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Abstract

Motivation: Mechanistic models based on ordinary differential equations provide powerful and ac-

curate means to describe the dynamics of molecular machinery which orchestrates gene regula-

tion. When combined with appropriate statistical techniques, mechanistic models can be calibrated

using experimental data and, in many cases, also the model structure can be inferred from time–

course measurements. However, existing mechanistic models are limited in the sense that they

rely on the assumption of static network structure and cannot be applied when transient phenom-

ena affect, or rewire, the network structure. In the context of gene regulatory network inference,

network rewiring results from the net impact of possible unobserved transient phenomena such as

changes in signaling pathway activities or epigenome, which are generally difficult, but important,

to account for.

Results: We introduce a novel method that can be used to infer dynamically evolving regulatory

networks from time–course data. Our method is based on the notion that all mechanistic ordinary

differential equation models can be coupled with a latent process that approximates the network

structure rewiring process. We illustrate the performance of the method using simulated data and,

further, we apply the method to study the regulatory interactions during T helper 17 (Th17) cell dif-

ferentiation using time–course RNA sequencing data. The computational experiments with the real

data show that our method is capable of capturing the experimentally verified rewiring effects of

the core Th17 regulatory network. We predict Th17 lineage specific subnetworks that are activated

sequentially and control the differentiation process in an overlapping manner.

Availability and Implementation: An implementation of the method is available at http://research.

ics.aalto.fi/csb/software/lem/.

Contacts: jukka.intosalmi@aalto.fi or harri.lahdesmaki@aalto.fi

1 Introduction

During the past years, several computational approaches have been

proposed to infer the structure and dynamics of gene regulatory net-

works from either steady-state or time–course measurements

(Marbach et al., 2012). The approaches range from statistical and

information theoretic methods to mechanistic models. Mechanistic

models are capable of describing the actual molecular dynamics

originating from reaction kinetics and the underlying network struc-

ture can also be accurately estimated by combining these models

with appropriate statistical techniques (see e.g. Intosalmi et al.,

2015; Schulz et al., 2009; Xu et al., 2010). Typically, a mechanistic

model consists of a set of interacting molecular components and a

formal description for the possible mechanisms affecting the time-

evolution of the components. While the mechanistically motivated

network inference works well for static network topologies, the

standard approach cannot be applied if the molecular mechanisms

depend on transient cellular processes, and in particular, if the net-

work structure is dynamically rewired. A good example of such

transient processes are epigenetic modifications that typically are

not observed in detail but can have a major effect on regulatory
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interactions, for instance, during cellular differentiation. In the pres-

ence of such transient processes, the structure of network becomes

time-dependent and, consequently, the network inference becomes

notably more challenging.

The importance of dynamically evolving regulatory mechanisms

has been recognized in many recent experimental studies and also

computational techniques have been developed to analyze and

understand measurements that are possibly affected by transient

mechanisms (see e.g. Yosef et al., 2013). The existing computational

approaches that address this problem primarily focus on state-space

models, such as non-stationary dynamic Bayesian networks

(Dondelinger et al., 2013; Grzegorczyk and Husmeier, 2011;

Robinson and Hartemink, 2010) and probabilistic Boolean net-

works and their variants (Shmulevich et al., 2002). To our best

knowledge, general approaches that would complement mechanistic

models so that they could be used to study and detect dynamically

evolving regulatory networks do not exist. The inevitable strength of

mechanistic models is that they are capable of describing the under-

lying molecular mechanisms in detail, and when combined with stat-

istical modeling, they can take the analysis of time–course data well

beyond the state-space models. In other words, by means of mechan-

istic models it is possible to describe and analyze the actual processes

behind the data and not only find patterns, correlations, or other

dependencies in time-series. Given these strengths of mechanistic

modeling, it is obvious that a high practical value can be obtained

by extending this model class to account also for dynamically evolv-

ing molecular networks.

In this study, we develop a novel mechanistic analysis method

that can be used to detect and analyze latent processes which affect

the molecular mechanisms by rewiring the underlying network

structure. The method that we introduce is called the latent effect

mechanistic (LEM) model and it is based on the notion that all

mechanistic ordinary differential equation (ODE) models can be

coupled with a latent process that approximates the net impact of

transient mechanisms affecting the structure of molecular network.

We embed the LEM model into a well-defined statistical framework

that allows us to infer possible latent effects simultaneously with the

model structure and rate parameters. In addition to the theoretical

derivation of the LEM model, we also outline numerical techniques

that are required to carry out the analysis. We exemplify the per-

formance of our method using simulated data and conclude that we

can rigorously recover the underlying model using our inference al-

gorithms. Further, we apply our method to study the regulatory

interactions during T helper 17 (Th17) cell differentiation using

time–course RNA sequencing (RNA-seq) data and conclude that

our analysis results are in agreement with the previously observed

results regarding the time-dependency of the regulatory network

that steers Th17 lineage specification.

