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Abstract: Precipitation intensity estimation is a critical issue in the analysis of weather conditions.
Most existing approaches focus on building complex models to extract rain streaks. However, an
efficient approach to estimate the precipitation intensity from surveillance cameras is still challenging.
This study proposes a convolutional neural network known as the signal filtering convolutional
neural network (SF-CNN) to handle precipitation intensity using surveillance-based images. The
SF-CNN has two main blocks, the signal filtering block (SF block) and the gradually decreasing
dimension block (GDD block), to extract features for the precipitation intensity estimation. The SF
block with the filtering operation is constructed in different parts of the SF-CNN to remove the noise
from the features containing rain streak information. The GDD block continuously takes the pair of
the convolutional operation with the activation function to reduce the dimension of features. Our
main contributions are (1) an SF block considering the signal filtering process and effectively removing
the useless signals and (2) a procedure of gradually decreasing the dimension of the feature able to
learn and reserve the information of features. Experiments on the self-collected dataset, consisting
of 9394 raining images with six precipitation intensity levels, demonstrate the proposed approach’s
effectiveness against the popular convolutional neural networks. To the best of our knowledge, the
self-collected dataset is the largest dataset for monitoring infrared images of precipitation intensity.

Keywords: precipitation intensity; signal filtering; dimensional reduction

1. Introduction

The understanding of weather conditions has become more critical, and has been
discussed for decades due to the dramatic changes in the global climate, in which pre-
cipitation intensity is an important issue. The estimation of the precipitation intensity
is the fundamental technology underlying various applications, for example, farming,
weather forecasting, and climate simulation. Moreover, the abnormal precipitation inten-
sity can cause disasters, such as floods and droughts, threatening human life and property,
and destroying the environment.

Various studies have been dedicated to measuring precipitation intensity, and they
can be classified into three categories based on the used data sources: gauge-based [1,2],
radar-based [3,4], and satellite-based [5,6] approaches . The rain gauge is the earliest and
most widely used device to measure precipitation intensity. The basic concept of a rain
gauge is to manually or automatically calculate the rainfall using containers to collect
rainwater and estimate the rainfall. Various types of rain gauges have been developed
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in studies to estimate precipitation intensity, but there have been some drawbacks; for
example, the rain gauge must be placed on a flat surface perpendicular to the horizontal
plane. Moreover, the rain gauge can only collect the installed local rainfall information.
The number of rain gauges needing to be built increases to expand the coverage, which
needs a huge budget.

Radar-based approaches use radar to emit radio waves to the sky and receive the
radio waves reflected back from various objects. Researchers analyze the reflected radio
waves to obtain weather information, such as the moisture content in the air and rainfall
probability. The monitoring coverage of radar-based approaches is broader than gauge-
based approaches, but the accuracies of the radar-based approaches are related to the
reflected waves vulnerable to outside interference, such as the terrain and the reflected
waves from various objects.

Satellite-based approaches require various sensors to obtain visibility, infrared, and mi-
crowave information for analyzing the precipitation with a large-scale observation. How-
ever, the visible and infrared data can only provide information from the top of clouds,
which is weakly correlated with rainfall. The microwave emits from the satellite, penetrates
the cloud and obtains the information from under the cloud. Therefore, some studies use
microwaves to analyze precipitation information. However, a satellite has drawbacks of a
low sampling rate and low spatial resolution of visibility, infrared, and microwave.

In addition, surveillance cameras are another kind of sampling equipment which
have been widely erected and used in various areas, such as traffic monitoring [7], home
care [8], and security monitoring [9]. These studies focus on understanding the scene’s
content, including static and dynamic objects. A challenge in analyzing a scene’s contents
is related to the weather. In weather-related topics, the rain streaks affect the quality of the
monitoring images and distort the interesting objects, reducing the performance of outdoor
vision surveillance systems. Therefore, many scholars focus on solving rain streaks by
utilizing popular convolutional neural networks in a monitoring image or a surveillance
video [10,11]. These methods can detect and remove rain streaks, but do not analyze or
provide information on the precipitation intensity.

