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Background: Using single photon emission computed tomography myocardial

perfusion imaging (SPECT MPI) with phase analysis (PA), we aimed to identify the

predictive value of a new contraction pattern in cardiac resynchronization therapy

(CRT) response.

Methods: Left ventricular mechanical dyssynchrony (LVMD) was evaluated using

SPECT MPI with PA in non-ischemic dilated cardiomyopathy (DCM) patients with left

bundle branch block (LBBB) indicated for CRT. CRT super-response was defined as LV

ejection fraction (EF) ≥50% or an absolute increase of LVEF >15%. The LV contraction

was categorized as the mild dyssynchronous pattern when the phase standard deviation

(PSD) ≤40.3◦ and phase histogram bandwidth (PBW) ≤111.9◦, otherwise it was defined

as severe dyssynchronous pattern which was further characterized as U-shaped,

heterogeneous or homogenous pattern.

Results: The final cohort comprised 74 patients, including 32 (43.2%) in mild

dyssynchronous group, 17 (23%) in U-shaped group, 19 (25.7%) in heterogeneous

group, and 6 (8.1%) in homogenous group. The mild dyssynchronous group had

lower PSD and PBW than U-shaped, heterogeneous, and homogenous groups (P <

0.0001). Compared to patients with the heterogeneous pattern, the odds ratios (ORs)

with 95% confidence intervals (CIs) for CRT super-response were 10.182(2.43–42.663),

12.8(2.545–64.372), and 2.667(0.327–21.773) for patients with mild dyssynchronous,

U-shaped, and homogenous pattern, respectively. After multivariable adjustment,

mild dyssynchronous group remained associated with increased CRT super-response

(adjusted OR 5.709, 95% CI 1.152–28.293). Kaplan-Meier curves showed that mild

dyssynchronous group demonstrated a better long-term prognosis.

Conclusions: The mild dyssynchronous pattern in patients with DCM is associated with

an increased CRT super-response and better long-term prognosis.
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INTRODUCTION

Cardiac resynchronization therapy (CRT) has been proven to
be an effective strategy for patients with heart failure (HF) and
electrical dyssynchrony (1). Left bundle branch block (LBBB)
alone is a powerful predictor for CRT response. Although
promising effects have been reported, individual response to
CRT varies with up to one-third of patients with HF having
no response to CRT (2, 3). Although the main mechanism of
benefit from CRT is the correction of cardiac dyssynchrony,
the relationship between left ventricular (LV) electrical and
mechanical dyssynchrony may have a discrepancy. Animal
studies have shown that mechanical delay exceeds electrical
delay in ventricular pacing conditions (4). Delgado et al. (5)
demonstrated that severe baseline LV mechanical dyssynchrony
(LVMD) assessed by speckle-tracking echocardiography (STE)
may predict favorable long-term prognosis in ischemic HF
patients treated with CRT. Previous studies have demonstrated
U-shaped pattern was deemed to have a favorable response
rate to CRT (6–8). Cardiac magnetic resonance (CMR) and
three-dimensional (3D) STE are non-invasive approaches to
evaluate LV mechanical patterns and to investigate the effect
of relevant electromechanical characteristics on CRT responses
(9–11). Using CMR, Jackson et al. (10) found that the U-
shaped contraction pattern is strongly predictive for CRT super-
response. However, longer imaging time and inability to scan
patients with implanted devices, have limited the advance of
CMR (12). Similarly, STE relies heavily on operator experience
and lacks high reproducibility.

Phase analysis (PA) is a contemporary non-invasive method
based on single-photon emission computed tomography
myocardial perfusion imaging (SPECT MPI) and has been
applied to investigate LVMD, latest-excited sites, and myocardial
scar load with good reproducibility and reliability (13, 14). The
13-segmentation polar map based on the PA can display the
mean phase angle, which exhibits systolic dyssynchrony and
identifies the late contracting segments.

In our clinical practice, we found that CRT candidates
with a new mild dyssynchronous pattern identified by SPECT
frequently achieve super-response. This study aims to explore
the different contraction patterns using PA technique and to
investigate their predictive values on CRT super-response.

MATERIALS AND METHODS

Study Population
Seventy-four patients with non-ischemic dilated cardiomyopathy
(DCM) who received resting SPECT MPI were enrolled in
this study at The First Affiliated Hospital of Nanjing Medical
University from May 2014 to July 2020. Indications for CRT
in the present study included (1) sinus rhythm; (2) LV ejection
fraction (LVEF) ≤35%; (3) LBBB with QRS duration ≥130ms;
(4) New York Heart Association (NYHA) functional class II to
IV; (5) at least 3 months of optimized medical therapy before
CRT implantation. The exclusion criteria were: (1) patients
with persistent atrial fibrillation; (2) upgrade to CRT in pacing-
dependent patients. The study was approved by the institutional

review board, and written informed consent was obtained from
all patients.