2 Approach

To illustrate our modeling idea, let us consider a gene and some

transcription factor A that activates the gene. Let us also assume

that, prior to stimulation, the gene’s locus is covered with epigenetic

marks that prevent the transcription factor A binding the promoter

(Fig. 1, left panel) and the gene remains inactive. Upon stimulation,

epigenetic marks are removed by unknown enzymatic signals

(Fig. 1, middle panel) and eventually the promoter region becomes

clear from the repressive marks and the transcription factor can

bind the promoter (Fig. 1, right panel). As a result of binding, the

gene is activated and a gene product B is produced (Fig. 1, right

panel). In mathematical terms this unobserved activation process

corresponds to moving from the ‘no interaction’ network structure

(Fig. 1, left panel) to ‘interaction activated’ network structure (Fig.

1, right panel). Because molecular reactions steering the epigenetic

signaling are stochastic in nature, the change from the initial state to

the active state does not occur synchronously in a cell culture. In

other words, the fraction of cells in the active state increases grad-

ually after stimulation while the fraction of cells in the inactive state

decreases. Even though we may neither know nor be able to measure

the molecular events that participate in the removal of the repressive

epigenetic marks, we can construct an ODE model that describes the

net impact of these events at the population level. In this toy ex-

ample, the model can be, for instance, the ODE system

dx1

dt
¼ �hxuðtÞx1 (1)

dx2

dt
¼ hxuðtÞx1 (2)

where x1 and x2 denote the relative fractions of cells in the inactive

and active states, u(t) is an input signal representing stimulus, and hx

is a free conversion rate parameter. In this study, we call the solution

of this model a latent process. Figure 2(a) illustrates the possible dy-

namics of the above latent process with different conversion rates

and Figure 2(b) shows an example of a latent process that consists

of three sequential states (latent processes with multiple sequential

phases will be discussed more in Section 3.5).

In general, if we have some understanding about the mechanisms

that influence the production and degradation of the transcription

factor A and the gene product B, we can build a mechanistic model

Fig. 1. Illustration of a dynamically evolving silencing mechanism that controls

the relationship between the transcription factor A and the gene product B
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Fig. 2. Examples of latent processes. (a) A latent process consisting of two

states. The conversion from the first state to the second state can occur rap-

idly or slowly depending on the parameterization of the latent process. (b) A

latent process consisting of three sequential states. The conversion from one

state to another can occur smoothly or rapidly depending on the parameter-

ization and, further, the parameters s1 and s2 determine the time instants for

switching
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that would rigorously describe their dynamics. For instance, we can

construct a model in the form of an ODE system

d½A�
dt
¼ �d1½A� (3)

d½B�
dt
¼ k0 þ k1½A� � d2½B�; (4)

where we have assumed that A and B degrade at rates d1 and d2, re-

spectively, B is produced at the basal rate k0, and A activates B at

the rate k1. This simple model corresponds to the mechanisms illus-

trated in the right panel in Figure 1. If the assumptions of the mech-

anisms incorporated into the model are reasonably realistic, the

parameters of the model can be inferred from time–course popula-

tion average data on A and B by means of statistical techniques.

However, if the interaction between A and B is affected (i.e. rewired)

by transient silencing of the gene, parameter and model inference re-

sults may become seriously biased or wrong.

The LEM model for the above example system can be con-

structed by considering the standard ODE model (Eqs 3 and 4) and

coupling it with the two-state latent process described by Eqs 1 and

2. In this example, the latent state x1 represents the early state with

inactive gene (silencing on) and the state x2 the late state in which

the repressive marks are removed. The LEM model is constructed by

coupling the ODE system with the latent process. This results in the

time–variant ODE system

d½A�
dt
¼ �d1½A� (5)

d½B�
dt
¼ k0 þ k1½A�

z1x1 þ z2x2

x1 þ x2

� �
� d2½B� (6)

where z1; z2 2 f0; 1g. The binary parameters z1, z2 parameterize the

network structure and indicate whether the interaction between A

and B is active in the latent states x1 and x2 or not. Effectively this

results in four alternative models that are listed in the Table 1. By

means of quantitative model comparison, we can select the most

likely configuration for z1 and z2 and detect if transient mechanisms

are present. Further, the model selection and parameter inference

provide information about the possible dynamics of latent processes

which, in the context of our example, means that we can infer the

rate at which the cells leave the inactive state and enter active state.

Naturally, if model selection indicates that most likely z1 ¼ 1 and

z2 ¼ 1, it is obvious that the LEM model reduces to the standard

ODE model.

In the above example, the latent process can naturally be coupled

with all mechanisms included into the model, that is, the basal in-

duction, degradation, and interaction between A and B. In this case,

the model selection should be carried out by considering 24�2 ¼ 28

alternative model structures compared to 24 model structures in the

standard ODE model. For example, stimulus dependent degradation

could be detected along with transient interaction between A and B.

3 Methods

3.1 Formal definition of the LEM model
As illustrated above, the first component of our model is a standard

mechanistic ODE model. The standard model can be constructed

using the law of mass action, Michaelis–Menten or Hill kinetics, or

any other similar approach. Without any loss of generality, we as-

sume that the resulting model can be expressed in the form

dyi

dt
¼
XJi

j¼1

fijðy; hyÞ; (7)

where i ¼ 1; . . . ;N; fijðy; hyÞ : RN � R
n ! R, Ji is the number of

functions fij affecting the component yi (and we denote

J ¼ J1 þ . . .þ JN), and yðt; hyÞ : ½0;T� � R
n ! R

N. In addition, we

need to design a latent process xðt; hxÞ : ½0;T� � R
m ! R

M which

represents M possible underlying latent states. The latent process

can be constructed by means of heuristically motivated ODE model-

ing, as presented for the toy model above, or by defining a well-

motivated parametric form for the process (as we do in Section 3.5).