In recent years, many countries have faced the problem of heavy precipitation. There-
fore, an efficient approach for estimating precipitation intensity in a city is needed. Figure 1
shows examples of raining images from various weather stations using infrared cameras;
Figure 1a,b are images of a drizzle and moderate rain with 0.7 mm and 2.7 mm precipitation,
respectively. In Figure 1, rain streaks can be observed in infrared cameras, and that is related
to the intensity of precipitation. This study takes infrared surveillance cameras as data
sampling devices and designs a new framework—the signal filtering convolutional neural
network (SF-CNN)— capable of describing the features of precipitation with signal filtering
and dimensional transformation in the infrared image to estimate the precipitation intensity
in the city. Our study takes surveillance cameras as data collection devices, providing a
high sampling spatial resolution compared to existing methods. Moreover, the SF-CNN
achieves more superior results than other popular networks. To the best of our knowledge,
no precipitation intensity dataset with surveillance-based infrared images has been created
to date. This study is the first to use surveillance-based optical images for precipitation
intensity estimation.

The rest of this paper is organized as follows: We present related literature works
in Section 2. In Section 3, we introduce the proposed SF-CNN for the precipitation inten-
sity estimation, including the signal filtering block (SF block), the gradually decreasing
dimensional block (GDD block), and the entire network structure. Experimental results,
a discussion, and conclusions are presented in Sections 4–6, respectively.
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(a) (b)

Figure 1. Example of the self-collected precipitation intensity dataset. (a) Drizzle, (b) moderate rain.

2. Related Works

Precipitation intensity estimation is essential for climate, hydrological, and weather
forecasts. The commonly used methods can be classified as the direct rainfall measurement
and indirect rainfall estimation.

In the approaches of the direct rainfall measurement, the rain gauges, including
the tipping bucket [12,13], weighing rain gauge [14,15], and siphon rain gauge [16], are
widely used to measure the precipitation intensity directly. The rain gauge comprises three
components: a water receiver (the funnel), a water storage tube (outer tube), and a water
container. It uses a water container to collect precipitation and directly measures it by using
the methods of weighting and setting thresholds. The precipitation recognition method
with the rain gauge sampling is in direct contact with precipitation. The methods consider
various containers to collect precipitation and measure the precipitation intensities, playing
a critical role in and measuring of precipitation intensity [17]. The rain gauges are the direct
and accurate approach to obtaining precipitation [18] and can provide the high-precision
measurement of the precipitation intensity at a single sampling point [19]. However, it has
the problems of the density of sampling, residual water, and water evaporation.

The rain gauge should be set in an open field to avoid movement and external forces.
Therefore, the cost of building a high-density and well-configured rain gauge network is too
high. The distribution density of sampling directly affects the accuracy of the precipitation
estimation [20] and makes the measured value lose spatial representativeness [21]. Scholars
have utilized the interpolation method [22] to fill the lost values in spatial distribution
but experience significant errors in large areas because the sampling points are few [23].
In addition, a rain gauge uses a container to receive and estimate the precipitation. It cannot
avoid the problems of residual water and water evaporation either using manual observa-
tion or automatic measurement. Therefore, more studies consider using approaches that
indirectly obtain the precipitation information, such as weather radars, satellite monitoring,
and surveillance monitoring, to estimate the precipitation intensity.

Weather radars and satellite monitoring have become essential approaches for large-
scale precipitation estimation because the rain gauge has the problems of the limitation
of space coverage and the low spatial representation. A weather radar retrieves the rain
intensity through reflectivity Z and rainfall intensity R (Z–R relationship), quickly pro-
viding real-time precipitation in the study area. Compared with using a rain gauge to
measure rainfall intensity, a radar can obtain a higher temporal and spatial resolution
and a more comprehensive measurement range by adjusting the emission width and
emission frequency. However, the Z–R relationship’s conversion relationship varies with
rainfall types [24], and it directly affects the accuracy of the radar. Therefore, determining
a reasonable Z–R relationship is a scientific problem when using a weather radar. In ad-
dition, precipitation estimation using the radar is susceptible to some factors, such as a
non-weather echo, radar beam abnormality, and signal attenuation [25]. These factors can
cause differences between the values measured using a radar vs. reality.