SPECT MPI and Phase Analysis
All the patients underwent resting SPECTMPI with the injection
of 20–30mCi of Tc-99m sestamibi before CRT implantation. The
SPECT was performed approximately 60min after injection, and
dual-headed camera (CardioMD, Philips Medical Systems) was
used to acquire MPI images with a standard resting protocol.
The parameters contained a 20% energy window around 140
keV, 180 orbit, 32 steps with 25 s per step, 8-bin gating,
and 64 planar projections per gate. Image reorientation and
reconstruction were achieved through Emory Reconstruction
Toolbox (ERToolbox; Atlanta, GA).

Using a 3D search for maximal count circumferential profiles
in respective cardiac frame, LV sampling was obtained with
an automatic algorithm (15). The images of SPECT MPI were
used to quantify scarred myocardium. The percentage of tracer
uptake was displayed on polar map using a 13-segmentation
model (Figure 1A, left). LV sample with <50% of maximal
myocardial uptake was defined as myocardial scar region,
and scar burden was expressed as a percentage of myocardial
scar over total LV myocardium. The 13-segmentation regional
contraction polar maps displayed the mean phase angle, which
exhibited the systolic dyssynchrony and identified the late
contracting segments (Figure 1A, middle). The 1- harmonic
Fourier approximation was applied to quantify the onset of LV
mechanical contraction (14). Phase standard deviation (PSD)
and phase histogram bandwidth (PBW) (Figure 1A, right) were
used to assess global LVMD (13). The latest activated region had
relatively large phases and appeared as a brighter region in the
phase polarmap.Moreover, wall thickening was used to assess the
changes in maximal counts for a myocardial location throughout
the cardiac cycle.

Assessment of Contraction Patterns
A higher PSD or PBW was related to increased LVMD, and
vice versa. Based on previous research (16), LVMD was defined
as above the mean+2 standard deviations of PSD or PBW. A
threshold of 40.3◦ for PSD and 111.9◦ for PBW were applied,
which were derived from the control group of 8 LBBB patients
with normal LV function. LVMD was considered to be present
if at least one of the parameters was above the cutoff value.
Two types of LV contraction patterns were demonstrated in
our study. The LV contraction pattern was categorized as the
mild dyssynchronous group when the PSD ≤40.3◦ and PBW
≤111.9◦ (Figure 1A). The severe dyssynchronous pattern was
defined when the PSD >40.3◦ or PBW >111.9◦. The severe
dyssynchronous pattern included U-shaped pattern (Figure 1B)
if a line of block was apparent in the direction of LV
contraction propagation or heterogeneous pattern (Figure 1C)
if multiple sites of significant contraction delays existed in the
propagated direction of LV, or homogenous pattern (Figure 1D)
if propagation proceeded from the septum to lateral wall
homogenously. The contraction patterns were analyzed by two
independent investigators. Consensus was reached by a third
investigator for any disagreement.
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FIGURE 1 | Examples illustrating four contraction patterns. Numbers in the regional contraction polar maps represents the mean phase angle in each segment. The

big number or bright color represents the late contracting segments. (A) Polar map of regional myocardial viability (left). The bright color represents the viable

myocardium. The perfusion with <50% of the maximum tracer uptake was defined as scar. The number indicates the percentage of scar in this segment. A patient

with the mild dyssynchronous contraction pattern who had a super-response to CRT (middle). (B) A patient with the U-shaped contraction pattern who had a

super-response to CRT. A line of block was apparent between the septum and lateral wall. The anterior wall was the latest contraction site (red). (C) A patient with the

heterogeneous contraction pattern who did not have a super-response to CRT. The phase angles of each segment are incommensurable, which caused multiple sites

with the significant contraction delays. (D) A patient with the homogeneous pattern who did not have a super-response to CRT. The propagation proceeded from the

septum to lateral wall homogenously.
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Echocardiographic Evaluation and
Electrocardiographic Feature Analysis
All patients received transthoracic echocardiography by an
ultrasound specialist who was blinded to the study at baseline
and follow-up. LV end-systolic diameter (LVESD), LV end-
diastolic diameter (LVEDD), and LVEF were recorded using
the 2-dimensional modified biplane Simpson method. The ECG
feature at baseline was analyzed. The patients were classified as q-
SLBBB and V5&V6S group according to our previous study (17).

CRT Implantation
The devices were implanted based on the standard procedures
(18). The atrial lead was implanted in the right atrial appendage,
right ventricular (RV) lead was placed at the RV apex or septum,
and LV lead was implanted by targeting the posterolateral, lateral,
anterolateral, or posterior coronary sinus side branch.