Regardless how the latent process is constructed, it is important that

its functional form is flexible enough so that it is possible to infer la-

tent dynamics from the data.

Given a standard ODE model and a latent process, the LEM

model is constructed by coupling them. Formally, we can write

dyi

dt
¼
XJi

j¼1

fijðy; hyÞwðt; x; zj1; . . . ; zjMÞ; (8)

where

wðt; x; z1; . . . ; zMÞ ¼

XM
k¼1

zkxkðt; hxÞ

XM
k¼1

xkðt; hxÞ
; (9)

is a weight function depending on the latent state and

zjk 2 f0; 1g; k ¼ 1; . . . ;M. The binary parameters zjk determine if fij
is effective in the latent state xk or not (the values 1 and 0, respect-

ively). It is convenient to store these binary parameters into a J�M

matrix Z so that fZgjk ¼ zjk. Note that in the standard ODE ap-

proach the network structure is defined by a J � 1 vector. The LEM

modeling approach allows the network structure to be rewired and

the consecutive rewiring steps (and thus the dynamically evolving

network structure) is defined by a binary J�M matrix Z. Now

yðt; hy; xðt; hxÞ;ZÞ 2 R
N (10)

is the solution of the ODE system that is coupled with the latent pro-

cess and we define the model output to be

/ðt; hy; hx;ZÞ 2 R
K (11)

which can consist of some subset K � N of the state variables y.

In this study, we aim to infer the parameters hy and hx as well as

the most likely configuration of the matrix Z from time–course

data. In order to do this in a rigorous manner, we need to formulate

the problem in statistical terms.

3.2 Statistical framework to infer the model parameters

and the network structure Z
It is important to combine mathematical modeling with time–course

data using well-motivated, data type specific statistical models.

Statistical modeling makes it possible to weight the data in an

Table 1. Alternative models for the example system

Parameters for weighting Interaction A! B # of parameters

z1 ¼ 0; z2 ¼ 0 no interaction 3 þ 0

z1 ¼ 1; z2 ¼ 0 early interaction 4 þ 1

z1 ¼ 0; z2 ¼ 1 late interaction 4 þ 1

z1 ¼ 1; z2 ¼ 1 sustained interaction 4 þ 0

Here, the number of parameters is a sum over the number of parameters in

the actual model and the latent process, respectively.
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objective way and propagate the uncertainty in the measurements

through the models in a proper manner. In the following, we present

a general statistical framework for the LEM model. By means of this

framework it is possible to combine the LEM model with any data

type or combination data types including, for instance, read count

sequencing data and qPCR measurements. The only requirement is

that we are capable of making some assumptions about the distribu-

tion of the chosen data type(s).

Let Dkl be a measurement of the kth component of the output /

at time tl and let us denote /kl ¼ /kðtlÞ. A statistical model can be

constructed by assuming that the observation Dkl is distributed ac-

cording to some distribution g which depends on the model output

/kl and the parameters of the distribution hd. In other words,

Dkl � gðDklj/kl; hdÞ: (12)

In the context of our ODE model, /kl is fully determined by the

parameters hy, hx and Z, and consequently, we can write

gðDklj/kl; hdÞ ¼ gðDkljhy; hx;Z; hdÞ. Further, by introducing the no-

tation h ¼ fhy; hx; hdg, the distribution can be expressed in the form

gðDkljh;ZÞ. Now, if we have time–course data on the state variables

and we can assume that the measurements are independent given /,

we can define the likelihood function

pðDjh;ZÞ ¼
YK
k¼1

YL
l¼1

gðDkljh;ZÞ (13)

where D ¼ fDkl; k ¼ 1; . . . ;K; l ¼ 1; . . . ;Lg.
A Bayesian statistical model can be obtained by combining the

likelihood function with a prior distribution on the parameters, pðh;
ZÞ (for details about Bayesian methodology, see e.g. Robert, 2007).

In our model formulation, the different configurations of the binary

matrix Z define a discrete set of network structures and it is conveni-

ent to write the prior distribution in the form pðh;ZÞ ¼ pðhjZÞpðZÞ,
where pðZÞ is the prior distribution over network structures. By

applying Bayes’ theorem, we obtain the parameter posterior

distribution

pðhjD;ZÞ ¼ pðDjh;ZÞpðhjZÞpðZÞ
pðDjZÞ ; (14)

where

pðDjZÞ ¼
ð

pðDjh;ZÞpðhjZÞdh (15)

is the marginal likelihood of the model specified by Z. When the

marginal likelihoods pðDjZÞ of different configurations for matrix Z

are available, model ranking can easily be done by means of the pos-

terior distribution

pðZjDÞ / pðDjZÞpðZÞ; (16)

or equivalently,

logpðZjDÞ ¼ logpðDjZÞ þ logpðZÞ þ C; (17)

where C is a constant.