In addition, a satellite is a vital sampling device for precipitation intensity measure-
ment, and its spatial coverage is of global scale. Satellite precipitation monitoring mainly
consists of infrared (IR) observations from geosynchronous orbit satellites (GEO), passive
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microwave (PMW) observations from low Earth orbit satellites (LEO), and a combination
of the IR and PMW [20]. The IR precipitation estimation is used to associate the properties
of the cloud, such as the clou’sd thickness and the top temperature (brightness) of the
cloud, to estimate the probability and intensity of precipitation [26]. The lower the cloud
top temperature (the brighter the cloud), the stronger the precipitation [27]. However,
the relationship between precipitation and the temperature of the cloud top is indirect.
Therefore, there exists the estimation error of precipitation intensity. PMW sensors can
penetrate clouds and receive microwave signals from hydrometeors compared to infrared
signals. PMW sensors can directly measure hydrometeors in the atmosphere [28] to esti-
mate precipitation more accurately [29]. However, satellite images cannot provide direct
measurements of precipitation intensity. Moreover, sampling with microwaves has the
problems of a low temporal resolution and a large sampling error when processing a
short-term rainfall estimation. Therefore, studies have associated the merits of infrared and
microwave information with precipitation intensity estimation [5]. Furthermore, scholars
associate the remote sensing image, which is provided by a satellite, with precipitation
information by assigning precipitation to each pixel to quantify precipitation in the satel-
lite image [30]. Therefore, the quantitative results of precipitation on satellite images
depend on the quality of the assignment (classification). Machine learning methods, such
as random forests [31] and the convolutional neural network (CNN) [32,33], are effective
classification techniques for achieving an image-based precipitation intensity classification.
The information provided by the radar and satellite devices is suitable for large-scale
precipitation estimation and is brutal regarding measuring the precipitation in small and
specific areas. Moreover, the satellite and radar provide precipitation information with
large intervals and cannot be used in extreme precipitation monitoring and nowcasting
with high timeliness requirements.

In recent years, monitoring cameras have been widely erected, used in various fields,
such as traffic, safety, and disaster prevention, and are sampling devices for indirect
precipitation intensity estimation. In the early stage, the studies of precipitation intensity
estimation using monitoring-based images utilized image processing techniques, such
as foreground extraction [34], the morphological component analysis [35], and matrix
decomposition [36], to extract rain streaks from the monitoring-based images, used to
remove/identify rain streaks from the images. Then, studies use various methods, such as
counting [37], neural networks (NN) [38], support vector machines (SVM) [39], and training
the identification model for estimating precipitation intensity. These studies utilize the
computer vision technique to classify the monitoring-based images for the precipitation
intensity estimation.

In addition, the technique of deep convolutional neural networks (DCNNs) has been
widely used in various topics of image classification, such as the face [40], vehicle [41],
and bird [42], and significantly improved classification accuracy. Scholars associated the
stacked denoising auto-encoder (SDAE) [43] with the fully connected structure to construct
the PERSIANN-SDAE model and use bispectral information, including infrared and water
vapor, to estimate the precipitation intensity [32]. However, the PERSIANN-SDAE model
cannot efficiently extract local spatial changes from IR. Therefore, the follower utilizes
convolutional neural networks (CNNs) to extract pixel information and information from
between pixels from bispectral information for estimating the precipitation intensity [44].

However, the studied topic, precipitation intensity estimation, still has some issues:
(1) lacks surveillance-based precipitation intensity dataset which can effectively increase
the spatial resolution; (2) the analyzed objects, which are mentioned in the literature,
have the apparent shapes compared with the targets (rain streaks) in the precipitation
intensity classification; (3) previous studies, which are related to the precipitation intensity
estimation, have low temporal and spatial resolutions. Therefore, our study design of
the SF-CNN extracts features after applying the signal filtering operation and learns the
features with a low dimension for the precipitation intensity estimation. Moreover, our
study constructs a surveillance-based infrared images dataset with six precipitation levels.
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3. Signal Filtering Convolutional Neural Network

This study designed various components to form the signal filtering convolutional
neural network (SF-CNN) to construct an effective identification model for the precipitation
intensity estimation. The SF-CNN considers the composition of the signal, which is com-
prised of useful and useless information. Moreover, the SF-CNN effectively decreases the
dimension of features to reduce computational costs. This section sequentially introduces
the signal filtering block (SF block), the gradually decreasing dimension (GDD block),
and the proposed SF-CNN framework.