CRT Super-Response and Clinical
Outcomes
Patients were followed up 1, 3, and 6 months after CRT
implantation. After 6 months, the patients were followed up at
least once every year. CRT response was defined as an absolute
increase of LVEF ≥5% at 6-month follow-up. CRT super-
response was defined as LVEF ≥50% or an absolute increase of
LVEF >15% at 6-month follow-up (19, 20). All-cause mortality
or HF hospitalization was considered as the combined end point.

Statistical Analysis
Categorical variables were expressed as numbers (n) or
percentage (%). Continuous variables were expressed as mean
± standard deviation (SD) or medians (25–75th percentile)
based on their normality following Kolmogorov–Smirnov test.
Comparisons between groups were performed by the chi-square
test or Fisher test for categorical variables, Student’s t-test
for parametric variable, and Mann Whitney U test for non-
parametric variables. To protect against Type I error, Bonferroni’s
correction was used. Continuous data between multiple groups
were compared using one-way ANOVA test followed by post-hoc
test (least significant difference). Intergroup comparisons were
analyzed using paired t-test. The stepwise logistic regression (P
< 0.05 in the univariate regression were included and variables
with P >0.05 in the multivariate regression were excluded)
were performed to assess the independent predictors of CRT
super-response. The Kaplan-Meier curve analysis was used to
compare the all-cause mortality or hospitalization for HF. P <

0.05 was considered statistically significant. Statistical analysis
was performed with SPSS (version 26, Statistical Package for the
Social Sciences, International Business Machines, Inc., Armonk,
NY, USA).

RESULTS

Patient Characteristics
The baseline characteristics of the enrolled patients are
summarized in Table 1. Sixty-six patients (89.2%) had IA
indication for CRT implantation with QRS duration ≥150ms.
All the patients received available optimized medical therapy

pre and post CRT. There was no statistical difference in the
use of Beta -blockers, angiotensin converting enzyme inhibitors
(ACEI)/angiotensin receptor blockers (ARB), and aldosterone
antagonists or diuretics between groups. No significant difference
was observed in the use of CRT-P or CRT-D device between
groups. The majority of LV leads were positioned in either
lateral or posterolateral branches of coronary veins. There was
no statistically significant difference in LV lead positions between
groups. Compared with the severe dyssynchronous group, mild
dyssynchronous group had significantly higher LVEF and smaller
LVEDD (28.66% ± 5.06 vs. 25.76 ± 5.04%, P = 0.017; 68mm
± 6.96mm vs. 76.45mm ± 9.87mm, P < 0.001, respectively).
PSD and PBW were also significantly higher in the severe
dyssynchronous group than in the mild dyssynchronous group
(57.93± 12.38◦ vs. 22.2± 7.18◦, P < 0.0001; 205.71± 54.64◦ vs.
69.84◦ ± 21◦, P < 0.0001, respectively).

Based on the contraction pattern, the severe dyssynchronous
group was further trichotomized into three groups: U-shaped
(n = 17), heterogeneous (n = 19), and homogenous (n = 6).
Mild dyssynchronous group had a similar LVEF with U-shaped
and homogenous group, significantly higher than heterogeneous
group (P < 0.01) (Figure 2A). Mild dyssynchronous group had
a similar scar burden with U-shaped group, significantly lower
than heterogeneous group and homogenous group (P < 0.05)
(Figure 2B). Wall thickening was lower in mild dyssynchronous
group than U-shaped, heterogeneous, and homogenous groups
(P < 0.0001), whereas it did not reach significant difference
among the severe dyssynchronous groups (Figure 2C). U-shaped
group had higher PSD and PBW than mild dyssynchronous
group (P < 0.0001), but lower than heterogeneous group (P <

0.05). Heterogeneous and homogenous groups had significantly
higher PSD and PBW than mild dyssynchronous group (P <

0.0001) (Figures 2D,E).

Echocardiographic Measurements at
Follow-Up
LVEF and LVEDD Changes
The LVEF in each group was significantly increased at follow-up
except the homogeneous group (mild dyssynchronous: 28.66 ±

5.06% vs. 48.91 ± 14.9%, P < 0.01; U-shaped: 27.95 ± 4.29%
vs. 48.39 ± 10.51%, P < 0.01; heterogeneous: 23.67 ± 5.28% vs.
32.37 ± 13.48%, P < 0.05) (Figure 3A). Among these 4 groups,
the change in LVEF showed significant differences, especially
between the mild dyssynchronous group and the heterogeneous
group (P < 0.01) (Figure 3B).