3.3 Estimating logarithmic posterior probabilities for

alternative models
Several different techniques exist to estimate the marginal likelihood

(for a review, see e.g. Friel and Wyse, 2012). In this study, we ap-

proximate the marginal likelihood by means of Laplace method and

some further simplifications that are discussed in detail, for instance,

by Ripley (1996) (pages 63-64). This approximation allows us to

write the estimator for the logarithmic posterior probabilities of the

alternative models (Eq. 17) in the form

logpðZjDÞ ¼ logpðDjbh;ZÞ � kh

2
logðnÞ þ logpðZÞ þ C; (18)

where pðDjbh;ZÞ is the maximum likelihood, kh is the number of

parameters, and n is the number of observations. For model ranking

purposes, we can simply neglect the constant C and compare unnor-

malized logarithmic posterior probabilities. Further, if the prior dis-

tribution over alternative configurations of binary matrix Z is

uniform, Eq. 18 reduces to a form that corresponds to the Bayesian

information criterion (Schwarz, 1978).

3.4 Forward-backward-stepwise selection to speed up

model ranking
If we consider a LEM model that consists of J mechanisms and M la-

tent states, we have altogether 2J�M alternative models (i.e. the num-

ber of different configurations of binary matrix Z). Typically, the

numbers of mechanisms and latent states are such that the estima-

tion of marginal likelihood for all alternative configurations is out

of reach. Therefore, we suggest to speed up the model ranking task

by means of forward-backward-stepwise selection. This leads essen-

tially to an algorithm that can be implemented through the follow-

ing four steps:

1. Set free elements in Z to zero and estimate logpðZjDÞ for this

model.

2. Generate J�M matrices Z�;c1 ;c2 ; c1 ¼ 1; . . . ; J; c2 ¼ 1; . . . ;M by

flipping elements in Z, that is,

fZ�;c1 ;c2gjk ¼
fZgjk þ 1 mod2ð Þ if j ¼ c1; k ¼ c2

fZgjk if j 6¼ c1; k 6¼ c2

(

and estimate logpðZjDÞ for the corresponding models.

3. Update Z to correspond the model that produces the highest

posterior probability, that is, the highest logpðZjDÞ.
4. Stop if the best ranked model does not indicate improvement in

the model fit compared to the previous logpðZjDÞ values.

5. Otherwise go back to Step 2.

3.5 LEM model for the core regulatory network driving

Th17 cell specification
T helper 17 (Th17) cells play a crucial role in the adaptive immune

system (Korn et al., 2009) and they have been noted to have import-

ant functions in various autoimmune diseases (Weaver et al., 2013).

Recent experimental and computational studies have shed light to

the regulatory mechanisms that steer the differentiation from a naive

CD4þ helper T cell to a specialized Th17 cell (see e.g. Ciofani et al.,

2012; Intosalmi et al., 2015; Yosef et al., 2013). Yosef et al. (2013)

also report notable rewiring of the Th17 cell specific regulatory net-

work during early phase of the lineage specification and, conse-

quently, this provides us with a good application to test how LEM

model analysis performs in practice.

Figure 4(a) illustrates the core Th17 regulatory network that was

experimentally derived by Ciofani et al. (2012). The core network

consists of five transcription factors, the retinoic acid receptor-

related orphan receptor gamma t (RORC), signal transducer and ac-

tivator of transcription 3 (STAT3), basic leucine zipper transcription

factor (BATF), transcription factor Maf (MAF) and interferon regu-

latory factor 4 (IRF4), and contains only links that have been experi-

mentally validated. For instance, RORC knock-out experiments

show that RORC does not participate in any of the feedback
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mechanisms regulating STAT3 and, consequently such interactions

are excluded from the network.

To convert the network structure into a quantitative dynamic

model, we denote the time-dependent expression levels of the genes

by yiðtÞ; i ¼ 1; . . . ;N (here, N¼5) and assume that the genes can

have activating and inhibiting interactions, and, in addition, we

allow basal activation and degradation. Each of these mechanisms

can be associated with a corresponding rate equation and, as a re-

sult, we obtain an ODE system specified by

dyi

dt
¼ kb

i þ
XN
j¼1

kia
ij yj þ

XN
j; k ¼ 1
j < k

ksa
ijkyjyk �

XN
j¼1

kinh
ij yjyi � kd

i yi; (19)

where kb
i ; kia

ij ; ksa
ijk; kinh

ij and kd
i are unknown basal activation, inde-

pendent activation, synergistic activation, inhibition and degrad-

ation rate constants, respectively. The rate constants are defined to

be strictly positive and setting a specific rate constant to zero re-

moves that mechanisms (and parameter) from the model. We use

the experimentally validated network (Fig. 4(a)) as a basis for our

inference and include all experimentally validated interactions to the

mechanistic model. To construct the LEM model, the system in Eq.

19 is combined with an appropriate latent process.

The latent process for Th17 LEM model is constructed based on

the findings reported by Yosef et al. (2013). They suggest that there

are three sequential wiring states during the early phase of Th17 cell

differentiation. From the mechanistic modeling perspective it is ob-

vious that transitions between the states must occur gradually and

two different wiring states can affect the observations simultan-

eously during the transitions. To describe a continuum of realistic

transitions occurring between the sequential rewiring states, we de-

fine the latent process

x1ðtÞ ¼
1

1þ expðk1ðt � s1ÞÞ
(20)

x2ðtÞ ¼
1

1þ expðk2ðt � s2ÞÞ
� 1

1þ expðk1ðt � s1ÞÞ
(21)

x3ðtÞ ¼ 1� 1

1þ expðk2ðt � s2ÞÞ
; (22)

where k1, k2, s1 and s2 are the parameters of the process. Because

the rewiring occurs in sequential states, we also introduce the re-

striction s1 < s2. Figure 2(b) illustrates dynamics of this latent

process.

