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Abstract
The morphometric analysis of lung structure using the principles of stereology has emerged as a powerful tool to describe 
the structural changes in lung architecture that accompany the development of lung disease that is experimentally modelled 
in adult mice. These stereological principles are now being applied to the study of the evolution of the lung architecture over 
the course of prenatal and postnatal lung development in mouse neonates and adolescents. The immature lung is structur-
ally and functionally distinct from the adult lung, and has a smaller volume than does the adult lung. These differences have 
raised concerns about whether the inflation fixation of neonatal mouse lungs with the airway pressure (Paw) used for the 
inflation fixation of adult mouse lungs may cause distortion of the neonatal mouse lung structure, leading to the generation 
of artefacts in subsequent analyses. The objective of this study was to examine the impact of a Paw of 10, 20 and 30 cmH2O 
on the estimation of lung volumes and stereologically assessed parameters that describe the lung structure in developing 
mouse lungs. The data presented demonstrate that low Paw (10  cmH2O) leads to heterogeneity in the unfolding of alveolar 
structures within the lungs, and that high Paw (30  cmH2O) leads to an overestimation of the lung volume, and thus, affects 
the estimation of volume-dependent parameters, such as total alveoli number and gas-exchange surface area. Thus, these data 
support the use of a Paw of 20 cmH2O for inflation fixation in morphometric studies on neonatal mouse lungs.
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Introduction

Lung organogenesis occurs over a protracted period in mam-
mals that starts in the early embryonic period, and contin-
ues into adolescence (Schittny 2017). Over the course of 
lung organogenesis, marked changes occur in the cellular 
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and extracellular composition (Whitsett et al. 2019) and 
mechanical properties and architecture (Schittny 2017) of 
the lungs. The study of structural changes that occur during 
lung development rely on quantitative information about the 
lung structure, such as morphometric stereological methods 
(Weibel et al. 2007) that permit estimation of the density and 
number of alveoli, the gas-exchange surface area, and septal 
thickness, amongst other parameters.

The reliability of these estimations is critically dependent 
upon proper inflation of lungs during embedding and sec-
tioning (Hsia et al. 2010). The airway pressure, Paw, deter-
mines the extent of lung inflation, including the unfolding 
of alveolar structures within the lungs. Thus, selection of 
appropriate Paw is essential, as an optimal Paw will expand—
but not distend—the lungs, and will unfold the alveolar 
structures within the lungs such that reliable and reproduc-
ible quantitative measurements are possible (Hsia et al. 
2010). The plethora of studies [for example (Limjunyawong 
et al. 2015; Schulte et al. 2019)] that quantify elements of 
adult mouse lung structure have established 20–25  cmH2O 
as an appropriate Paw for intratracheal instillation of fixative 
solutions. This approach is widely used to study the micro-
scopic structure of adult healthy and diseased mouse lungs.

Increasing interest in the structural changes that occur 
during normal and abnormal development of immature lungs 
[reviewed in (Lignelli et al. 2019)] has stimulated efforts 
to quantify elements of the lung structure in newborn or 
immature, developing mice. Newborn and developing mouse 
lungs are structurally and functionally distinct from adult 
lungs, where, pronounced changes in the cellular and extra-
cellular components of the lungs accompany lung matura-
tion. Compared to adult lungs, the more cellular nature of 
developing septa (Ruiz-Camp et al. 2019) and less mature 
extracellular matrix (ECM) network (Mižíková and Morty 
2015) in newborn lungs affect the compliance of the lungs 
and may render lungs more or less sensitive to distension by 
Paw. Additionally, the small size, larger tissue-to-air volume 
ratio, and high surface-to-volume ratio of developing mouse 
lungs might limit the ability of instilled fixative to properly 
enter the lung.