The LVEDD in each group was significantly decreased
compared with baseline except the homogeneous group (mild
dyssynchronous: 68 ± 6.96mm vs. 56.5 ± 9.38mm, P <

0.01; U-shaped: 72.59 ± 7.25mm vs. 57.82 ± 8.29mm,
P < 0.01; heterogeneous: 79.95 ± 11.46mm vs. 73.84 ±

16.26mm, P < 0.05) (Figure 3C). The change in LVEDD showed
significant difference only between the U-shaped group and the
heterogeneous group (P < 0.05) (Figure 3D).

CRT Super-Response Rate
At the 6-month follow-up, 50 patients (67.6%) achieved CRT
response, and 38 patients (51.4%) achieved CRT super-response.
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TABLE 1 | Baseline characteristics of 74 patients with LBBB.

Variables All

(n = 74)

Mild dyssynchronous

(n = 32)

U-shaped

(n = 17)

Heterogeneous

(n = 19)

Homogenous

(n = 6)

P

Age (year) 66.11 ± 11.07 65.22 ± 11.19 68.35 ± 11.06 66.95 ± 11.86 61.83 ± 8.23 0.60

Male (%) 55 (74.3%) 25 (78.1%) 12 (70.6%) 15 (78.9%) 3 (50%) 0.49

Hypertension (%) 30 (40.5%) 15 (46.9%) 6 (35.3%) 6 (31.6%) 3 (50%) 0.66

Diabetes (%) 13 (17.6%) 4 (12.5%) 1 (5.9%) 7 (36.8%) 1 (16.7%) 0.07

Renal dysfunction (%) 3 (4.1%) 2 (6.3%) 1 (5.9%) 0 (0%) 0 (%) 0.66

Smoking (%) 27 (36.5%) 12 (37.5%) 5 (29.4%) 8 (42.1%) 2 (33.3%) 0.88

NT-proBNP (ng/L) 1,968 (1,166–4225.8) 1,505 (897.5–3919.8) 1,927 (1,164–4,163) 2,915 (1670–5571) 2,422 (827–5,280) 0.63

NYHA II/ III /IV 21/40/13 11/17/4 2/9/6 6/11/2 2/3/1 0.39

QRSd (ms) 177 (162.8–188) 175 (160.5–187.5) 172 (160–188.5) 180 (170–188) 173.5 (165–193) 0.78

ACEI/ARB (%) 62 (83.8%) 25 (78.1%) 16 (94.1%) 15 (78.9%) 6 (100%) 0.31

Beta-blocker (%) 68 (91.9%) 28 (87.5%) 16 (94.1%) 18 (94.7) 6 (100%) 0.64

Aldosterone antagonist (%) 66 (89.2%) 29 (90.6%) 13 (76.5%) 18 (94.7%) 6 (100%) 0.24

Diuretics (%) 68 (91.9%) 29 (90.6%) 15 (88.2%) 18 (94.7%) 6 (100%) 0.78

CRT-D (%) 41 (55.5%) 19 (59.4%) 7 (41.2%) 12 (63.2%) 3 (50%) 0.55

ECG pattern

q-SLBBB 1 (1.3%) 1 (3.1%) 0 (0%) 0 (0%) 0 (0%) 0.68

V5&V6S 21 (22.8%) 7 (21.9%) 2 (11.8%) 6 (31.6%) 4 (66.7%) 0.06

Echocardiogram

LVEF (%) 27.8 (23.48–30.83) 30.2 (25.4–31.98) 29.2 (24.3–31.75) 23.5 (20.2–27.6) 25.2 (22.48–30.4) 0.01

LVEDD (mm) 71.5 (67–80) 68 (63.3–72.8) 72 (67–77.5) 82 (71–88) 78.5 (68.25–83.5) <0.01

LVESD (mm) 61.5 (57–71.25) 59 (56.25–63) 61 (56.5–68.5) 74 (62–79) 69 (57.75–74.5) <0.01

LAD (mm) 46 (41–51) 44 (40–48.75) 46 (43–49) 52 (46–56) 45 (42.5–51.5) 0.02

Moderate/ severe MR (%) 59 (79.7%) 24 (75%) 15 (88.2%) 14 (73.7) 6 (100%) 0.37

Moderate/ severe TR (%) 25 (33.8%) 9 (28.1%) 7 (41.2%) 7 (36.8%) 2 (33.3%) 0.81

SPECT MPI

PSD, degree 43.2 (23.73–58.31) 23.06 (17.24–26.6) 52.98 (47.95–56.92) 64.64 (57.97–74.45) 46.25 (40.77–61.93) <0.01

PBW, degree 137 (73–212.25) 70.5 (58.25–83.75) 188 (154.5–225) 241 (209–279) 164 (131.5–208.25) <0.01