To analyze the core Th17 regulatory network using the LEM

model, we make use of the time–course RNA-seq data provided by

Ciofani et al. (2012). To obtain these data, Ciofani et al. (2012)

purified naive CD4þ cells from lymph nodes and spleen of wild-type

mice, cultured the cells in Th17 conditions, and harvested a propor-

tion of cells at the time-points 0, 1, 3, 6, 9, 12, 16, 24 and 48 h for

RNA-seq processing (see the original article for details). We use the

fragments per kilobase of transcript per million mapped reads

(FPKM) values of each gene to inform the LEM model and by

assuming independent normally distributed noise, we can write the

likelihood function (confer Eq. 13) in the form

pðDjh;ZÞ ¼
Y5
k¼1

Y8
l¼1

NðDklj/Z
kl; ðaþ b/Z

klÞ
2Þ; (23)

where we use same notation as in Section 3.2, Nð�jl; r2Þ is the nor-

mal probability density function with mean l and variance r2, and a

and b parameterize the likelihood function. To construct this statis-

tical model, we have assumed that the noise in the data depends on

the signal strength according to the parameter b and, in addition,

there is some basal level of variance that is determined by a. The ori-

ginal data consists of one measurement at each time point except at

time 6 h there are three replicates. We treat the measurements at 6 h

as a single measurement which is taken to be the mean of three repli-

cates. The initial state for each model is fixed according to the meas-

urement at time t¼0 h.

The prior distribution over the alternative configurations of the

matrix Z can be constructed in numerous ways and, in this study,

we use the truncated geometric distribution. More specifically, we

define h(Z) to denote the number of nonzero elements in the matrix

Z and set

pðZÞ ¼ PðhðZÞ ¼ jÞ ¼ pð1� pÞjXJM
j¼0

pð1� pÞj
; (24)

where j ¼ 0; . . . ; JM, and p¼0.3. Intuitively, we set the prior over

the number of nonzero elements in the matrix Z and, with the

chosen parameterization, the impact of this prior distribution is ra-

ther weak. However, the prior distribution is introduced to prevent

the forward-backward-stepwise selection algorithm proceeding in

the cases in which the parametric dimension of the model remains

the same and the model fit is improved in negligibly small fractions

due to overly complex network structure.

3.6 Computational implementation
The LEM model, the estimation of unnormalized logarithmic pos-

terior model probabilities, and the forward-backward-stepwise se-

lection algorithm are implemented in Matlab (The MathWorks Inc.,

Natick, MA, USA). The ODE systems are solved numerically using

the CVODES solver from the SUNDIALS package (Hindmarsh

et al., 2005). Maximum likelihood estimates for parameters are ob-

tained using multi-start local optimization strategy in a similar man-

ner as outlined by Raue et al. (2013, 2015). In brief, we solve

sensitivity equations in parallel with the ODE system, compute the

gradient of the likelihood function accordingly, and use this infor-

mation to carry out efficient local optimization. For each model, we

sample random initial parameter values using Latin hypercube sam-

pling and carry out the local optimization using lsqnonlin optimiza-

tion routine in Matlab. If the optimization routine happens to

operate in a parameter range that results in ODE responses that can-

not be solved by using the default settings of the CVODES solver,

the likelihood values at such points are mapped to a very small

value.

4 Results

4.1 Testing the method using simulated data
Before applying the LEM model to real data, we test the method

and the related numerical procedures using simulated data. To simu-

late data, we construct a four gene network that is assumed to con-

tain all mechanistically possible interactions (Fig. 3(a)). Further, we

assume that the interactions are affected by sequentially occurring

latent states in a similar manner as in our Th17 cell differentiation

application. The three different wirings of the network are shown in

Figure 3(b) and these wirings affect the observed dynamics in an

overlapping manner (see the latent process in Figure 3(c)). In other

words, we assume that the whole cell population does not switch

the wiring synchronously but the cells move gradually form one
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wiring state to another. To construct a quantitative model based on

the interactions shown in Figure 3(a), we assume the same structure

for rate equations as in Section 3.5 for the Th17 cell specific core

network and build the full ODE model according to the Eq. 19.

Here, we assume that two genes (i.e. the genes A and B in Fig. 3(a))

have basal transcription mechanisms and the mRNA levels of all

genes are allowed to degrade at independent rates. Further, these

mechanisms are assumed to be present in all wiring states, that is,

the corresponding rows in the matrix Z are fixed to contain only

ones (see Table 2). To construct the LEM model for this system, we

couple the full ODE model with the latent process defined by Eqs.

20–22. The parameters that we use to simulate data are given in

parentheses after the inferred values in Table 2 and the resulting re-

sponse consisting of the latent process and the solution of the ODE

model is shown in Figure 3(c) (dashed lines). Figure 3(c) also shows

the actual data points that are simulated by adding normal fluctu-

ations to the deterministic response according to the statistical

model (Eq. 23). In this example inference, the rate parameters are

assumed to lay in the range ½10�3;10� and we use 100 random initial

parameter values in the multi-start local optimization. Otherwise

the inference for the simulated data is implemented using the same

specifications that are used for the real data.

