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A B S T R A C T

At the end of 2019, the new coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) suddenly raged, bringing a severe public health crisis to the world. It is urgent to discover suitable drugs and
treatment regimens against this coronavirus disease 2019 (COVID-19) and related diseases. Based on the previous
knowledge and experience in treating similar diseases, researchers have come up with hundreds of possible drug
candidates in the shortest possible time. Based on surface plasmon resonance (SPR) technology, this review
summarized the application of SPR technology in COVID-19 research from four aspects: the invasion mode of
SARS-CoV-2 into host cells, antibody drug candidates for the treatment of COVID-19, small molecule drug
repurposing and vaccines for COVID-19. SPR technology has gradually become a powerful tool to study the
interaction between drugs and targets due to its high efficiency, automation, labeling-free and high data reso-
lution. The use of SPR technology can not only obtain the affinity data between drugs and targets, but also clarify
the binding sites and mechanisms of drugs. We hope that this review can provide a reference for the subsequent
application of SPR technology in antiviral drug development.
1. Introduction

The coronavirus disease 2019 (COVID-19) that broke out at the end of
2019 quickly evolved into a global public health emergency in the next
few months. As of May 4, 2021, there have been more than 151 million
people diagnosed with the new coronavirus, and the death toll exceeds 3
million [1].

Coronavirus (CoV) is a class of positive-sense single-stranded RNA
(ssRNA) virus with envelope. It belongs to the genus Coronavirus of the
family Coronaviridae of the order Nidovirales. The new type of corona-
virus, which is produced by recombinant mutation of this virus in
different hosts, will break out in human population once every several
years [2], such as the atypical pneumonia in 2002–2003 (also known
severe acute respiratory syndrome, SARS), middle east respiratory syn-
drome (MERS) in 2012, and COVID-19, which are typical representatives
of major outbreaks caused by the coronavirus [3]. The pathogens of them
are SARS-CoV [4–6], MERS-CoV [7] and severe acute respiratory
syndrome-related coronavirus 2 (SARS-CoV-2) [8–11], respectively.

The length of the coronavirus genome is 27–32 kb, which is the
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largest RNA virus known to date [12,13]. Its genomes have the same
organization and expression mode, from 50 to 30, which are replicase,
spike protein (S), envelope protein (E), membrane protein (M), nucleo-
capsid (N) and some accessory proteins. Among them, the S protein,
which mainly mediates the binding to host cell membrane receptor
(angiotensin-converting enzyme 2, ACE2) and facilitates virus entry into
host cells [14–17], is the primary target for the discovery of neutralizing
antibodies (NAbs), small molecule inhibitors, vaccines, etc.

To date, some clinical diagnostic approaches, such as searching for
clinical manifestations, evaluation of epidemiological history, lung im-
aging, virus response to the antibody in blood serum, and real-time po-
lymerase chain reaction (rT-PCR) of the nasopharyngeal swab sample,
have been used for COVID-19 detection [13]. Considering the pitfalls of
traditional PCR in the way and the position of nasopharyngeal swab
collection, sample transportation to the test center, RNA extraction,
enzyme inhibitors, etc [13]. And the disadvantages of another commonly
used enzyme linked immunosorbent assay (ELISA) technique for
high-quality antisera and the destructive to samples [18],
photonics-based tools are now becoming increasingly popular in clinical
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Fig. 1. The invasion mode of SARS-CoV-2 [36]. SARS-CoV-2 first attaches to the
cell surface with the aid of heparan sulfate, and then enters the host cell by
interacting with ACE2.
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science, particularly for virus detection. Till now, there have been several
reviews summarized the latest advances in COVID-19 detection by uti-
lizing optical techniques that include spectroscopic and imaging tech-
niques [19,20]. In this review, different from the focus of the new
coronavirus diagnosis, we started with the invasion mode of SARS-CoV-2
and summarized the application of surface plasmon resonance (SPR) in
the development of coronavirus candidate drugs. SPR is a spectroscopy
technique that detects the change in the refractive index of the interface
between the analyte and the ligand immobilized on the sensor chip
surface [21,22]. It characterizes the binding mechanism and determines
the corresponding kinetic parameters between drugs and targets (asso-
ciation constant (ka), dissociation constant (kd), and binding affinity
(KD)) in real time [23,24]. Due to its reliable, sensitive, and reproducible
data characteristics, SPR technology has been widely used by research
and pharmaceutical laboratories around the world and has become the
gold standard in the field of biomolecular interaction technology.