Scar burden (%) 29.42 (22.66–39.74) 24.29 (16.92–36.95) 27.26 (23.19–32.67) 37.07 (30.09–43.55) 38.82 (29.75–48.66) 0.01

Wall thickening (%) 32.48 (15.11–44.27) 14.03 (9.23–20.91) 40.82 (34.06–49.18) 44.5 (33.35–53.09) 38.34 (27.74–48.37) <0.01

LV lead position 0.25

Anterolateral 10 (13.5%) 2 (6.3%) 2 (11.8%) 4 (21.1%) 0

Lateral 30 (40.5%) 13 (40.6%) 7 (41.2%) 9 (47.4%) 3 (50%)

Posterolateral 29 (39.2%) 14 (43.8%) 8 (47%) 4 (21.1%) 3 (50%)

Posterior 5 (6.8%) 3 (9.4%) 0 (0%) 2 (10.5%) 0 (0%)

Values are presented as n (%) or mean ± SD or, median (interquartile range). Bold values are statistically significant.

NYHA, New York Heart Association; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; NT-proBNP, N-terminal pro-brain natriuretic peptide; q-SLBBB,

Patients who met typical LBBB criteria along with q waves in leads I, V5, and V6; V5&V6S, Patients with absence of q waves in leads I, V5, and V6 and S wave in leads V5 and

V6; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; PSD, phase standard

deviation; PBW, phase histogram bandwidth; MR, mitral regurgitation; TR, tricuspid regurgitation.

CRT super-responders accounted for a large percentage of
patients in the mild dyssynchronous group and U-shaped group
(65.6 vs. 70.6%, P= 0.72), only 15.8% in the heterogeneous group
and 33.3% in the homogenous group. The mild dyssynchronous
and U-shaped groups had significantly higher CRT super-
response rates than the heterogeneous group (Figure 4).

Predictive Value of Contraction Pattern
In univariate analysis, compared with the heterogeneous pattern,
the odds ratios (ORs) with 95% confidence intervals (CIs) for

CRT super-response were 10.182 (2.43–42.663), 12.8 (2.545–
64.372), and 2.667 (0.327–21.773) for the mild dyssynchronous,
U-shaped, and homogenous group, respectively. PSD and scar
burden analyzed as continuous variables were associated with
poor benefit from CRT [OR 0.584 per 1 standard deviation
(SD) increase, 95% CI 0.358–0.951; P = 0.031; OR 0.411 per 1
SD increase, 95% CI 0.228–0.74; P = 0.003; respectively]. After
multivariable adjustment with V5&V6 S, LVEF, and scar burden,
mild dyssynchronous and U-shaped groups remained associated
with increased CRT super-response compared to heterogeneous
group (adjusted OR 5.709, 95% CI 1.152-28.293; P = 0.033;
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FIGURE 2 | Comparison of LVEF, scar burden, wall thickening, PSD, and PBW in different groups. (A) Mild dyssynchronous group had a similar LVEF with U-shaped

and homogenous group, significantly higher than heterogeneous group. (B) Mild dyssynchronous group had a similar scar burden with U-shaped group, significantly

lower than heterogeneous group and homogenous group. (C) Mild dyssynchronous group had a lower wall thickening than U-shaped, heterogeneous, and

homogenous group. (D) Mild dyssynchronous group had a lower PSD than U-shaped, heterogeneous, and homogenous group. (E) Mild dyssynchronous group had

a lower PBW than U-shaped, heterogeneous, and homogenous group. *P < 0.05; **P < 0.01; ****P < 0.0001. ns, no statistically significant.

adjusted OR 6.81, 95% CI 1.198–38.718; P = 0.031, respectively)
(Table 2).

Long-Term Clinical Outcome
Over a mean follow-up of 37.48 ± 23.07 months, 19
patients (25.7%) reached the combined end point of HF
hospitalization or all-cause mortality, 5 (15.6%) in the mild
dyssynchronous group, 1 (5.9%) in the U-shaped group,
10 (52.6%) in the heterogeneous group, and 3 (50%) in
the homogenous group. The mild dyssynchronous group

demonstrated a better long-term prognosis than the severe
dyssynchronous group (log-rank P = 0.046) (Figure 5A). The
incidence of HF hospitalization or all-cause mortality was
significantly lower in the mild dyssynchronous group than in

the heterogeneous group (P < 0.01), which was similar to
the U-shaped group. There is no difference in the incidence
of HF hospitalization or all-cause mortality between patients
with the heterogeneous pattern and the homogenous pattern (P
> 0.05). Kaplan-Meier curves for the 4 groups are presented
in Figure 5B.
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FIGURE 3 | Comparison of echocardiographic measurements. (A) The panel shows the comparison of LVEF between baseline (pre-CRT) and post-CRT. (B) The

panel shows the comparison of 1LVEF among the four groups. (C) The panel shows the comparison of LVEDD between pre-CRT and post-CRT. (D) The panel

shows the comparison of 1LVEDD among the four groups. *P < 0.05; **P < 0.01; ns, no statistically significant. 1LVEF, the changes of left ventricular ejection

fraction; 1LVEDD, the changes of left ventricular end-diastolic diameter.