The inference results for the simulated data are summarized in

Figure 3 and Table 2. We conclude that the forward-backward-

stepwise selection algorithm converges successfully to the correct

configuration of matrix Z and the inferred parameter values are

very close to the values that are used to simulate the data (see

Table 2). Note that our approximative marginal likelihood compu-

tation together with prior for network structure imply appropriate

Occam’s razor and prevent inferring too complex models. Further,

the model response, that is solved using the inferred parameters of

the best model, is in a good agreement with the response that was

used to generate the data (confer the solid versus dashed lines in

Fig. 3(c)). All in all, the inference and model selection perform well

in this test case and we can proceed to analyze real data.

4.2 LEM model captures rewiring effects of regulatory

interactions during early Th17 lineage specification
We initiate the analysis of real data by visually inspecting the time–

course FPKM values. Our first observation is that the initial expres-

sion level of RORC is very low and, as a consequence, we deduce

that the basal expression of the RORC gene is on a rather weak

level. To incorporate this prior information into the LEM model

analysis, we remove the basal RORC expression from the mechanis-

tic model but allow basal transcription for other genes. The initial

expression levels for the ODE models are taken directly from the ex-

perimental data. Further, we allow the mRNA levels of all genes to

degrade during the experiment.

We run the LEM model inference for the Th17 RNA-seq data

using the specifications given in Sections 3.5 and 3.6. In our analysis,

the rate parameters are constrained to the range ½10�3;100� and we

use 300 random initial parameter values in the multi-start local

optimization (the analysis is also repeated using 600 random initial

parameter values to assure ourselves that the forward-backward-

stepwise selection algorithm is not affected by suboptimal
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Fig. 3. Artificial dynamically evolving network and inference results with

simulated data. (a) Full network which consists of all mechanistically possible

interactions. (b) Subnetworks that are active in three sequential phases. (c)

Inferred dynamics plotted against simulated data (red circles). The color cod-

ing of the latent process corresponds to the three sequentially activated sub-

networks shown above. Dashed lines represent the response that is used to

simulate the data with fixed parameters and the solid lines represent the

inferred dynamics

Table 2. Inferred parameters for simulated data (the correct param-

eter values are shown within parentheses)

Mechanistic ODE model and matrix Z

j Mechanism zj1 zj2 zj3 Rate param.

1 Basal activ. of A 1 1 1 0.012 (0.01)

2 Basal activ. of B 1 1 1 0.047 (0.05)

3 A activates B 1 0 0 6.410 (6)

4 B activates B 1 0 1 2.864 (2)

5 B activates C 0 1 0 0.633 (0.5)

6 C activates B 0 1 0 1.343 (1)

7 C activates D 0 0 1 0.096 (0.1)

8 D inhibits C 0 0 1 0.423 (0.5)

9 Degrad. of A 1 1 1 0.169 (0.15)

10 Degrad. of B 1 1 1 3.321 (2.5)

11 Degrad. of C 1 1 1 0.096 (0.05)

12 Degrad. of D 1 1 1 0.047 (0.05)

Latent process

Parameter Value Allowed range

k1 0.950 (1) [0.25, 3]

s1 8.387 (8) [2, 10]

k2 0.491 (0.5) [0.25, 3]

s2 18.057 (18) [12.5, 30]

In the statistical model, the parameters a and b have the values, 0.0001 and

0.1, respectively.
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optimization performance). The inference results for the Th17 RNA-

seq data are summarized in Figure 4 and Table 3. Intriguingly, the

LEM model inference supports many interactions that were experi-

mentally validated using combinations of different measurement tech-

niques and experimental conditions in Ciofani et al. (2012) (for

instance, knock-out experiments). The inferred LEM model structure

is illustrated in Figure 4(b) and parameter values are given in Table 3.

Our LEM model inference does not only provide important infor-

mation about the regulatory interactions between the genes but can

also be used to generate predictions on the sequentially activated sub-

networks (Fig. 4(b)) as well as the time evolution of the latent states

that determine the impact of the subnetworks (Fig. 4(c)). The pre-

dicted latent process in Figure 4(c) shows that the first phase of differ-

entiation seems to be rather fast, the second state occurs

approximately within the time window form 4 to 13 h, and, eventu-

ally, after 20 h, the gene expression levels settle to the stable pattern

in a long-lasting third state. This temporal behavior is in line with

three transcriptional phases reported by Yosef et al. (2013), that is,

early induction (up to 4 h), intermediate onset of phenotype and amp-

lification (4–20 h), and late stabilization (20–72 h). The predicted la-

tent process (Fig. 4(c)) suggests that these three phases occur in an

overlapping manner which seems very natural from the biological

point of view. Further, the maximum likelihood fit of the selected

model is in a good agreement with the time–course data (Fig. 4(c)).

