𝜌1)
(1 − 𝑢1)𝛽𝛼𝑣𝑆𝑣𝐼ℎ

𝑁2
ℎ

+ (𝜌4 − 𝜌5)
(1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣

𝑁ℎ

+ (𝜌5 − 𝜌4)
(1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ 𝜇ℎ 𝜌4

𝜌5 = −1 + (𝜌2 − 𝜌1)
(1 − 𝑢1)𝛽𝛼𝑣𝑆𝑣𝐼ℎ

𝑁2
ℎ

+ (𝜌5 − 𝜌4)
(1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ (𝜌5 − 𝜌6)𝛾ℎ + 𝜇ℎ 𝜌5, (10)

𝜌6 = −1 + (𝜌1 − 𝜌2)
(1 − 𝑢1)𝛽𝛼𝑣𝑆𝑣

𝑁ℎ

+ (𝜌2 − 𝜌1)
(1 − 𝑢1)𝛽𝛼𝑣𝑆𝑣𝐼ℎ

𝑁2
ℎ

+ (𝜌5 − 𝜌4)
(1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣𝑆ℎ

𝑁2
ℎ

− 𝜌7𝜂 − 𝜌8𝑞1 + 𝜌6(𝜂 + 𝑞1 + 𝜇ℎ),

𝜌7 = (𝜌2 − 𝜌1)
(1 − 𝑢1)𝛽𝛼𝑣𝑆𝑣𝐼ℎ

𝑁2
ℎ

+ (𝜌5 − 𝜌4)
(1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ 𝜌7(𝛿 + 𝑞2 + 𝜇ℎ) − 𝜌8 𝑞2,

𝜌8 = (𝜌2 − 𝜌1)
(1 − 𝑢1)𝛽𝛼𝑣𝑆𝑣𝐼ℎ

𝑁2
ℎ

+ (𝜌5 − 𝜌4)
(1 − 𝑢1)𝛽𝛼ℎ𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ 𝜌8 𝜇ℎ, (11)

where the transversality conditions

𝜌𝑖(𝑡𝑓 ) = 0, (12)

where 𝑖 = 1, 2, … , 8, and the optimal control variables,

𝑢∗1 = max
{
0,min

(
𝑢max
1 ,

(𝜌2 − 𝜌1)𝛽𝛼𝑣𝑆𝑣𝐼ℎ + (𝜌5 − 𝜌4)𝛽𝛼ℎ𝐼𝑣𝑆ℎ

𝑐1𝑁ℎ

)}

𝑢∗2 = max
{
0,min

(
𝑢max
2 ,

𝑏(𝜌1𝑆𝑣 + 𝜌2𝐸𝑣 + 𝜌3𝐼𝑣)
𝑐2

)}
. (13)

Proof. We follow the result in [50] to prove the existence, convex-

ity, Lipschitz and boundedness of the optimal control solution. The 
co-state equations (10) are determined by taking the time derivative 
of the Hamiltonian function 𝐻 to the state variables: 𝜕𝜌1

𝜕𝑡
= − 𝜕𝐻

𝜕𝑆𝑣
, 𝜕𝜌2

𝜕𝑡
=

− 𝜕𝐻

𝜕𝐸𝑣
, 𝜕𝜌3

𝜕𝑡
= − 𝜕𝐻

𝜕𝐼𝑣
, 𝜕𝜌4

𝜕𝑡
= − 𝜕𝐻

𝜕𝑆ℎ
, 𝜕𝜌5

𝜕𝑡
= − 𝜕𝐻

𝜕𝐸ℎ
, 𝜕𝜌6

𝜕𝑡
= − 𝜕𝐻

𝜕𝐼ℎ
, 𝜕𝜌7

𝜕𝑡
= − 𝜕𝐻

𝜕𝑃ℎ
, 𝜕𝜌8

𝜕𝑡
=

− 𝜕𝐻

𝜕𝑅ℎ
, with 𝜌𝑖(𝑡𝑓 ) = 0, 𝑖 = 1, … , 8. To obtain the optimal control charac-

terization that given in (13), we apply 𝜕𝐻
𝜕𝑢𝑖

= 0, for 𝑖 = 1, 2. □

7. Numerical results of the control problem

This section sets out to explore the numerical results of the model 
without control (1) and with optimal control (5). The optimal solu-

tion of the model (5) is simulated using the forward-backward sweep 
method [52]. The optimal control problem is solved numerically by the 
fourth-order Runge-Kutta method.