For these reasons, a side-by-side comparison of a Paw 
of 10, 20, and 30  cmH2O was performed, where immature, 
developing mouse lungs were inflated at one of these three 
Paw, and then subjected to lung volume estimation and ste-
reological analysis. The data presented herein demonstrate 
that a comparatively low inflation fixation Paw of 10  cmH2O 
results in heterogeneous unfolding of alveolar structures 
within the lungs, which impacts stereologically determined 
parameters to describe the lung structure. Similarly, a com-
paratively high inflation fixation Paw of 30  cmH2O con-
founds estimation of lung volume, and hence, affects the 
reliability of volume-dependent stereologically determined 
parameters. Collectively, these data support the use of an 

inflation fixation Paw of 20  cmH2O in stereology studies of 
immature, developing mouse lungs.

Materials and methods

Animal studies

Animal procedures were conducted in accordance with local 
and national regulations. Newborn C57BL/6J mouse pups 
(Charles River, Sülzfeld, Germany) were maintained to 
postnatal day (P)14. Sex of the mouse pups was determined 
by visualization of external genitalia (Wolterink-Donselaar 
et al. 2009). Dams and pups were maintained on a 12-h/12-h 
light–dark cycle, and received food and water ad libitum.

Animal studies

Mouse pups were killed by administration of 500 mg.kg−1 
sodium pentobarbital (Narcoren; Bohringer, Ingelheim, Ger-
many), via the intraperitoneal route. The thoracic cavity was 
exposed by midsternal thoracotomy and dissection of the 
diaphragm at the point of contact with the ribcage. Tracheos-
tomy was undertaken with a 22G blunt-ended cannula (CML 
Supply, Lexington, U.S.A.), which was fixed in place with a 
USP 4/0 non-absorbable surgical suture (Supramid, St. Vith, 
Belgium), as depicted in Fig. 1a. The lungs were fixed by 
intratracheal instillation of 1.5% (m/v) paraformaldehyde, 
1.5% (m/v) glutaraldehyde in 150 mM HEPES, pH 7.4. 
Three groups of five mouse pups each were used to compare, 
side-by-side, the impact of different Paw on the estimation 
of elements of the lung structure by design-based stereol-
ogy. To this end, lungs were inflated with fixative at Paw 
of 10, 20 and 30  cmH2O, and took between 35 and 75 s to 
inflate (Fig. 1b), depending on Paw. Lungs were considered 
fully inflated once no visible increase in lung expansion was 
noted, and when the cardiac lobe was sufficiently turgid to 
maximally project outwards from the thorax (Fig. 1a). After 

Fig. 1  Lung inflation and volume at variable airway pressures. a 
Lung inflation was considered complete when the cardiac lobe was 
fully inflated, and the most distal aspect of the cardiac lobe (arrow) 
projected maximally outwards. b The time required for maxi-
mum inflation of lungs with fixative at airway pressures (Paw) of 10 
 cmH2O, 20  cmH2O, and 30 cmH2O. c Gross morphology of mouse 
lungs harvested at postnatal day 14 and inflated with fixative at Paw of 
10, 20, and 30 cmH2O; superimposed on 1-mm graph paper. Images 
are representative of the trends overserved in four other lungs per 
experimental group. Scale bar: 1  cm. The d mouse body mass was 
measured, and e lung volume was estimated using Cavalieri’s prin-
ciple. Data reflect mean ± S.D. (n = 5 lungs per experimental group). 
Closed inverted triangles denote female animals, closed circles 
denote male animals. Data comparisons were performed by one-way 
ANOVA with Tukey’s post hoc test, with P values < 0.05 indicated. 
LL left lung, RL right lung

▸
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inflation, the tracheostomy needle was partially withdrawn, 
and the trachea was ligated with a suture as described above, 
below the placement of the tracheostomy suture. The lungs, 
heart, and thymus were removed en bloc, and placed in the 
same fixative solution for 24 h at 4 °C in a 5 ml Eppendorf 
tube. Lungs were then dissected free of the heart and thymus 
and photographed on a background of 1-mm graph paper to 
record the gross anatomy (Fig. 1c).