1.1. The invasion mode of SARS-CoV-2 into host cells

Regarding the way SARS-CoV-2 invades host cells, it is generally
believed that the S protein of the virus binds to the membrane receptor
ACE2 on the host cells, thereby realizing the fusion of the virus and cell
membrane [25]. S protein is a large trimeric transmembrane glycopro-
tein with a large number of glycosylation modifications, which forms a
special corolla structure on the surface of the virus. It first binds to the
receptors on the cell surface, and then undergoes a conformational
change to integrate the virus envelop with the host cell membrane,
thereby injecting the genetic materials in the virus into the host cell to
achieve the purpose of infecting the cell.

Spike protein is the most important surface membrane protein of
SARS-CoV-2, which contains two subunits S1 and S2. S1 mainly contains
the N-terminal domain (NTD), the receptor binding domain (RBD) and
two conserved subdomains (SD1 and SD2). S1 is responsible for recog-
nizing cell receptors, while S2 contains the basic components required for
the process of membrane fusion [26]. Wrapp et al., Shang et al. andWang
et al. respectively analyzed the complex structures of S protein, the RBD
domain of S protein and the C-terminal domain (CTD) of S protein with
human ACE2 (hACE2), and simultaneously characterized their binding
affinities with SPR [26–28]. The KD value of SARS-CoV-2 to human ACE2
was 14.7 nM, which was 22-fold stronger than the KD value of SARS-CoV
to human ACE2 (KD value: 325.8 nM). The above SPR results explained
why SARS-CoV-2 is far more infectious than SARS-CoV. Lu et al. also
confirmed that SARS-CoV-2 trimer S protein increased ACE2 proteolytic
activity of model peptide substrates (such as caspase-1 substrate and
Bradykinin-analog) by about 3–10 times [29]. Whereas, the SARS-CoV-2
core polymerase complex nonstructural proteins (nsp)-12-nsp-7-nsp8,
which plays a central role in the virus life cycle, was verified to have less
efficient activity for RNA synthesis and lower thermostability of indi-
vidual subunits compared with SARS-CoV [30]. Meantime, compared
with SARS-CoV, SARS-CoV-2 seemed to have a narrower range of re-
ceptor selection [31]. SPR technology characterized the binding affinity
of RBD from SARS-CoV-2 or SARS-CoV to ACE2 from various species. By
introducing mutations that alter the conformational distribution of the S
protein domains, Henderson et al. achieved conformational control of the
S protein, and SPR technique was used to detect whether RBD in mutants
was in ACE2-accesesible (up) state or in ACE2-inaccessible (down) state
[32]. Studies on E1 (residues 417, 455–456, and 470–490) and E2
(residues 444–454 and 493–505) of the RBD indicated that E1 and E2
interacted differently with ACE2 at different salt concentrations. At high
salt concentrations, the E2-mediated interactions were weakened, but
they were compensated by enhancing E1-mediated hydrophobic in-
teractions [33].

Before SARS-CoV-2 binds to ACE2, more and more research results
have confirmed that heparan sulfate on the cell surface, as the initial
adsorption factor, can help SARS-CoV-2 to adsorb to the host cell surface
and enhance the interaction possibility between S protein and ACE2
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[34–37] (Fig. 1). Heparin and its derivatives have also been proved to
have good S protein binding activity and antiviral activity [36,37]. Kim
and his team validated that the binding site of heparan sulfate to RBDwas
located in the glycosaminoglycan (GAG)-binding motif at S1/S2 pro-
teolytic cleavage site (681–686(PRRARS)) [34]. The KD value of heparin
to SARS-CoV-2 spike glycoprotein in trimer was 7.3 pM, in contrast, the
KD value of heparin to SARS-CoV and MERS-CoV spike glycoprotein in
monomer were only 500 and 1 nM, respectively. The results once again
indicated that SARS-CoV-2 was more infectious.

In addition to the usual RBD-ACE2 invasion mechanism, Wang et al.
discovered an interaction between the host cell receptor CD147 and
SARS-CoV-2 spike protein, and confirmed that this interaction was a new
route to facilitate SARS-CoV-2 invasion [38]. Human T cells with
ACE2-deficient properties could be infected with SARS-CoV-2 pseudo-
viruses in a dose-dependent manner. However, this infection was spe-
cifically inhibited by CD147 inhibitor, Meplazumab. SPR assay results
indicated that the binding affinity of CD147 to S protein was 185 nM. In
addition, Cascio et al. showed that Short Linear Motifs (SLiMs) of
SARS-CoV-2 E protein (E-SLiM) could bind to the PDZ domain of the wild
type human PALS1 protein in the micromolar range, which may also help
the virus to invade host cells [39].