3.1. Signal Filtering Block

An image can be considered a composite signal containing useless information, such
as noise. The noise affects the quality of the image and weakens the characteristics of the
interesting objects. This study took the filtering operation to form the signal filtering block
(SF block) that could effectively remove the noise from the surveillance-based infrared
images and provide the signals without redundant information. The structure of the SF
block is shown in Figure 2.

Figure 2. The proposed signal filtering block.

In the SF block, this study took a guided filter, a useful filtering technique, as the signal
filtering operation to remove the noise from the analyzed images. The signal filtering proce-
dure could be considered a signal decomposition process that can be restructured into the
original signal. Therefore, we took x as an input and generated decomposed and residual r
signals as outputs for each decomposition procedure (filtering procedure) in which D was
also called the filtered signal. Its formula is expressed as the following equation:

x = F(x) + r (1)

where F(.) is the guided filter [45,46] that filters the noise and preserves the characteristics
of the gradient from the input x, and r is the residue signal of x and can be referred to
as noise.

This study took the decomposed terms F(x) and D as the inputs and abandoned the
last term rn, which was considered as the noise, to construct the signal filtering convolu-
tional neural network.

3.2. Gradually Decreasing Dimensional Block

An efficient mechanism to integrate the feature maps from various convolutional
layers is crucial in constructing convolution neural networks. The transformation layer is
the commonly used component that has one convolutional layer with an activation func-
tion and a pooling layer to reduce the dimension of feature maps as shown in Figure 3a.
The transformation layer can reduce dimensionality and consider the nonlinearity, but its
nonlinearity information is insufficient, and parameters and computational costs are nu-
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merous. Therefore, our study designed a gradually decreasing dimensional block (GDD
block) with three components, including two convolutional layers with activation functions
and one pooling layer, as shown in Figure 3b.

(a) (b)

Figure 3. The transformation blocks. (a) Standard transformation, (b) the proposed gradually
decreasing dimensional block (GDD block).

In the GDD block, this study took two convolutional layers with activation functions
to gradually decrease the dimensionality of feature maps and be expressed as:

g = pooling(Γ(Γ(s))) (2)

where s is the feature map from the previous layers, Γ is an operator, including the con-
volutional operation and an activation function, and pooling is the pooling operation.
The gradually decreasing dimension can improve the information of nonlinearity by oper-
ating two activation functions and effectively reducing the dimensionality of feature maps.
Moreover, this study used the max-pooling layer after operating two convolutional layers
to decrease the size of feature maps, reducing the computational cost of the network.

3.3. Network Structure

The proposed signal filtering convolutional neural network (SF-CNN) considered the
decomposed signals for precipitation intensity estimation. As shown in Figure 4, it had one
input layer, four signal filtering blocks, four mode blocks, and one classification layer.

Figure 4. The proposed signal filtering convolutional neural network (SF-CNN).

In the SF-CNN, the input images were resized into 224× 224; each mode block (Mj)
consisted of two components, including convolutional layers and gradually decreasing
dimensional blocks, in which j is the number of mode blocks in the SF-CNN. In each mode
block, Mj firstly operated the convolutional operation for the decomposed terms (Dj) and
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generated the set of feature maps S = {s1, . . . , sk}, k ∈ K; K is the number of feature maps.
Each feature map was expressed as:

si = H(
P

∑
p=1

Dj,p · wi + bi) (3)

where Dj,p is the jth decomposed term which has P maps; wi and bi are the weight and bias
for each si;H(.) is the activation function. Then, we applied the GDD block and considered
the character of the dense local connectivity for the following layers. The formula of the
GDD block was expressed as follows:

gj = concat( Γ(Γ(S)),Dj) (4)

where gj is the output of the Mj mode block, concat(.) is the concatenation operator which
concatenates the previous multiple layers and Γ = H(Conv1×1(.)) in which Conv1×1 is the
convolutional layer with a 1× 1 kernel size. Next, we adopted the pooling layer to reduce
the size of feature maps:

Oj = T (gj) = pooling(gj) (5)

where Oj = {t0, t1, . . . , td} is the output of the jth mode block which was a set with d
feature maps; pooling is the maximum pooling which operated the 2× 2 operator with
stride two to reduce the size of the feature maps.