Lung tissue was collected according to systematic uni-
form random sampling (Tschanz et al. 2014): Lungs were 
embedded in agarose [in 2% (m/v) agar–agar], and agar 
blocks were sectioned into 3-mm slabs. Lung volume was 
estimated using Cavalieri’s principle (Tschanz et al. 2011). 
Lung tissue was transferred from agar slabs into 15 ml glass 
vials, and treated with 0.1 M sodium cacodylate (Serva, 
Heidelberg, Germany; 15540.03), 1% (m/v) osmium tetrox-
ide (Roth, Karlsruhe, Germany; 8371.3), and 2.5% (m/v) 
uranyl acetate (Serva, Darmstadt, Germany; 77870.01) in 
 ddH2O. Lung tissue was embedded in glycol methacrylate 
resin (Technovit 7100; Heareus Kulzer, Hanau, Germany; 
64709003), which hardened over 48 h (Mühlfeld et al. 2013). 
Technovit blocks were sectioned at 2 µm. For estimation 
of total number of alveoli and alveolar density, every first 
and third section of a consecutive series of sections was 
collected and stained with Richardson’s stain (Fehrenbach 
et al. 2008; Knust et al. 2009). For the analysis of additional 
parameters, four sections, representing every 10th section of 
a consecutive series in the same block, were collected and 
stained with Richardson’s stain (Schneider and Ochs 2013). 
A NanoZoomer-XR C12000 Digital slide scanner (Hama-
matsu Photomics Deutschland, Herrsching am Ammersee, 
Germany) collected digital images of tissue sections.

Design‑based stereology

Analysis of lung structure was performed using the princi-
ples of design-based stereology that have been extensively 
reviewed for adult mouse lungs (Mühlfeld and Ochs 2013; 
Ochs and Mühlfeld 2013; Mühlfeld et al. 2015), in accord-
ance with American Thoracic Society/European Respira-
tory Society guidelines for quantitative assessment of lung 
structure (Hsia et al. 2010), described in detail previously 
(Pozarska et al. 2017; Schneider et al. 2017; Wagener et al. 
2020). For the estimation of alveolar density and alveolar 
number, one pair of sections was selected for analysis at a 3 
and 10% coverage of the regions of interest of each section. 
For estimation of surface density, gas-exchange surface area, 
arithmetic mean septal thickness, and mean linear intercept 
(MLI), four sections per tissue block were selected for analy-
sis, at 3 and 6% coverage of the regions of interest of each 
section; except for estimation of parenchymal volume, where 
a 10% coverage of the region of interest of each section was 
used.

Statistics and stereological precision

Data are presented as mean ± SD. Differences were assessed 
by one-way ANOVA with Tukey’s post hoc test for multiple 
comparisons. P values ˂0.05 were regarded as significant. 
Statistical analyses were performed with GraphPad Prism 
v. 8.4.2. The presence of statistical outliers was tested by 
Grubbs’ test, and none were found. The coefficient of error 
(CE), the coefficient of variation (CV) and the quotient  CE2/
CV2 were calculated for each stereological parameter, where 
a  CE2/CV2 < 0.5 validated the precision of the measurements 
(Tables 1 and 2). To describe the variance within hydrostatic 
Paw groups comparing 3% versus 10% (for alveoli number 
and alveolar density) or 3% versus 6% (for all other stereol-
ogy parameters) coverage of the regions of interest, the abso-
lute value of the difference between the two mean values of 
interest was calculated.

Results and discussion

For the stereological analysis of distal lung structure, lungs 
from experimental animals can be fixed by intratracheal 
instillation of fixative (Mühlfeld and Ochs 2013; Ochs and 
Mühlfeld 2013). The objective of the present study was to 
determine whether a Paw of 20 cmH2O for inflation fixa-
tion—the Paw employed in studies with mature, adult mouse 
lungs—is also suitable for the stereological analysis of 
immature, developing mouse lungs.