The above studies on the invasion mechanism of SARS-CoV-2 have
laid a good structural foundation for the subsequent research and
development of antiviral drugs.

1.2. Antibody drug candidates for the treatment of COVID-19

Antibody drugs refer to protein drugs containing complete antibodies,
antibody fragments, or genetically engineered antibodies. Due to their
specificity, high efficiency and safety in binding with target antigens,
antibody drugs have achieved rapid development in clinical malig-
nancies, autoimmune diseases, infections, cardiovascular diseases and
other major diseases [40]. Since the outbreak of COVID-19, many do-
mestic and foreign scientific research institutions and enterprises are
accelerating the development of COVID-19 antibody drugs.

Based on the pathogenic mechanism of SARS-CoV-2, combined with
the application of antibody drugs in antivirus, there are currently several
antibody drug treatment strategies against COVID-19 [41]: 1. Neutral-
izing antibodies against S protein, 2. Neutralizing antibodies against
ACE2, 3. ACE2 analogs that compete with ACE2 for binding to S protein,
4. Antibodies against cytokine storms.

B lymphocytes are specialized cells that produce and secrete anti-
bodies in the body, and play a key role in fighting infections, tumors and



Fig. 2. The schematic diagram of identifying potent neutralizing antibodies
against SARS-CoV-2 by high-throughput single-cell sequencing of B cells from
convalescent patients [49].

Fig. 3. The schematic diagram of identifying single-domain camelid antibodies
against Beta-coronaviruses [50].
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autoimmune diseases. Therefore, a large proportion of antibody drug
candidates for COVID-19 are based on single B cells, which have been
successfully isolated from patients with COVID-19 in the convalescence
stage. For example, by using SARS-CoV-2 stabilized prefusion spike
protein as an antigen, Brouwer et al. successfully isolated 403 mono-
clonal antibodies from three convalescence patients [42]. These anti-
bodies indicated that the human body has a strong immune response to
the S protein of SARS-CoV-2. SPR analysis confirmed the binding of 77
monoclonal antibody (mAb) to S protein and 21 mAb to RBD, with
binding affinities in the nanomolar to picomolar range. Competitive
analysis based on SPR and electron microscopy studies showed that the
SARS-CoV-2 spike protein contains multiple distinct antigenic sites,
including several RBD epitopes as well as non-RBD epitopes. The sub-
sequent structural characterization of these potent NAbs provided guid-
ance for vaccine design, and the use of mAb mixtures to simultaneously
target multiple non-RBD and RBD epitopes, paving the way for safe and
effective COVID-19 prevention and treatment. Similarly, by using hu-
manized mice and B cells from COVID-19 patients in recovery, Hansen
et al. isolated thousands of human antibodies that could bind to
SARS-CoV-2 [43]. Subsequently, among these antibodies with different
binding characteristics and antiviral activities, the researchers selected
pairs of highly potent antibodies that could simultaneously bind to the
RBD of the S protein but have different binding sites, and proposed that
the use of dual antibodies, as opposed to single antibodies, could not only
provide an effective therapeutic effect, but also prevent the virus from
mutating into resistance under the selective pressure of single-antibody
therapy. SPR assays showed that these antibodies could bind to the
trimeric SARS-CoV-2 S protein and RBD, with binding affinities ranging
from picomolar to nanomolar. Also in 2020, by using the
high-throughput antibody generation platform of the institute, Rogers
et al. rapidly screened more than 1800 antibodies, and established an
animal model to test protection [44]. According to the two epitopes on
the RBD and the non-RBD epitope on the S protein, antibodies with high
neutralizing activity were isolated. The team then tested neutralizing
antibodies in a hamster model, two of which showed protective effects
against SARS-CoV-2. The results of SPR assays showed that the
3

neutralizing ability of the antibody that bound to RBD-ACE2 epitope
correlated well with its percent competition for ACE2 receptor binding
for both S protein and RBD, suggesting that the corresponding increases
in binding affinity of mAbs to RBD-ACE2 epitope will likely result in the
corresponding increases in neutralization potency. In addition to the
above three examples, many researchers have also obtained effective
neutralizing antibodies that can compete with ACE through single B cell
isolation, such as CA1 and CB6 [45], P2C–1F11 [46], B38 and H4 [47],
etc. Certainly, there were also some RBD-bound antibodies that do not
compete with ACE2, such as EY6A [48], etc.