4. Experimental Results

This study first presented the self-collected dataset for the precipitation intensity
estimation and comparative evaluations in the experiments. Next, the comparison results
of the proposed SF-CNN with several popular methods were presented. Finally, this study
demonstrated the performance of the proposed SF-CNN without the proposed components
to prove the efficiency of these components. All networks were trained using a momentum
optimizer, the activation function was ReLU, the batch size was 16 for 400 epochs, and the
learning rate was set to 0.0001. The number followed by the method name refers to the
network layers.

4.1. Experimental Environments and Benchmarks

This study collected the precipitation intensity images from eight weather stations
with benchmarks captured by an infrared camera and classified the images into six precip-
itation intensities according to the grade of precipitation (GB/T 28592-2012). The grade
of precipitation and the dataset of precipitation intensity are shown in Table 1. In Table 1,
the precipitation intensity was classified as scattered rain, a drizzle, moderate rain, heavy
rain, rainstorm, and large rainstorm, based on hourly rainfall. The total number of images
was 9394, in which scattered rain, drizzle, and moderate rain accounted for 94.27%. More-
over, this study took 6594 and 2800 images as the training and testing datasets, respectively,
which caused the ratio of training and testing images to approximate 7:3, based on the
references [47,48].

Moreover, this study took the precision metric and Kappa metric (κ) to evaluate
the performance of each network. The precision metric was calculated according to the
following equation:

Overall Precision(OP) =
TP

TP + FP
× 100% (6)

where TP and FP are the true and false positives of precipitation intensity. The κ was
calculated as follows:

κ =
p0 − pe

1− pe
, where (7)
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p0 =
∑C=6

i=0 TPi

N
, pe =

∑C=6
i=0 Si × Pi

N × N
(8)

where C is the number of types of precipitation intensity, N is the total number of testing
images, TPi refers to the images which belong to the ith precipitation intensity and are
classified as ith precipitation intensity, Si is the number of testing images for the ith
precipitation intensity, and Pi is the number of images which were classified as the ith
precipitation intensity.

Table 1. Dataset of precipitation intensity.

Station

Amount Grade
Grade of Precipitation (mm/hr)

Scattered Rain Drizzle Moderate Rain Heavy Rain Rainstorm Large Rainstorm
(<0.1) (0.1–0.5) (1.6–6.9) (7.0–14.9) (15.0–39.9) (40.0–49.9)

(I) (II) (III) (IV) (V) (VI)

WS1 209 467 410 96 12 0
WS2 232 518 380 36 48 12
WS3 136 545 389 72 8 0
WS4 101 579 367 78 12 0
WS5 121 651 363 68 12 0
WS6 170 616 339 24 0 0
WS7 224 694 207 24 0 0
WS8 219 504 415 36 0 0
Total 1412 4574 2870 434 92 12

4.2. Experimental Analysis on Various Networks

This study compare the SF-CNN with eight popular CNN methods, including four clas-
sic CNNs—VGG [49], Inception [50,51], the series of ResNets [52], the series of
DenseNets [53]—and four novel CNNs—the series of DCNet [54], NTS [55], DCL [56],
and HRNet [57]—to evaluate the performance of the proposed SF-CNN.

This study first demonstrated the summarized quantitative comparison results in
Table 2. In Table 2, the best results of each benchmark and that of each metric were marked
in bold. ResNet-101 and DCNet-101 had the best precision in the benchmark of the large
rainstorm; DenseNet-63 and DenseNet-169 had the best precision in the benchmark of the
rainstorm; the proposed SF-CNNs had the best results in all the benchmarks. Moreover,
the SF-CNN-169 had the best overall precision and κ, and the SF-CNN-63 had fewer
parameters. The best overall precision and κ of the SF-CNNs were 2.28% and 0.0360
higher than ResNet-101, the second-best method, respectively. It improved the precision
of precipitation intensity estimation, and its performance was superior to the compared
methods. The overall precision and κ of SF-CNN-63 were 1.82% and 0.0285 higher than
ResNet-101, respectively.