This is important, since in the words of Drs. Wheeler, 
Wing and Zingarelli: “Children are not small adults!” 
(Wheeler et al. 2011). The compliance of the respiratory 
system diminishes during development, concomitant with 
the evolution of mechanical properties of the parenchyma 
and the airways (Sly et al. 2005). The lungs of children and 
adolescents have fewer alveoli compared to adults, which 
increase in number during early life and adolescence (Her-
ring et al. 2014), to ≈480 million alveoli in adults (Ochs 
et  al. 2004). The alveoli are smaller in infants, and are 
approximately double in size in adult lungs (Zeman and Ben-
nett 2006). Parallel trends in increasing alveoli number and 
decreasing alveoli size have also been noted during postnatal 
growth in mice (Pozarska et al. 2017) and rats (Tschanz et al. 
2014). Pertinent to the present study, at the widely employed 
P14 endpoint in studies on normal and abnormal postnatal 
lung development in mice (Nardiello et al. 2017), neither the 
progressively increasing alveolar density, nor the progres-
sively decreasing mean alveolar volumes, have plateaued out 
at their respective adult values (Pozarska et al. 2017). Thus, 
it was a matter of concern that the different structural and 
functional properties of immature mouse lungs may result in 
tissue distortion by Paw conventionally used for instillation-
fixation of adult mouse lungs.
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This concern has already been raised in studies on human 
lung disease modeled in mice that are characterized by loss 
of parenchymal tissue, such as modeling of emphysema in 
adult mice. In those studies, the airspaces of a disease lung 
with reduced elastic recoil will exhibit increased expansion 
over those in healthy lungs, which would stretch the alveolar 
septa. Thus, information gleaned about airspace enlargement 
and septal thickness would be confounded by the degree 
of inflation (Mühlfeld and Ochs 2013). Indeed, it has been 
noted that the estimation of the MLI strongly depends on 
the inflation status of the lung, where suboptimal inflation 
represents a key pitfall of the MLI parameter (Knudsen 
et al. 2010; Mühlfeld et al. 2015). As such, the Paw used for 
inflation fixation in mature, adult mouse lungs may not be 
suitable for the inflation fixation of immature, developing 
mouse lungs, given the different mechanical properties of 
the immature lung tissue.

A spectrum of Paw are routinely employed for the instil-
lation fixation of adult mouse lungs, including 20  cmH2O 

(Schulte et al. 2019) and 25 cmH2O (Limjunyawong et al. 
2015) which represent the recommended pressure range 
(20–25 cmH2O) for fixative instillation postmortem in adult 
mouse lungs (Hsia et al. 2010). In the present study, three 
different Paw were selected for instillation fixation of P14 
mouse lungs with HEPES-buffered paraformaldehyde/gluta-
raldehyde: 10  cmH2O, 20 cmH2O, and 30  cmH2O (Fig. 1c). 
Inflation of the lungs was considered complete when the 
lungs were no longer visibly inflating, and when the cardiac 
lobe was sufficiently turgid to maximally project outwards 
from the thorax (Fig. 1a). Using these criteria, the time for 
complete inflation was longest (≈ 75 s) using 10  cmH2O Paw, 
and shortest (≈ 35 s) using 30  cmH2O (Fig. 1b).

Mice of comparable body masses (6.2 ± 0.4  g) were 
employed for these studies (Fig. 1d), given that lung volume 
may depend on body mass (Pozarska et al. 2017). As such, 
all 15 mice employed in the study were expected to exhibit 
similar lung volumes. The lung volumes estimated for the 
10  cmH2O (0.25 ± 0.023 g) and 20  cmH2O (0.27 ± 0.025 g) 

Fig. 2  Distal lung structure at variable airway pressures. Distal lung 
structure was visualized in plastic-embedded lung tissue stained with 
Richardson’s stain, after lung inflation with fixative at airway pres-

sures of 10, 20, and 30 cmH2O. The area demarcated with a red frame 
in the images at left are presented at higher magnification at right. 
Scale bar: 200 µm
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groups were comparable (Fig. 1e). However, the 30  cmH2O 
group exhibited higher lung volumes (0.34 ± 0.025  g; 
Fig.  1e). These data suggested that the higher Paw of 
30 cmH2O may have overinflated the lungs.