In addition to screening for potent neutralizing mAbs from human
memory B cells, researchers have also developed other innovative ways
to obtain antibodies that could effectively inhibit SARS-CoV-2. For
example, based on the technology of high-throughput single-cell
sequencing, Xie et al. collected blood samples from 60 convalescent pa-
tients and screened 14 high-potent neutralizing antibodies from 8558
antigen-binding IgG1þ clonotypes [49] (Fig. 2). As the most potent of
them, BD-368-2 exhibited the half-inhibitory concentration (IC50) of 1.2
and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respec-
tively. SPR assays demonstrated BD-368-2 was an ACE2 competitive in-
hibitor, with the RBD binding affinity of 0.82 nM. They also
demonstrated that in their case, only mAbs bound to RBD showed
pseudovirus neutralization effects, and only mAbs bound to RBD with KD
values smaller or close to the dissociation constant of ACE2/RBD (15.9
nM), would have significant neutralization effects (IC50 < 3 mg/mL) on
SARS-CoV-2 pseudovirus.

Except for screening and designing conventional neutralizing anti-
bodies against SARS-CoV-2, scientists have also discovered a variety of
nanobodies in llama, which can effectively neutralize SARS, MERS, and
the new coronavirus pseudoviruses in vitro. Nanobodies are a special class
of antibodies from camels. Unlike conventional antibodies composed of
light and heavy chains, this class of antibodies only have a heavy chain.
The antigen-specific variable portion of this single-chain antibody is
called VHH, or referred as nanobody. Interestingly, the antigen affinity
and specificity of the nanobodies are not affected by the absence of the
light chain variable region compared with conventional antibodies. On
the contrary, it has the advantages of compatibility with phage display,
low molecular weight, high stability, easy expression, and less steric



Table 1
Summary of small molecule drug repurposing.

Compound Structure Target KD value to the target/μM

Astemizole ACE2 37.5

Chloroquine ACE2 0.731

Hydroxy-chloroquine ACE2 0.482

Thymoquinone ACE2 32.1

Luteolin from Yinqiao powder ACE2 121

Rhein from Lianhuaqingwena ACE2 33.3

Astragaloside IV ACE2 0.369

Rutin ACE2 66.8

Oroxylin A ACE2 97.2

Isorhamnetin ACE2 2.51

Doxepin ACE2 9.54

Antipsychotic drugs-Trifluoperazineb ACE2 33.3

Loratadine ACE2 9.13

Desloratadine ACE2 0.102

(continued on next page)
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Table 1 (continued )

Compound Structure Target KD value to the target/μM

Evans blue ACE2 1.63

Quercetin S 16.9

Isoquercitrin S 4.54

Sodium lifitegrast S 1.92

Linoleic acid S 0.041 to RBD

Glycyrrhizic acid (ZZY-44) S1 subunit 0.87

Eltrombopag S and ACE2 0.162 and 0.828

Salvianolic acid A RBD and ACE2 3.82 and 0.408

Salvianolic acid B RBD and ACE2 0.515 and 0.295

Salvianolic acid C RBD and ACE2 2.19 and 0.732

02B05 RBD and ACE2 1.04 and 1.74

EGCG 3CLpro 6.17

Teicoplanin 3CLpro 1.60

(continued on next page)
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Table 1 (continued )