We consider the initial values of the simulation based on the number 
of population in East Java province in 2018. The initial value of the 
total population as given in the data is 𝑁(0) = 39, 507, 370. We assume 
that the initial populations of exposed human and infectious human 
are 𝐸ℎ(0) = 10, 000 and 𝐼ℎ(0) = 100, respectively. The initial value of the 
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Fig. 7. Numerical results of the model using prevention only.
hospitalized and/or notified infectious population as stated in the data 
is 𝑃ℎ = 1106. The initial of the recovered human population is taken as 
𝑅ℎ(0) = 1095 [30]. Hence, the initial susceptible human population is 
given as 𝑆ℎ(0) =𝑁ℎ(0) −𝐸ℎ(0) − 𝐼ℎ(0) − 𝑃ℎ(0) −𝑅ℎ(0) = 39, 495, 069. We 
assume the initial population for the mosquitoes are given as 𝑆𝑣(0) =
105, 𝐸𝑣(0) = 100 and 𝐼𝑣(0) = 1000. We also employed parameter value 
𝑏 = 0.5 as the maximum of the death rate in mosquito due to insecticide. 
The weight factors in the objective function are 𝑐1 = 1 and 𝑐2 = 0.1. The 
upper bound of 𝑢1 and 𝑢2 are assumed equal to 𝑢max

1 = 0.7 and 𝑢max
2 =

0.8, respectively, as stated in [33, 36]. For the simulations, we adopt 
8

the estimated parameter values that are given in Table 2. Using this 
parameter values, the basic reproduction number is 0 ≈ 1.1138, which 
indicates that the disease will be epidemic in the province.

We examine the model (5) with prevention (𝑢1) and insecticide (𝑢2) 
as control variables to investigate the effects of the transmission of 
dengue disease in the population. We consider three control scenarios, 
which are explained as follows.

Scenario 1. In this scenario, we set 𝑢1 ≠ 0 and 𝑢2 = 0 to optimize 
the objective function 𝐽 . The numerical results are given in Fig. 7. 
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Fig. 8. Numerical results of the model using insecticide only.
From Fig. 7(a)-7(c), the number of the exposed, infectious, and hos-

pitalized and/or notified infectious humans decrease significantly using 
this scenario control compared to the case without control. Also, in 
Fig. 7(d)-7(e), the number of the exposed and infectious mosquitoes de-

creases more compared to without the control. The profile control for 
this scenario is depicted in Fig. 7(f). In Fig. 7(f), we can see that the pre-

vention is kept at full effort for 100 days and then drastically reduces at 
the end of the intervention. The previous studies showed that optimal 
preventive efforts should be implemented with the maximum level [33, 
9

36, 41]. Results of our study show similar effort of the prevention on 
dengue control in East Java, Indonesia. In other words, the human pop-

ulation must maintain a strong level of awareness about the presence of 
dengue fever and continue to take all available measures for personal 
protection from mosquito bites.

Scenario 2. In this scenario, we set 𝑢2 ≠ 0 and 𝑢1 = 0 to optimize the 
objective function 𝐽 . The numerical results are displayed in Fig. 8. From 
Fig. 8(a)-8(e), there is a difference in the number of the population 
between the controlled case and the case without control. Using this sce-
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Fig. 9. Numerical results of the model using prevention and insecticide.
nario, the number of exposed, infectious, hospitalized and/or notified 
infectious humans, exposed mosquitoes, and also infectious mosquitoes 
is less than the first scenario in the end of intervention. The profile con-

trol for this scenario is given in Fig. 8(f). In Fig. 8(f), it can be seen 
that the insecticide is maintained at full effort for 72 days before dras-