Table 2. Quantitative comparison results.

Model Source Year Depth I (%) II (%) III (%) IV (%) V (%) VI (%) OP(%) κ Params(M)

VGG ICLR 2015 19 89.05 86.56 75.99 48.00 60.00 0.00 81.64 0.7121 10.16
Inception-V2 PMLR 2015 32 89.05 88.53 76.57 59.20 80.00 0.00 83.46 0.7411 10.16

ResNet CVPR 2016
50 92.86 94.08 85.78 56.80 72.00 0.00 89.39 0.8326 23.52

101 96.19 93.43 87.30 67.20 72.00 33.33 90.54 0.8519 42.51
152 92.38 91.89 82.63 49.60 76.00 0.00 87.00 0.7954 58.16

DenseNet CVPR 2017
63 93.10 89.70 86.25 50.40 84.00 0.00 87.25 0.8010 2.31

121 93.81 91.02 84.85 56.80 76.00 0.00 87.79 0.8095 6.96
169 92.38 90.72 82.75 61.60 84.00 0.00 87.07 0.7981 12.49

DCNet CVPR 2018 18 92.38 90.36 83.68 60.80 68.00 0.00 87.00 0.7962 41.93
101 93.10 91.38 79.60 52.80 56.00 33.33 85.93 0.7784 42.58

NTS ECCV 2018 50 93.81 91.60 84.83 36.80 68.00 0.00 87.07 0.7962 26.25
DCL CVPR 2019 50 96.90 89.92 79.14 69.60 80.00 0.00 86.57 0.7923 23.50

HRNet PAMI 2020 50 95.00 90.07 83.57 66.40 72.00 66.67 87.57 0.8081 39.20

SF-CNN - 2021
63 95.95 95.33 88.81 76.80 76.00 33.33 92.36 0.8804 1.99

121 97.14 94.23 90.68 71.20 84.00 33.33 92.39 0.8814 5.27
169 96.67 95.98 89.04 75.20 80.00 33.33 92.82 0.8879 9.12

Bold data: Highest recognition accuracy of each precipitation intensity.

In addition, this study presented the learning curve of various networks in Figure 5 to
demonstrate the process of training loss and testing accuracy. Notice that this study selected
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the network which had the best overall precision in its series of networks to form Figure 5,
except the proposed SF-CNNs. In Figure 5, this study took the SF-CNN-63 to compare
with the other methods because it had the least number of parameters and similarity of
precision in the series of SF-CNNs. In Figure 5, the loss value of each method reduced to a
lower level, and it did not have the rebound phenomenon. Moreover, the accuracy of each
approach gradually increased without the phenomenon of suddenly declining during the
training process. Therefore, there was no over-fitting phenomenon in the process of model
generation. Furthermore, VGG-19 had the lowest convergence rate and worst classification
accuracy; the rest of the compared methods had fast convergence rates, and the increasing
accuracy rates were fast at the beginning of training, but their best performance did not
exceed the SF-CNN-63 after 300 epochs. Although the proposed SF-CNN-63 had a low
convergence rate and unstable accuracy at the beginning of training, its convergence rate
became stable and had a good classification accuracy after 300 epochs.

Figure 5. The learning curve of various networks

The series of SF-CNNs had the best overall precision, and the κ metric had the best
classification performance in all types of precipitation intensities. Moreover, the series of SF-
CNNs had the smallest number of parameters compared with the state-of-the-art methods.