Compound Structure Target KD value to the target/μM

Dipyridamole Mpro 34

S312 DHODH 0.0203

S416 DHODH 0.00169

Leflunomide DHODH c

Teriflunomide DHODH c

Rhein from Lianhuaqingwena: The 8 components in Lianhuaqingwen (forsythoside A, forsythoside I, neochlorogenic acid, amygdalin, prunasin, rutin and glycyrrhizin)
have been confirmed to target ACE2 and have antiviral activity, we just selected rhein as the representative.
Antipsychotic drugs-Trifluoperazineb: Five antipsychotic drugs (tiapride, aripiprazole, chlorpromazine, thioridazine and trifluoperazine) in the reference have been
confirmed to target ACE2 and have antiviral activity, we just selected trifluoperazine as the representative.
c: not determined.
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hindrance. Considering the advantages of nanobodies, researchers have
attempted to develop a series of nanobodies that can effectively
neutralize SARS-CoV-2. Generally, there are two strategies for obtaining
nanobodies, the first is to inject the coronavirus S protein, RBD or its
mutants into llamas as antigens, and then screen nanobodies by phage
display [50,51]. The second is to use the recombinant S protein or RBD as
a bait and use phage display to screen the nanobody library [52,53]. For
example, Wrapp et al. obtained VHHs from a llama immunized with
prefusion-stabilized coronavirus spikes, and demonstrated that these
VHHs could neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses,
respectively [50] (Fig. 3). After being fused with human lgG, these
bivalent VHHs neutralized SARS-CoV-2 S pseudotyped viruses with IC50
values about 0.2 μg/ml. SPR assays characterized the binding affinity of
VHHs to MERS-CoV RBD, SARS-CoV-1 RBD and SARS-CoV-2 RBD.
Similarly, by screening a yeast surface-displayed library of synthetic
nanobody sequences, Schoof et al. identified a panel of nanobodies that
bound to multiple epitopes on spike and could block ACE2 interaction via
two distinct mechanisms [51]. Among nanobodies, Nb6was confirmed to
bind spike in a completely inactive conformation, which was incapable of
binding ACE2. The trivalent nanobody, mNb6-tri exhibited femtomolar
binding affinity to SARS-CoV-2 spike, and has picomolar neutralization
effect on SARS-CoV-2 infection. Given that mNb6-tri retained stability
and function after aerosolization, lyophilization, and heat treatment, it
could reach the airway epithelia through aerosol-mediated.

Certainly, there are also some reported neutralizing antibody antigens
that are not S protein or the entire RBD. For example, the extracellular
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domain of ACE2 fused with the Fc region of human immunoglobulin
IgG1 had high binding affinity to RBD of SARS-CoV and SARS-CoV-2, and
exhibited desirable pharmacological properties in mice [54]. For another
example, monoclonal antibodies generated with receptor-binding motif
(RBM) in RBD as the antigen could competitively bind to ACE2 and
specifically blocked the RBM-induced GM-CSF secretion, thus preventing
SARS-CoV-2-elictied “cytokine storm” [55]. In short, the discovery of
these antibodies has accelerated the application of antibody drugs in the
treatment of coronavirus.

1.3. Small molecule drug repurposing

Considering that the de novo design of small molecule drugs targeting
SARS-CoV-2 will take several years and will also consume huge amounts
of money. Therefore, drug repurposing may be a feasible strategy in the
current situation, which can greatly shorten the drug development time
and help to response quickly to the new virus outbreak. At present, it has
been reported that many old drugs can effectively inhibit the entrance of
2019-nCoV spike pseudotyped virus into hACE2 cells (see Table 1), and
almost all of these old drugs target ACE2, such as astemizole [56],
chloroquine and hydroxychloroquine [57], thymoquinone [58], yinqiao
powder [59], lianhuaqingwen [60], astragaloside IV and rutin [61],
oroxylin A [62], isorhamnetin [63], doxepin [64], antipsychotic drugs
[65], loratadine and desloratadine [66], evans blue [67], etc. Of course,
there are also some drugs that target S protein or both S protein and
ACE2, such as quercetin and isoquercitrin [61], sodium lifitegrast [67],



Fig. 4. The schematic diagram of designing CoV RBD-dimer vaccines against COVID-19, MERS, and SARS [84].
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Linoleic acid [68], glycyrrhizic acid [69], eltrombopag [70], salvianolic
acid A/B/C [71], 02B05 [72], etc. The affinity values of the
above-mentioned old drugs to the target were characterized by SPR.