Visual inspection of plastic-embedded lung tissue 
stained with Richardson’s stain suggested that the alveolar 
density was highest in the 10  cmH2O group and lowest in 
the 30 cmH2O group (Fig. 2, left-hand column of images). 
Additionally, the septa appeared thicker in the 10  cmH2O 
group, compared with the 20  cmH2O and 30  cmH2O groups 
(Fig. 2, right-hand column of images). Examination of lung 
tissue sections at low magnification revealed a comparable 
pattern of uniform inflation in the 20  cmH2O and 30 cmH2O 
groups (Fig. S1). However, comparison of low-magnification 
images of lung tissue sections from the 20  cmH2O group 
(Fig. 3a) and 10  cmH2O group (Fig. 3b), revealed a hetero-
geneous pattern of inflation in the 10 cmH2O group (com-
pare Fig. 3c and d), where the detection of bridges was com-
plicated by the compactness of the tissue in some regions 
of the lungs. This challenge presented by the 10  cmH2O 
group is further evident in Fig. S2, where increasing the 
coverage [either from 3 to 10% (Fig. S2a, b) or from 3 to 6% 
(Fig. S2c–f)] markedly affected estimates of all stereologi-
cal parameters. Collectively, these data suggest that a Paw of 
10  cmH2O is insufficient to properly inflate the distal lung, 
and that a Paw of 30  cmH2O distends the lung structure by 
over-inflation.

Using design-based stereology to estimate parameters 
that describe the distal lung architecture, the alveolar den-
sity comparing the 10  cmH2O, 20  cmH2O, and 30  cmH2O 

groups was similar at 3% coverage (Fig. 4a). However, this 
observation did not reflect the trends noted by visual inspec-
tion of lung sections from these three experimental groups 
(Fig. 2). For this reason, alveolar density was re-assessed at 
10% coverage, where the alveolar density of the 10 cmH2O 
group was revealed to be higher than that of the 20 cmH2O 
and 30 cmH2O groups, most likely reflecting the heteroge-
neity of lung inflation in the 10 cmH2O group (Fig. 3). The 
alveolar density comparing the 20 cmH2O and 30 cmH2O 
groups was unchanged irrespective of 3 or 10% coverage 
(Fig. 4a, b). However, a higher number of alveoli was esti-
mated in lungs inflated at 30 cmH2O, most likely due to the 
increased volume estimated for those lungs (Fig. 1e), due to 
distension of the lungs at a Paw of 30  cmH2O.

Increasing the coverage of the regions of interest was 
instructive for a number of other parameters that describe 
the distal lung structure, where no differences in surface 
density were noted comparing the 10  cmH2O, 20  cmH2O, 
and 30  cmH2O groups assessed at 3% coverage (Fig. 5a). 
However, increasing coverage to 6% revealed a decreased 
surface density in the 30 cmH2O group, which is consist-
ent with lung distension in the 30  cmH2O group (Fig. 5b). 
The increased lung volume estimated for the 30 cmH2O 
group also impacted other volume-dependent parameters, 
such as gas-exchange surface area (which relates surface 
density to lung volume). At 3% coverage, while the esti-
mated surface density for the 10  cmH2O, 20 cmH2O, and 
30  cmH2O groups was constant, a higher gas-exchange 
surface area was estimated for the 30 cmH2O group, again 
reflecting lung distension. At 6% coverage, the magnitude 