DISCUSSION

The major findings of this study are: (1) The mild
dyssynchronous pattern was observed in 43.2% of patients
with DCM in our cohort; (2) The mild dyssynchronous
pattern is associated with a favorable CRT super-response
comparable with the U-shaped pattern, however the
heterogeneous pattern showed a lesser response to
CRT; (3) understanding contraction patterns in patients
with LBBB provides additional predictive value for
CRT super-response.

Contraction Patterns and CRT Efficacy
Our study investigated a new mild dyssynchronous contraction
pattern and its association with CRT super-response. These
patients achieved favorable outcomes which led us to explore
this new contraction pattern in patients with LBBB. In this
study, 32 patients (43.2%) were identified by SPECT to have
a mild dyssynchronous contraction pattern. The phase angle
of each segment was comparable without obvious early or late
propagation in adjacent segments. To compare the dyssynchrony
of different contraction patterns, we also calculated the deviations
between the maximum and minimum phase angles of different
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FIGURE 4 | Comparison of CRT super-response rate among four groups. Mild

dyssynchronous and U-shaped groups had significantly higher CRT

super-response rates than the heterogeneous group (P.adj < 0.05). adj,

adjusted. Multiple comparisons was adjusted by Bonferroni’s correction.

segments in each contracting pattern. Mild dyssynchronous
group had the least mean deviations of phase angles compared to
U-shaped group, heterogeneous group, and homogeneous group
(37.53 vs. 90.29, 80.95, and 81.33◦, P < 0.001).

Previous studies using non-contact mapping (NCM), STE,
and CMR have identified two major contraction patterns (7,
9, 10, 21–23). The U-shaped pattern is characterized by a
U-shaped contraction propagation caused by a line of block.
Fung et al. (9) reported that the block lines could exist in
the anterior, septal, or inferior wall. The lines of block in our
study were mainly observed in anterior wall (n = 11) and
septal wall (n = 6). Previous studies revealed that U-shaped
pattern was related to a favorable CRT response. Fung et al.
(9) and Sohal et al. (23) demonstrated that the volumetric CRT
response was 80% for the U-shaped pattern. Tao et al. (24)
identified three distinct patterns: U-shaped, heterogeneous, and
homogenous. They found that U-shaped contraction pattern
was also associated with improved CRT response. Homogenous
pattern was characterized by propagation proceeded from the
septum to lateral wall homogenously, which was associated with
a lesser response to CRT. It was also seen in our study, which was
consistent with that in previous studies. Approximately 34.7, 49,
and 51.9% of patients were identified as having the homogenous
pattern in these studies (9, 10, 23). The relatively lower prevalence
of the homogenous pattern in this study (8.1%) was likely
due to different inclusion criteria. Our patients presented with
LBBB and DCM. The significance of this group lies on further
expansion of sample size in the follow-up research to clarify
the issue.

However, no study reported the CRT response in patients
with mild dyssynchronous contraction pattern characterized
by SPECT. In the study by Boogers et al. (25), they also
demonstrated low values of PSD and PBW with gated MPI
SPECT (GMPS) to predict the response to CRT. Forty patients

with heart failure (30% with DCM), an LVEF ≤35%, and a
QRS ≥120ms underwent GMPS were enrolled. Particularly,
a cutoff value of 72.5◦ for PBW and 19.6◦ for PSD yielded
a sensitivity of 83% and a specificity of 81% for prediction
of response to CRT. The relatively low cutoff values may be
related to differences in study populations or to differences
in software packages. Our study is the first to show that
this mild dyssynchronous contraction pattern was strongly
associated with CRT super-response in patients with LBBB
and non-ischemic DCM similar to the previously described
U-shaped pattern.

In the mild dyssynchronous group, eight patients without
LV dyssynchrony were identified based on a threshold of 24.4◦

for PSD and 62.3◦ for PBW, which were derived from the
healthy people with normal LV function (13). This group
had nearly normal PSD and PBW (13.09 ± 4.03◦; 42.5 ±

12.88◦, respectively). They had significantly less scar burden,
smaller LVEDD, and left atrial diameter (LAD). Similarly,
they had short duration of HF history. This group with
LV synchronous pattern also exhibited a super-response rate
of 50%.