In addition to ACE2 and S protein, the coronavirus main protease
(Mpro, also known as 3-chymotrypsin-like protease, 3CLpro) is also
essential for the processing and maturation of viral polyproteins, and is
therefore recognized as an attractive drug target [73,74].
Epigallocatechin-3-gallate (EGCG) [75], an active ingredient of Chinese
herbal medicine (CHM), and Teicoplanin [76], an effective glycopeptide
antibiotic, have been confirmed to be potent 3CLpro inhibitors with KD
values in the single-digit micromolar ranges. Both EGCG and Teicoplanin
could destabilize 3CLpro. Also, through the screening of the drug library,
dipyridamole was proved to target Mpro with the binding affinity of 68
μM [77]. In addition to the conventionally recognized antiviral targets,
Xiong et al. validated for the first time that DHODH was an attractive
antiviral target [78]. Two effective inhibitors of DHODH, S312 and S416,
have been showed to have broad-spectrum antiviral effects against
various RNA viruses, including SARS-CoV-2. The KD values of S312 and
S416 for DHODH were 20.3 and 1.69 nM, respectively. At the same time,
they also demonstrated that both their self-designed candidates (S312
and S416) and old drugs (Leflunomide/Teriflunomide) with dual actions
of antiviral and immuno-repression had clinical potentials not only to
influenza but also to COVID-19 circulating worldwide, no matter such
viruses mutate or not.
7

In view of the advantages of small molecule drugs in low molecular
weight, low production costs, good membrane permeability and non-
immunogenicity, we expect that more effective small molecule drugs
can be added to the team for the treatment of COVID-19.

1.4. Vaccines for COVID-19

In terms of vaccines, the current candidate vaccines against coronavirus
can be divided into two categories: (1) Gene-based vaccines, including
DNA/messenger RNA vaccines, and recombinant vaccines that can pro-
duce antigens in host cells, mainly binding vectors and the live virus [79],
(2) Protein-based vaccines, including inactivated whole virus and protein
subunit vaccines, the antigens of such vaccines are produced in vitro.
Protein subunit vaccines have shown good safety and effectiveness in
preventing diseases such as hepatitis B [80] and herpes zoster [81].
However, due to their relatively low immunogenicity, RBD-based protein
subunit vaccines must be used in combination with appropriate adjuvants,
or optimized for appropriate protein sequences, fragment lengths, immu-
nization procedures, etc [82]. For example, Yang et al. selected aluminum
precipitates as vaccine adjuvants and constructed a recombinant S-RBD
vaccine consisting of residues 319–545 of the RBD of the S protein [83].
The recombinant vaccine was found to induce effective functional anti-
body responses within 7 or 14 days after a single dose in mice, rabbits, and
non-human primates (Macaca mulatta). Moreover, inoculation of this
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recombinant vaccine also protected non-human primates from
SARS-CoV-2. SPR technique characterized the binding of the recombinant
RBD and ACE2. However, considering that the introduction of exogenous
sequences may affect the clinical potential of the recombinant vaccine, Dai
et al. overcame the immunogenicity limitations of the RBD-based vaccine,
and constructed the dimer form of MERS-CoV RBD linked by disulfide
bonds [84] (Fig. 4). The dimerMERS-CoV RBD could significantly enhance
the antibody response and NAb titers, and protected mice fromMERS-CoV
infection. Subsequently, they successfully generalized this strategy to
design vaccines against SARS-CoV, SARS-CoV-2, and other β-coronavi-
ruses. SPR technique confirmed the dimerization state of RBD would not
affect its binding affinity to ACE2. With the development and application
of more and more vaccines, it is expected to control the spreading
COVID-19 pandemic as soon as possible.

2. Conclusion

In this review, we successively introduced the invasion mode of
SARS-CoV-2 into host cells, the current research status of SARS-CoV-2
candidate drugs, such as antibodies, small molecules and vaccines, and
clarified the specific applications of SPR technology in these research
directions. SPR, as a new means of biomolecular interaction, can detect
almost all biomolecules, such as proteins, peptides, DNA, poly-
saccharides, liposomes, small molecule compounds, and even phages,
cells, etc. SPR has been widely used to detect whether there is binding
betweenmolecules, the affinity of the binding, the speed of association or
dissociation, the search for binding sites and binding order, etc. There-
fore, its applications in the fields of proteomics, signal transduction, drug
development, genetic analysis and food monitoring have developed
rapidly, and its role has become increasingly important. For COVID-19,
SPR can help us quickly understand its invasion mechanism and guide
structure-based drug design. However, because it requires one of the
interactions to be immobilized on the chip, it has limitations in charac-
terizing biological targets that require the formation of multimer to be
active, covalent drugs, and drugs that require incubation to generate
binding activity, etc. In any case, we expect that through our summary,
SPR technology can be applied to more fields during the development of
coronavirus drugs, accelerate the research process of coronavirus drugs,
and contribute to the control of the new coronavirus epidemic.
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