The regulatory mechanisms that we predict to occur in three

waves (Fig. 4(b), (c) and Table 3) have also clear interpretations. In

the first phase, T cell activation and cytokine driven mechanisms are

induced and they prepare cells for lineage commitment (Phase 1 in

Fig. 4(b) and (c)). In the second phase, RORC is induced and the

differentiation signals are amplified, for instance, through MAF and

IRF4 activation (Phase 2 in Fig. 4(b) and (c)). In the third phase,

the lineage commitment is maintained through RORC activation

by BATF and STAT3 activation by IRF4 (Phase 3 in Fig. 4(b) and (c)).

A significant feature in the sequentially occurring subnetworks is

that STAT3 has a clear regulatory role during the first two phases.

Given the central role of STATs in T helper cell lineage commitment

in general (see e.g. Vahedi et al., 2012), we find this behavior

natural. As a matter of fact, STAT3 is directly activated by the

inducing cytokines that initiate the Th17 cell differentiation process

(Korn et al., 2009) and, besides this important role as an early acti-

vator, STAT3 also plays an important role in mechanisms that amp-

lify and stabilize the differentiation response (see e.g. Zhou et al.,

2007).

To assess the uncertainty in the estimated parameter values of

the inferred model, we carry out parameter identifiability analysis

by using the profile likelihood method. The parameter profile likeli-

hood for jth parameter can be defined by writing

PLjðpÞ ¼ max
h2fhjhj¼pg

logpðDjh;ZÞ (25)
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Fig. 4. Experimentally validated core regulatory network steering Th17 lin-

eage specification, inferred sequential subnetworks, and the predicted dy-

namics of the latent process and mRNA levels. (a) Full network which

consists of all mechanistically possible interactions. (b) Predicted subnet-

works that are active in three sequential phases. (c) Inferred dynamics (gray

lines) plotted against experimental data (red circles). The color coding of the

latent process corresponds to the three sequentially activated subnetworks

shown above

Table 3. Inferred parameters for the Th17 core network LEM model

and dynamically rewired network structure matrix Z

Mechanistic ODE model and matrix Z

j Mechanism zj1 zj2 zj3 Rate param.

1 Basal activ. of BATF 1 1 1 0.115

2 Basal activ. of STAT3 1 1 1 9.620

3 Basal activ. of IRF4 1 1 1 0.097

4 Basal activ. of MAF 1 1 1 0.001

5 BATF activates STAT3 1 0 0 88.177

6 STAT3 activates BATF 1 0 0 1.021

7 STAT3 activates IRF4 1 1 0 1.900

8 IRF4 activates STAT3 0 0 1 9.249

9 IRF4 activates RORC 0 0 0 –

10 IRF4 activates MAF 0 1 0 0.043

11 STAT3 activates RORC 0 0 0 –

12 BATF activates RORC 0 0 1 0.035

13 STAT3 activates MAF 1 0 0 0.055

14 BATF activates MAF 0 0 0 –

15 BATF and IRF activate STAT3 0 0 0 –

16 BATF and IRF activate RORC 0 1 0 0.309

17 BATF and IRF activate MAF 0 0 0 –

18 MAF inhibits BATF 1 0 0 72.134

19 RORC inhibits MAF 0 0 0 –

20 Degrad. of BATF 1 1 1 0.546

21 Degrad. of STAT3 1 1 1 97.332

22 Degrad. of IRF4 1 1 1 0.422

23 Degrad. of RORC 1 1 1 0.145

24 Degrad. of MAF 1 1 1 0.078

Latent process

Parameter Value Allowed range

k1 1.016 [0.5, 3]

s1 4.018 [1, 8]

k2 0.500 [0.5, 3]

s2 12.976 [12.5, 30]

In the statistical model, the parameters a and b have the values, 0.0001 and

0.035, respectively.

i294 J.Intosalmi et al.

Deleted Text: ours
Deleted Text: ours
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: -
Deleted Text: ,


which essentially is the maximized log-likelihood that is evaluated

as a function of a fixed value p for the jth parameter (Kreutz et al.,

2013). The profile likelihood can be used to determine confidence

intervals for estimated parameter values given a fixed confidence

level (for details, see Kreutz et al., 2013; Meeker and Escobar,

1995). A flat parameter profile likelihood results in an infinite confi-

dence interval and, thus, indicates structural non-identifiability

(Kreutz et al., 2013). On the other hand, a confidence interval that

is constrained at one end and extends infinitely to another direction

indicates practical non-identifiability (Kreutz et al., 2013). Figure 5

shows the parameter profile likelihoods for the parameters of the

inferred Th17 LEM model. Most of the parameters are identifiable

but the basal transcription and degradation of STAT3 as well as two

STAT3 activating interactions (independent activation mechanisms

by BATF and IRF4) turn out to be practically non-identifiable.

However, this non-identifiability can presumably be avoided

through a simple reparameterization, for instance, with respect to

the degradation rate of STAT3 (for details about reparameteriza-

tion, see e.g. Raue et al., 2013).

All in all, running the LEM model inference for the Th17 RNA-

seq data confirms that the developed methodology provides a very

powerful formalism to analyze regulatory interactions in the pres-

ence of unknown latent processes that effectively correspond to dy-

namical rewiring of the regulatory network structure. The strengths

of our approach are further emphasized when the above results are

compared with the results that are obtained by running the forward-

backward-stepwise selection algorithm for the static Th17 network

(Fig. 6 and Table 4). The analysis with the static network supports

only three experimentally validated interactions and, further, the

model fitting against the time–course data is poor (Fig. 6).