Similar Super-Response Rate Between
Mild Dyssynchronous and U-Shaped
Groups
Previous studies showed that CRT response was associated with
the presence of baseline LV dyssynchrony measured by PA of
GMPS (25–27). Henneman et al. (26) established a cutoff value of
135◦ for PBW and 43◦ for PSD for prediction of CRT response.
Similar studies also showed significantly larger PSD and PHB
values in CRT responders (25, 27). However, the accuracy of
GMPS to predict response to CRT was not perfect. Actually, it
is not realistic to predict the accuracy of CRT response based
solely on LV dyssynchrony. Recent work has indicated that scar
tissue was closely related to LV dyssynchrony (28). Myocardial
scar hampered with the propagation of mechanical activation
and contributed tomore dyssynchronous contraction. It has been
shown that the extent of scar tissue was negatively correlated
with CRT response (29). It could be assumed that if baseline
LV dyssynchrony is mainly caused by scar, patients with HF
would not have a better response to CRT. Hung et al. (30)
demonstrated that the global LV dyssynchrony could not predict
CRT response, only LV dyssynchrony in the viable myocardium
had a better response to CRT. Our results are in line with
earlier work by Wang et al. (31). They found systolic PSD,
systolic PBW, diastolic PSD, and diastolic PBW in the CRT
response group were statistically significant lower than those in
the non-response group (P < 0.05). Meanwhile, the CRT non-
response group showed more scar burden, and more LV leads
were located in the scarred segments. In our clinical practice, we
found that CRT candidates with a mild dyssynchronous pattern
which was presented in this study frequently achieve super-
response. The mild dyssynchronous group had less scar burden,
and we speculated that the less scar burden may contributed
to the lower PSD and PBW, which led to a favorable response
to CRT.
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TABLE 2 | Univariate analysis and multivariable models for CRT super-response.

Characteristics Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Age (per 10year) 1.05 (0.693–1.59) 0.818

Male (%) 0.701 (0.245–2.01) 0.509

Diabetes (%) 0.353 (0.098–1.271) 0.111

Hypertension (%) 0.913 (0.361–2.311) 0.848

Smoke (%) 1.032 (0.4–2.661) 0.948

Alcohol user (%) 1.786 (0.574–5.559) 0.317

Renal dysfunction (%) 1.944 (0.169–22.423) 0.594

NT-proBNP (per 100 ng/L) 0.998 (0.986–1.009) 0.701

QRSd (per 10ms) 1.25 (0.938–1.666) 0.127

NYHA (%)

II Ref.

III 0.995 (0.346–2.866) 0.993

IV 2.475 (0.577–10.617) 0.223

LVEF (%) 1.152 (1.040–1.275) 0.007 1.066 (0.947–1.201) 0.290

V5&V6S 0.238 (0.075–0.756) 0.015 0.292 (0.076–1.119) 0.073

LV lead position

Lateral vs. Anterolateral 0.882 (0.187–4.158) 0.874

Posterolateral vs. Anterolateral 1.417 (0.295–6.814) 0.664

Posterior vs. Anterolateral 0.667 (0.069–6.409) 0.725

Posterolateral vs. Lateral 1.606 (0.582–4.426) 0.360

Posterior vs. Lateral 0.756 (0.111–5.149) 0.775

Posterior vs. Posterolateral 0.471 (0.068–3.261) 0.445

ACEI/ARB (%) 0.714 (0.204–2.496) 0.598

Beta-blocker (%) 0.189 (0.021–1.7) 0.137

PSD◦ (Per 1 SD) 0.584 (0.358–0.951) 0.031

PBW◦ (Per 1 SD) 0.665 (0.413–1.07) 0.093

Scar burden% (Per 1 SD) 0.411 (0.228–0.74) 0.003 0.661 (0.333–1.313) 0.237

Mild dyssynchronous vs. U-shaped 0.795 (0.223–2.841) 0.725

Mild dyssynchronous vs. Heterogeneous 10.182 (2.43–42.663) 0.002 5.709 (1.152–28.293) 0.033

Mild dyssynchronous vs. Homogenous 3.818 (0.602–24.222) 0.155

U-shaped vs. Heterogeneous 12.8 (2.545–64.372) 0.002 6.81 (1.198–38.718) 0.031

U-shaped vs. Homogenous 4.8 (0.655–35.198) 0.123

Homogenous vs. Heterogeneous 2.667 (0.327–21.733) 0.36

CI, confidence interval; OR, odds ratio; Ref, reference; SD, standard deviation; other abbreviations as in Table 1. Bold values are statistically significant.