4.3. Ablation Experimental Analysis of the Proposed Network

The proposed SF-CNN contained the gradually decreasing dimensional block (GDD
block) and signal filtering block (SF block). This study modified the proposed SF-CNN-63
and generated the SF-CNN-63-W-GDD and SF-CNN-63-W-SF, in which the SF-CNN-63-
W-GDD and SF-CNN-63-W-SF were the SF-CNN-63 without the GDD and SF blocks,
respectively, to verify the performance of each proposed block, GDD, and SF blocks.
In other words, the SF-CNN-63-W-GDD only contained the SF blocks and was used to
verify the performance of SF blocks, and the SF-CNN-63-W-SF only contained the GDD
blocks and was used to verify the performance of GDD blocks

The comparison results with the metrics of OP, κ, and Params are demonstrated in
Table 3. In Table 3, although the GDD and SF blocks were, respectively, removed from the
SF-CNN-63, their precision was 4.32% and 0.39% higher than DenseNet-63, respectively.
Moreover, their κ was 0.0674 and 0.0039 higher than DenseNet-63, respectively, and their
Params was less than DenseNet-63. Moreover, the parameters of the SF-CNN-63-W-SF
and SF-CNN-63 were the same because the calculation of parameters was related to the
neurons (convolutional kernels). The procedure of the SF block was irrelevant to the
neurons (convolutional kernels). Although the models of the SF-CNN-63-W-GDD and
SF-CNN-63-W-SF had good performance compared to DenseNet-63, the complete model,
the SF-CNN-63, had the best performance in each metric.
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Table 3. The quantitative results without using the proposed blocks.

SF-CNN-63-W-GDD SF-CNN-63-W-SF SF-CNN-63

OP(%) 91.57 87.64 92.36
κ 0.8684 0.8049 0.8804

Params (M) 1.85 1.99 1.99

5. Discussion
5.1. Analysis of the GDD Block

The gradually decreasing dimension (GDD) block sequentially operated two sets of
1× 1 convolutional operations accompanying an activation function. It reduced the dimen-
sionality of feature maps to reduce the number of parameters effectively [50,53]. Moreover,
the operation of the gradually decreasing dimension could also achieve the interactive
integration of cross-channel information [58], improving the nonlinearity information to
improve the expressive ability of the network.

In more detail, the 1× 1 convolution operation reduced the number of channels and
decreased the computation cost due to the concatenation operation increasing the number
of channels. Moreover, the 1× 1 convolution operation operated the linear operation to
achieve the information combination between channels and reduced the channel dimension.
In our study, we sequentially operated two 1 × 1 convolution operations because the
deduction with more channels at once would cause information loss. In addition, this
study operated the activation function, which was executed following each convolutional
operation to improve the nonlinearity information. The network only constructed with
the multi-layer convolution operation could be transferred to a single-layer convolution
operation by using a matrix transformation. The activation function executing space
mapping with the nonlinear function caused the “multi-layer” of the neural network to
have practical meaning and strengthened the learning ability of the model [2,59,60].

In addition, we utilized the skip connection structure to fuse the features in the GDD
block, including the features extracted from the SF block and the two 1× 1 convolution
operations, respectively. The fused features caused the network to continue to focus on
rain patterns during the convolution process due to the reuse of the features [53,61], which
were filtered by the guided filter and improved the accuracy of precipitation estimation.
This study visualized the features’ heatmaps, which were extracted from the GDD block in
the second block, as shown in Figure 6.

In Figure 6, Figure 6a–c are the input image, its heatmap before the skip connection
operation, and its heatmap after executing the skip connection structure. In Figure 6b,c,
the darker the color, the more significant the value. To compare Figure 6b,c, the network fo-
cused on the rain pattern after reusing the features filtered by the guided filter. In Figure 6c,
the rain streak had higher values than the rest in the input image.

Finally, this study used the max-pooling layer after operating two convolutional layers
to decrease the size of feature maps, further reducing the computational cost of the network.
The total number of parameters is shown in Table 2. In Table 2, the proposed SF-CNN
had the lowest number of parameters in comparison to the compared method with the
same depth.
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(a) (b) (c)

Figure 6. The visualization of skip connection in the second GDD block. (a) Original image, (b) before,
(c) after.

5.2. Analysis of the SF Block

In the problem of the precipitation intensity estimation, the noise was an essential issue
in the analyzed image that caused the rain streak to be unclear and affected the estimation
accuracy in the infrared image. This study took the technique of guided image filtering [46]
to minimize noise and background information. The strategies of the guided image filtering
were (1) using the mean filter to minimize the noise and background information when
the variance was small in the mask area, and (2) maintaining the rain streak (foreground)
information that had a large variance.