Fig. 3  Heterogeneity in distal lung structure at variable airway pres-
sures. Low magnification images of lung sections after lung inflation 
with fixative at airway pressures of a 20  cmH2O and b 10  cmH2O are 
depicted. c, d Regions within (b) were selected (enclosed by the red 

frame) for presentation at higher magnification. Images are represent-
ative of trends overserved in four other lungs per experimental group. 
A panel including an image of a lung section after fixation inflation at 
30  cmH2O is included in Fig. S1. Scale bar: 200 µm
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of the gas-exchange surface area of the 30 cmH2O group 
was still numerically greater—but not statistically signifi-
cantly different from—the 10  cmH2O and 20  cmH2O groups 
(Fig. 5d; Table 2), which is attributable to a lower surface 
density having been estimated for the 30 cmH2O group at 
6% coverage (Fig. 5b). Increasing coverage from 3 to 6% 
also highlighted an increased MLI in the 30 cmH2O group 
compared with the 20  cmH2O group, which reflects the 
distension of the lungs in the 30 cmH2O group. Similarly, 
at 6% coverage, the magnitude of the MLI was numeri-
cally lower in the 10 cmH2O group compared with the 
20 cmH2O group (which approached statistical significance, 
P = 0.0511; Fig. 5f), indicating underinflation of the lungs 
in the 10 cmH2O group. That the lungs in the 10 cmH2O 
group were underinflated is also supported by the increased 
arithmetic mean septal thickness noted at both 3 and 6% 
coverage in the lungs of the 10 cmH2O group compared with 
the 20 cmH2O and 30 cmH2O groups (Fig. 5g, h).

The objective of the present study was to determine 
the optimal Paw for the instillation fixation of developing 
mouse lungs. The data presented here suggest that low Paw 
(of 10 cmH2O) results in heterogeneous (under)inflation of 
lungs, where better and worse inflated areas confound stereo-
logical analyses. In contrast, high Paw (of 30 cmH2O) leads 
to distortion of the lung volume by overinflation, leading to 
errors in the estimation of volume-dependent parameters, 
such as a total number of alveoli and gas-exchange surface 
area. As such, a Paw of 20  cmH2O emerged as an optimal 
Paw for instillation fixation, which is supported by the con-
sistently low variance in values of stereology parameters 
at a Paw of 20  cmH2O [comparing 3% versus 10% (Fig. 4) 
or 3% versus 6% (Fig. 5) coverage], compared to the 10 
 cmH2O and 30  cmH2O groups (summarized in Fig. S2). As 
such, based on the data presented here, a Paw of 20  cmH2O 
is recommended for the inflation fixation of the lungs of 
mouse pups.

Fig. 4  Quantitative estimation of alveoli by design-based stereology. 
The a, b alveolar density and c, d number of alveoli per lung were 
estimated using design-based stereology at 3% and 10% coverage 
of the region of interest, after lung inflation-fixation at 10, 20, and 
30  cmH2O. Data reflect mean ± S.D. (n = 5 lungs per experimen-

tal group). Closed inverted triangles denote female animals, closed 
circles denote male animals. Data comparisons were performed by 
one-way ANOVA with Tukey’s post hoc test. Data comparisons with 
P < 0.05 are indicated. Additional stereology parameters are pre-
sented in Tables 1 and 2
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By way of caveats, it is important to recognize that 
healthy lung tissue was employed in the present study, and 
thus, all three experimental groups would exhibit compara-
ble elastic recoil. However, in the extension of these studies 
to the analysis of diseased lung tissue, where the parenchy-
mal or elastin fraction of the tissue may be different between 
control and experimental groups, differences in elastic recoil 
between the groups is to be expected. This might affect the 
behavior of the lungs during and after instillation fixation; 
and during fixation, the retraction of lung tissue (und thus, 
lung volume) may occur to different degrees between con-
trol and experimental groups. This may be controlled for by 
performing Cavalieri estimates of lung volume before and 
after embedding.
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