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A B S T R A C T

Purpose: This study aims to evaluate the potential of machine learning algorithms built with radiomics features
from computed tomography urography (CTU) images that classify RB1 gene mutation status in bladder cancer.
Method: The study enrolled CTU images of 18 patients with and 54 without RB1 mutation from a public database.
Image and data preprocessing were performed after data augmentation. Feature selection steps were consisted of
filter and wrapper methods. Pearson’s correlation analysis was the filter, and a wrapper-based sequential feature
selection algorithm was the wrapper. Models with XGBoost, Random Forest (RF), and k-Nearest Neighbors (kNN)
algorithms were developed. Performance metrics of the models were calculated. Models’ performances were
compared by using Friedman’s test.
Results: 8 features were selected from 851 total extracted features. Accuracy, sensitivity, specificity, precision,
recall, F1 measure and AUC were 84%, 80%, 88%, 86%, 80%, 0.83 and 0.84, for XGBoost; 72%, 80%, 65%, 67%,
80%, 0.73 and 0.72 for RF; 66%, 53%, 76%, 67%, 53%, 0.60 and 0.65 for kNN, respectively. XGBoost model had
outperformed kNN model in Friedman’s test (p ¼ 0.006).
Conclusions: Machine learning algorithms with radiomics features from CTU images show promising results in
classifying bladder cancer by RB1 mutation status non-invasively.
1. Introduction

Bladder cancer is the most common cancer in the urinary system.
It is in ninth place among all cancers [1]. Clinical staging and path-
ological grading systems have been widely used to evaluate patients
and decide the best treatment protocol. Muscular invasion is one of
the most critical clinical criteria for staging [2]. Tumors with
muscular invasion are considered advanced cancers prone to recur-
rence and metastasize. Advanced bladder cancers are recently treated
with neoadjuvant chemotherapy protocols before surgery [3].
Therefore, it is crucial to determine advanced bladder cancers
preoperatively.

Multiple gene mutations from different signal pathways were re-
ported in bladder cancers [4]. However, retinoblastoma-1 (RB1) gene
mutations cause alterations in the activity of the members of the reti-
noblastoma (RB) protein family (e.g., Rb, p107, and p130), leading to
advanced-stage bladder cancers with high recurrence and low survival
rates [5]. That oncogenic alteration leads to the failure of dephosphor-
ylation of RB protein, leading to failure of arrest in the mitotic cycle.
.
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Consequently, uncontrolled cell proliferation proceeds rapidly in an
aggressive process [6].

Radiomics is a rapidly emerging field in radiology that makes it
possible to analyze minimal differences between pixels and their relation
to each other, which are unseeable to the human eye [7]. With radiomics,
quantitative texture analysis of the tumors is being done by radiologists
[8]. Moreover, mining the radiomic data with machine learning algo-
rithms allows building various models to classify high-low-grade tumors
or accurately predict response to treatment.

This study evaluates the potential of machine learning-based models
that classify RB1 gene mutation status, with radiomics from computed
tomography urography (CTU) images in bladder cancer.

2. Material and methods

2.1. Ethics and data source

No ethical approval was needed for this study because the patients'
data were obtained from a freely available public dataset.
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Table 1. According to the Radiomics Quality Score, the strengths of this study are
as follows: (21 points).

Radiomics Quality Score

� Well documented image quality protocols. (Criteria-1, 1 point)

� Implementing a two-step feature reduction to reduce the risk overfitting. Using 5-fold
cross validation technic in the wrapper method also played individual role in reducing
the risk of overfitting. (Criteria-5, 3 points)