This study demonstrated the visualization results to discuss the effects of the SF block,
as shown in Figure 7. In Figure 7, Figure 7a–c are the input image, its heatmap before using
the guided filter, and its heatmap after executing the guided filter. In Figure 7b, the network
payed more attention to the background than to the rain streak before using the guided
filter, such as the building with a strong light at the top of the mountain. From Figure 7b,c,
the operation of the guided filter could efficiently suppress the background information
and retain the rain streak information, resulting in the characteristics of the rain streak to
be more prominent.

In the precipitation image, there was more background information than rain streak
information, affecting the network by the background during the training process. There-
fore, this study added the signal block, which operated the guided filter, before each dense
block to ensure the network always focused on the rain streak and avoided the interference
of background information during the training process.

5.3. Characteristic of the DNN’s Black Box

In traditional machine learning, designers design the image features according to
the characteristics of images and construct the classification mechanism based on the
mathematical model. Therefore, traditional machine learning approaches are interpretable.
The deep convolutional neural network was developed based on the neural network,
which is an interpretable mathematical model. Still, it cannot explain why the generated
features can efficiently describe the input data. Therefore, many scholars consider that
the DNN is a black box technology. In other words, it is difficult to explain its working
mechanism for specific reasons for the formation of the features and decision boundaries
in the form of mathematical expressions [62]. The relationship between the DNN and
interpretability is equivalent to a steam engine and thermodynamics, developing from
technological invention to scientific theory. Therefore, the DNN is defined as a “black box”,
mainly because there is no primary theoretical basis.
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(a) (b) (c)

Figure 7. The visualization of the guided filter in the second SF block. (a) Original image, (b) before,
(c) after.

Scholars divide the interpretability of the DNN into two types: post hoc interpretability
and intrinsic interpretability [63,64]. The post hoc interpretability interprets the decisions
in the actual application [65], in which the visualization method is the widely used ap-
proach [66]. The visualization method visually presents the weight of the convolution
kernel in the network, the characteristics of the convolution layer, and the object of interest
of the model in a visual form. The visualization method can assist researchers in under-
standing the feature which is extracted from various layers in the DNN. This study adopted
the technique of post hoc interpretability (the visualization method) and was associated
with the structure of the proposed model to understand the principle of prediction.

5.4. Limitation and Outlook

This study designed the signal filtering block by utilizing the guided filter layer to filter
out the noise (the residual layer). However, it was possible to retain valuable information
in the residual layer. Therefore, we considered the signal decomposition technology [67]
to reuse the information from the residual layer. Moreover, the magnitude of the filtered
signal would be smaller than the original value. Therefore, these filtered signals should
consider the signal enhancement technology, such as the spatial and channel attention in
the CNN [68,69].

This study utilized the surveillance-based infrared image captured from eight weather
stations, but did not consider the temporal and spatial correlation [70,71]. In the future, we
could extend the study to analyze the relationship between sampling points and further
study the prediction of the precipitation intensity [72,73].

6. Conclusions

This study proposed a new CNN model known as the SF-CNN for precipitation
intensity estimation. The concept of the SF-CNN is to consider the decomposed signals
using the filtering operation in the network. In the SF-CNN, this study designed a signal
filtering block (SF block) and a gradually decreasing dimensional block (GDD block). In the
SF block, this study took the guided filter to filter the noise of the feature maps, which
was the residual signal. The GDD block used gradually decreasing dimensions to reduce
the dimensionality of feature maps. The SF block removed the noise at the beginning of
the network and in the entire network procedure. The GDD integrated the information of
feature maps, improved the information of nonlinearity, and efficiently reduced the number
of parameters.

In the experiments, this study analyzed various network factors for the proposed
SF-CNNs and chose the best framework to compare with various popular methods. Com-
paring the proposed SF-CNNs with various popular methods using the self-collected
precipitation dataset, the proposed model exhibited the best overall precision and κ metric,
and had the most minor parameters.
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