tically reduces for the rest of the intervention. These results seem to be 
consistent with previous research [36, 42] which found that the insec-

ticide spraying alone had the effect of rapidly reducing the number of 
infectious humans, almost enabling eradication of disease.
10
Scenario 3. In this scenario, we set 𝑢1 ≠ 0 and 𝑢2 ≠ 0 to optimize 
the objective function 𝐽 . The numerical results are depicted in Fig. 9. 
As depicted in Fig. 9(a)-9(c), it can be observed that the implemen-

tation of both controls at the same time, the number of the exposed, 
infectious, and hospitalized and/or notified infectious humans more de-

creases compared to the scenario 1 and 2. While the number of the 
exposed and infectious mosquitoes remain the same with the scenario 
2. The profile controls for this scenario is depicted in Fig. 9(f). As de-

picted in Fig. 9(f), the prevention is kept at full effort for approximately 
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Fig. 10. The total of infective human with initial conditions (a) 𝐸ℎ(0) = 100, (b) 𝐸ℎ(0) = 1000, (c) 𝐸ℎ(0) = 5000, and (d) 𝐸ℎ(0) = 10000, using various control scenarios.
37 days and then reduces gradually till the end of the intervention, 
while the insecticide is maintained at maximal effort during 69 days 
and then reduces rapidly for the rest of the intervention. These re-

sults are in accord with earlier studies [36, 43] which showed when 
the two controls were combined, the impact of insecticide spraying 
appeared to be dominant over preventive measures alone. Moreover, 
the prevalence timing was similar to that of insecticide-only interven-

tions.

Next, we perform the comparison for the total of infective human 
(𝐼ℎ + 𝑃ℎ) using the all scenario of the strategy controls. We vary the 
initial values of the exposed human population by 𝐸ℎ(0) = 100, 𝐸ℎ(0) =
1000, 𝐸ℎ(0) = 5000 and 𝐸ℎ(0) = 104. The total of the infective human 
for different initial conditions of the exposed human population us-

ing three control scenarios is displayed in Fig. 10. It is apparent from 
the Fig. 10 that the number of the infective human population more 
decrease by applying the third scenario compared to the other sce-

nario.

From the scenario 1 to 3, we conclude that the scenario 3 is the best 
strategy to minimize the number of dengue-infected hosts and vector in 
the community.

8. Conclusion

In this paper, we have proposed a new mathematical model of 
dengue fever with hospitalization. The model parameters are estimated 
using the monthly real data of East Java province, Indonesia for the 
year 2018. The fundamental properties of the model are analyzed as 
11
well as the basic reproduction number (0) of the model. The disease-

free equilibrium (DFE) is locally asymptotically stable when 0 < 1. 
The model has a unique endemic equilibrium whenever 0 > 1. Using 
the value of the estimated parameters, the basic reproduction num-

ber in East Java Province is 0 ≈ 1.1138. This finding confirms that 
the dengue fever is still endemic in the province. We have further in-

vestigated the global sensitivity analysis using Partial rank correlation 
coefficient in order to identify the most influence parameters on the 
dengue disease transmission. The sensitivity analysis shows that the 
death rate of the mosquitoes (𝜇𝑣) and the biting rate of the mosquitoes 
(𝛽) are the most sensitive parameters. The increasing of the death rate 
of the mosquitoes can reduce rapidly the dengue infection. However, 
the bite of mosquitoes can be reduced by using the bet net, mosquito 
repellent and other necessary measure. Hence, we applied the optimal 
control strategies to investigate the impact of prevention and insec-

ticide to reduce the dengue transmission in East Java Province. The 
existence and the optimal control characterization were derived and 
analyzed. The numerical simulation was performed with different con-

trol strategies. The numerical results indicate that the integration of the 
prevention and insecticide is the best strategy to minimize the number 
of dengue-infected hosts and vector in the population. In addition, the 
implementation of the insecticide only is also an effective way in re-

ducing the dengue transmission in the population. These results are in 
keeping with the sensitivity analysis which shows that the death rate 
of the mosquitoes are the significant parameters. This study will help 
the government to design a program in the future to control the disease 
further spread.
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