� Discussing the correlation of the radiomics models with a biological gene. (Criteria-7, 1
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From the Cancer Genome Atlas – Bladder Carcinoma (TGCA-BLCA)
database [9], cases with and without RB1 mutations were selected, and
their imaging data were downloaded from The Cancer Imaging Archive
(TCIA) for scientific purposes [10]. For better visualization of the tumor
in segmentation, CTU images of the dataset were enrolled. Cases without
CTU images, non-diagnostic images due to various artifacts, and patients
with multiple tumors were excluded. Radiomics workflow is summarized
in Figure 1. The methodological quality of the workflow based on the
Radiomics Quality Score [8] is assessed in Table 1.
Figure 1. Radiomics workflow is presented. GLDM: Gray-level dependence ma-
trix, GLCM: Gray-level co-occurrence matrix, GLRLM: Gray-level run-length matrix,
GLSZM: Gray-level size zone matrix, NGTDM: Neighboring gray-tone differ-
ence matrix.

point)

� Reporting discrimination analysis with using cross-validation/bootstrapping (used
within some of the algorithms) technic as well. (Criteria-9, 2 points)

� Reporting calibration statistics with using cross-validation/bootstrapping (used within
some of the algorithms) technic as well. (Criteria-10, 2 points)

� The models’ performances were validated using an independent test set that was created
by splitting the main data from multiple centers. (Criteria- 12, 5 points)

� The gold standard of the study was histopathological and genomic examinations which
were included in TGCA-BLCA database. The models’ performances were evaluated ac-
cording to the results of the gold standard. (Criteria-13, 2 points).

� Discussing the clinical implementations of models in the future. (Criteria-14, 2 points)

� Using an open-source data. Since the data was freely accessible, medical images can be
downloaded from The Cancer Imaging Archive. The project IDs of the patients from each
group can be found in the TCGA-BLCA project, are also shareable upon request to the
corresponding author. The segmentation labels and radiomics features dataset are also
shareable upon request to the corresponding author. (Criteria-16, 3 points)
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2.2. CT acquisition parameters

Since the TGCA-BLCA project consisted of multicenter data, scanning
parameters were mean slice thickness: 3.31mm (IQR 2.37–5), mean mAs:
155 mAs(IQR 84–216), and mean kV:120 kV(IQR 120-120). The images
consisted of 11 and 14 different scanners from four vendors as RB1-
mutated and non-mutated patients, respectively. To minimize the dif-
ferences, the images have undergone multiple image preprocessing steps.
The range between contrast delay time was 10 min-35min.

2.3. Segmentations

Two radiologists, one who has more than twenty years of experience
in abdominal radiology the other one is a fourth-year radiology resident,
have manually segmented the largest cross-sectional area of the tumor in
CTU images in the 2D plane by using freely accessible 3D Slicer software
(v.4.10.2) with consensus. To avoid high-density contrast material in the
region of interest (ROI), 2mm shrinkage was applied in every segmen-
tation label (Figure 2). For data augmentation to remove the imbalance
between groups, one slice above and below of the tumor's largest cross-
sectional area was also segmented in the RB1 mutation group.
Segmented labels were shared in the corresponding author’s github re-
pository (https://github.com/okanince/HELIYON-OkanInce).

2.4. Image preprocessing and feature extraction

Images were normalized with the �3 sigma technique for pre-
processing steps [11]. Then, pixels were rescaled to 1� 1mm2 with cubic
B-spline interpolation method, and gray-levels were discretized with a
fixed bin width of 3 [12]. An optimal bin-width value was selected to
keep total bins between 10-100.

Six separate feature subgroups were extracted from the original and
wavelet filtered images using PyRadiomics [13], a built-in extension
pack in 3D Slicer software. A detailed list of the extracted features was
included in Table 2.

2.5. Data preprocessing and feature selection

Data preprocessing steps were observed for the stability and reli-
ability of machine learning algorithms. All the data were standardized
and discretized to 18 bins with a uniform bin width. The dataset was split
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Figure 2. 2D segmentation of tumor from anterior bladder wall in the preprocessed image is presented.
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to train and test sets with a ratio of 70/30. To avoid the injection of the
train set to the test set, the data splitting process was performed before
data augmentation. Consequently, a patient-based dataset splitting was
ensured.

Feature selection is an essential step for building machine learning
algorithms. Hence, exceeding the number of features in the model can
cause overfitting bias [14]. To avoid that and reduce the multidimen-
sional model input, we have followed two feature selection steps, the
filter method, and the wrapper method, respectively.