5 Discussion and conclusions

In this study, we introduce a general methodology that enables us to

analyze and predict dynamically evolving regulatory networks using

mechanistic modeling. In the past years, statistical and computa-

tional approaches have been developed to infer dynamically evolv-

ing regulatory networks (see e.g. Dondelinger et al., 2013; Wang

et al., 2014) and, in the context of mechanistic models, methods to

infer input signals simultaneously with system parameters have been

developed (see e.g. Schelker et al., 2012). To our best knowledge,

general mechanistic modeling approaches to infer dynamically

evolving networks do not exist and, consequently, the methodology

that we present in this study is novel.

A central strength of the LEM model inference is that it can eas-

ily be applied to any dataset that is accompanied with some know-

ledge about the mechanistic interactions between the molecular

components. In this sense, the methodology, that we present in this

study, provides us with an out-of-the-box method that can be used

to obtain quantitative predictions about dynamically evolving regu-

latory mechanisms. Further, when applied as a first step analysis

method, the LEM model inference also serves as an excellent start-

ing point for further model refinement and, for instance, for the con-

struction of detailed mathematical or biophysical models. The LEM

model inference is beneficial especially if the molecular system of

interest contains several components and the exhaustive construc-

tion of detailed alternative models for mechanisms driving the dy-

namically evolving network structure is out of reach.
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Fig. 5. Parameter profile likelihood for the parameters of the inferred Th17

core network LEM model. The first five rows show the estimated profile likeli-

hoods for the rate parameters and the bottom row shows the estimated pro-

file likelihoods for the parameters of the latent process. The dashed red line

shows the 95% confidence threshold and the asterisk shows the maximum

likelihood estimate of the parameter when an unique value is available
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Fig. 6. The predicted network structure and the dynamics of the mRNA levels

obtained by running the forward-backward-stepwise selection algorithm for

the static network without rewiring (i.e. the matrix Z is reduced to a J � 1 vec-

tor which defines the static network structure). The inference algorithm is run

by using the same premises as in the above LEM model analysis for the same

Th17 RNA-seq data. The inset shows the predicted static interactions. The

predicted dynamics (gray lines) are plotted against the time–course data (red

circles)

Table 4. Inferred parameters for the Th17 core network using static

network structure

j Mechanism Rate parameter

1 Basal activation of BATF 0.122

2 Basal activation of STAT3 0.473

3 Basal activation of IRF4 0.011

4 Basal activation of MAF 0.001

7 STAT3 activates IRF4 4.069

16 BATF and IRF activate RORC 0.310

17 BATF and IRF activate MAF 12.214

20 Degradation of BATF 0.557

21 Degradation of STAT3 2.995

22 Degradation of IRF4 1.000

23 Degradation of RORC 0.501

24 Degradation of MAF 12.560

In the statistical model, the parameters a and b have the values, 0.0001 and

0.035, respectively.
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The construction of the LEM model is transparent and the LEM

extension can be applied to virtually any standard (stationary) ODE

model. Even though the modeling approach is fully general, an obvi-

ous challenge in its practical application is the related model ranking

problem over a large set of alternative models (i.e. over different net-

work structures for each latent state). In general, for the case of

standard stationary ODE models, the total number of network

structures is 2J. In the case of the LEM model, the total number of

network structures increases to 2J�M. An exhaustive search over all

possible model configurations can be carried out only for simple toy

systems but this limitation holds both the standard and the LEM

models. In this study, we explore the model space using the forward-

backward-stepwise selection. In practice, the forward-backward-

stepwise selection results in a heuristic search algorithm which

performs well in most cases but, on the other hand, there is no theor-

etical guarantee that the global optimum is always found. The pos-

sible sub-optimality of the search algorithm may be hard to detect,

especially if large networks are considered, and this naturally limits

the practical scalability of the LEM model inference and, as a matter

of fact, constrains also the scalability of the search over standard

ODE model structures. However, the practical scalability can be im-

proved, for instance, by means of probabilistic search algorithms

that explore the model space more efficiently. Thus, there is still

room for further development of the search algorithms that can be

used to calibrate the LEM model but these extensions are out of

scope of this study and we leave them for future studies.

The analysis that we carry out for T helper 17 cell differentiation

combines two major experimental studies that provide information

about the regulatory interactions steering the Th17 lineage commit-

ment. More precisely, we use the experimentally validated static

core network provided by Ciofani et al. (2012) and combine it with

the dynamic view on the regulatory interactions (Yosef et al., 2013)

using our novel methodology. We are the first ones to study the dy-

namically evolving Th17 regulatory network by means of mechanis-

tic modeling and our results are in line with the current

understanding about the detailed biochemical mechanisms. While

our methodology is here tested using the five-gene core Th17 net-

work, the proposed model can also easily be extended and used to

predict novel core genes or regulatory interactions for further ex-

perimental validation.

In summary, the latent effect mechanistic (LEM) model, which

we introduce in this study, provides us with a flexible yet rigorous

means to detect and analyze transient phenomena that affect the

wiring of molecular networks. In addition to introducing this novel

model class, we present a general statistical framework that can be

used to infer the model structure as well as the model parameters.
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