In our cohort, we found a significant relationship between the
contraction pattern and LV function. The mild dyssynchronous
group had the lowest LAD, LVEDD, PSD, and PBW. Moreover,
these individuals had a significantly higher EF than those with
the heterogeneous pattern, which suggests that worse LV function
could be underlying the difference in contraction patterns. It
has also been demonstrated that wall thickening correlates well
with LVEF (32). Mild dyssynchronous group had a lower wall
thickening than the other 3 groups, indicating that the abnormal
wall thickening plays a significant role in LV remodeling. The
MADIT-CRT study (33) showed that smaller baseline LA volume
index had a high predictive value to identify CRT super-
responders. Consistent with this finding, we also found the mild
dyssynchronous group had smaller LAD. This may contributed
to the favorable super-response to CRT. Clinical studies reported

that patients with smaller baseline LVEDD were more likely to be
CRT super-responders (34, 35). The size of LV reflects the stage of
structural remodeling in HF patients. Apoptosis and fibrosis have
been identified as early features of HF. The pathogenesis of HF is
associated with progressive inherent dysfunction, degeneration
and loss of viable cardiomyocyte (36). Therefore, among HF
patients with larger LVEDD, the loss of cardiomyocyte and
subsequent fibrosis must be much more severe and extensive.
It is easy to understand that a heart without enough viable
cardiomyocyte is unlikely to respond to CRT.

Another possible explanation for high CRT super-response
in the mild dyssynchronous group may be the presence of less
scar tissue near the LV pacing lead. The presence, position, and
burden of myocardial scar have been reported to affect CRT
response (37). Linear regression analysis also showed that the
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FIGURE 5 | Kaplan-Meier curves comparing survival free of the combined end point in different groups. (A) The mild dyssynchronous group demonstrated a better

long-term prognosis than the severe dyssynchronous group. (B) The incidence of HF hospitalization or all-cause mortality is significantly lower in the mild

dyssynchronous group than in the heterogeneous group, which was similar to the U-shaped group. Log-rank P: *P < 0.05, **P < 0.01. ns, no statistically significant.

baseline scar burden was negatively correlated to the changes of
LVEF after CRT (P < 0.001) (Supplementary Figure S1). Zhang
et al. (38) reported the extent of scarred LV segments identified
on SPECT was negatively correlated with CRT response.
Our results showed that the mild dyssynchronous contraction
pattern was associated with less scar burden compared to the
heterogeneous pattern. Our 8 patients with LBBB and normal LV
function serving as the control group also had less scar burden
than the mild dyssynchronous group (8.73 ± 3.28% vs. 26.52
± 11.85%, P < 0.0001). This further demonstrated that patients
with less scar burden were more likely to be super-responders.

Moreover, the mild dyssynchronous group had fewer
patients with V5&V6S ECG phenotypes compared with the
heterogeneous group. Our previous study found that an S wave
in lead V6 predicts poor response to CRT (17).

Possible Mechanism of the Mild
Dyssynchronous Pattern
DCM is an extremely heterogeneous disease presented with mild
or moderate LV dysfunction (39). Electrical activation propagates
from RV to LV through the intraventricular septum in patients
with LBBB. The subsequent dyssynchronous contraction and
relaxation lead to dilated LV and eventually HF. It is currently
unclear whether each contraction pattern truly represents their
different electrical activation. We speculated that the mild
dyssynchronous pattern may be the early stage of HF, and the
primary etiology for a substantial of patients may be the bundle
branch block. Correction of LBBB by biventricular pacing could
lead to electrical and mechanical resynchrony and normalization
of LV function. A recent study showed that using left bundle
branch pacing to correct LBBB can cure DCM patients, which
could be inferred that LBBB played a vital role in occurrence
of DCM. The hypothesis of LBBB-induced DCM seems to be
a reasonable conception (40). Without prompt intervention,
LV continues to dilate and its contraction sequence becomes
more complex leading to different contraction morphologies
such as the heterogeneous, homogenous, and U-shaped patterns

identified in this study. Further work is needed to investigate each
contraction pattern.

Limitations
First, this was a retrospective observational study with
small sample size. Second, except for LVMD assessed by
SPECT, no electrical activation parameters were collected.
Third, our classification of mechanical contraction pattern
has not been used in other studies and thus needs more
validation. Prospective multicenter studies in larger cohorts
are warranted.

CONCLUSION

The mild dyssynchronous pattern assessed by SPECT is
associated with increased CRT super-response and better long-
term prognosis in patients with DCM and LBBB, which was
comparable with the U-shaped pattern. This finding may
have significant clinical significance in selecting proper CRT
patients and further investigation is needed to validate its
clinical application.
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