In the filter method, features having high collinearity in Pearson's
correlation analysis were excluded. The r threshold was selected as 0.7
[15]. The remaining features were the input of the second step. A
wrapper-based sequential feature selection algorithm was built with
backward propagated 5-fold cross-validation. The learning classifier was
chosen as XGBoost with default hyperparameters [16, 17, 18, 19]. The
wrapper method evaluates multiple models by including or excluding
features in the wrapper-based sequential feature selection to reach the
best feature combination. In the backward propagation, which the cur-
rent study uses, the initial model is built with all features and validated
by 5-fold cross-validation. Subsequent models were evaluated by
excluding one of each feature respectively. The most relevant features
were determined after multiple evaluations. Using cross-validation
technique important features were selected utilizing only training
folds. Thus, the “double-dipping” phenomenon was avoided [20].
3

Moreover, since the data were split to train and test sets before, as
mentioned above, the test set was not used in any part of the feature
selection.

2.6. Machine-learning algorithms based classification

The selected final features were used in the machine learning models.
Three models were built by coding in python language (3.7.11). The first
model’s classifier was selected as XGBoost with hyperparameters of
maximum estimators, learning rate, gamma, subsample ratio of columns
by tree, and maximum depth as 200, 0.03, 0.3, 1, and 7, respectively.
Second, the Random Forest (RF) classifier was selected with the hyper-
parameters of a number of estimators, criterion, maximum depth, mini-
mum samples in leaf, minimum samples to split, and maximum features
as 200, "entropy,"," 6, 2, 3 and "none", respectively. Third, a k-Nearest
Neighbors (kNN) classifier was selected with the hyperparameters of the
number of neighbors, weights, algorithm, power parameter, and distance
metric as 6, "uniform,"," "auto," 3 and "Minkowski.” The grid search al-
gorithm tuned the hyperparameters of the models with 10-fold cross-
validation by using the train set. The models were trained with the
train set, and the test set evaluated their performances. Accuracy,
sensitivity, specificity, precision, recall, F1 measure (a harmonic calcu-
lation of precision and recall), and area under the receiver operating
characteristics curve (AUC) were calculated. The models' performances



Table 2. Total features extracted from original and wavelet filtered images. (GLDM: Gray-level dependence matrix, GLCM: Gray-level co-occurrence matrix, GLRLM:
Gray-level run length matrix, GLSZM: Gray-level size-zone matrix, NGTDM: Neighboring gray-tone difference matrix).

Shape First Order GLDM GLCM GLRLM GLSZM NGTDM

Voxel Volume Interquartile Range Gray Level Variance Joint Average Short Run Low Gray
Level Emphasis

Gray Level Variance Coarseness

Maximum 3D
Diameter

Skewness High Gray Level
Emphasis

Sum Average Gray Level Variance Zone Variance Complexity

Mesh Volume Uniformity Dependence Entropy Joint Entropy Low Gray Level Run
Emphasis

Gray Level Non
Uniformity
Normalized

Strength

Major Axis Length Median Dependence Non
Uniformity

Cluster Shade Gray Level Non
Uniformity
Normalized

Size Zone Non
Uniformity
Normalized

Contrast

Sphericity Energy Gray Level Non
Uniformity

Maximum
Probability

Run Variance Size Zone Non
Uniformity

Busyness

Least Axis Length Robust Mean
Absolute Deviation

Small Dependence
Emphasis

Idmn Gray Level Non
Uniformity

Gray Level Non
Uniformity

Elongation Mean Absolute
Deviation

Small Dependence High
Gray Level Emphasis

Joint Energy Long Run Emphasis Large Area Emphasis

Surface Volume Ratio Total Energy Dependence Non
Uniformity Normalized

Contrast Short Run High Gray
Level Emphasis

Small Area High Gray
Level Emphasis

Maximum 2D
Diameter Slice

Maximum Large Dependence
Emphasis

Difference Entropy Run Length Non
Uniformity

Zone Percentage

Flatness Root Mean Squared Large Dependence Low
Gray Level Emphasis

Inverse Variance Short Run Emphasis Large Area Low Gray
Level Emphasis

Surface Area 90 Percentile Dependence Variance Difference Variance Long Run High Gray
Level Emphasis

Large Area High Gray
Level Emphasis

Minor Axis Length Minimum Large Dependence High
Gray Level Emphasis

Idn Run Percentage High Gray Level Zone
Emphasis

Maximum 2D
Diameter Column

Entropy Small Dependence Low
Gray Level Emphasis

Idm Long Run Low Gray
Level Emphasis

Small Area Emphasis

Maximum 2D
Diameter Row

Range
Variance
10 Percentile
Kurtosis
Mean

Low Gray Level Emphasis Correlation
Autocorrelation
Sum Entropy
MCC
Sum Squares
Cluster Prominence
Imc2
Imc1
Difference Average
Id
Cluster Tendency

Run Entropy
High Gray Level Run
Emphasis
Run Length Non
Uniformity
Normalized

Low Gray Level Zone
Emphasis
Zone Entropy
Small Area Low Gray
Level Emphasis
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were compared with Friedman’s test in SPSS v.23 (IBM Corp, Armonk,
NY, USA) [21]. Post-hoc pairwise analysis was performed if a significant
difference was found. The threshold of the statistical significance was set
as 0.05.

3. Results

3.1. Data source

There were 78 patients with RB1 mutation and 334 without RB1
mutation of 412 in the TCGA-BLCA dataset. Images from 28 patients with
RB1 mutation and 82 patients without RB1 mutation were available in
TCIA. After exclusions, CTU images from 18 and 54 patients with and
without RB1 mutation, were enrolled in the study. After data augmen-
tation, 54 labeled data from both groups were in the study. Patients'
demographics are described in Table 3.

3.2. Feature extraction and selection

In total, 851 features were extracted (14 shape-based, 18 first order,
14 gray-level-dependence matrix (GLDM), 24 gray-level co-occurrence
matrix (GLCM), 16 gray-level run-length matrix (GLRLM), 16 gray-level
size-zone-matrix (GLSZM), five neighboring gray-tone difference matrix
(NGTDM) and 744 wavelet derived texture features).

In Pearson's correlation analysis, 95 non-redundant features were
selected. After the wrapper-based sequential feature selection step, the
4

selected features were reduced to 12. Details of the selected features are
included in Table 4 and Figure 3.

3.3. Machine-learning algorithms based classification

XGBoost, RF, and kNN models classified RB mutation status with
accuracy rates of 84%, 72%, and 66%, respectively. Sensitivity, speci-
ficity, and AUC were 80%, 88% and 0.84 for XGBoost; 80%, 65% and
0.72 for RF; 53%, 76% and 0.65 for kNN. Detailed performance metrics
and confusion matrices are shown in Table 5. In Friedman’s test, the
XGBoost model showed better performance score than kNN model (p ¼
0.006). There was no statistically significant difference between perfor-
mances of RF - kNN and RF – XGBoost models in posthoc pairwise
analysis (p ¼ 0.54, 0.25, respectively). The calibration plot of the models
is shown in Figure 4.

4. Discussion

This study has evaluated machine learning-based models in classi-
fying RB1 mutation presence from CTU images of bladder cancer. Three
different models were built, and each of them achieved discriminative
AUC scores. Achieving those scores from three different models indicates
the feasibility of the machine learning models in RB1 mutation classifi-
cation. According to these results, machine learning-based models would
be utilizable for detecting RB1 mutation preoperatively in bladder
cancer.



Table 3. Demographic characteristics of included patients by their RB1 mutation
status.

with RB1 mutation without RB1 mutation

Age (mean � SD) 69.1 � 7.5 69.1 � 11

Sex (female/male) 4/14 14/40

Scanner (Vendor/Model) 4/11 4/14

RB1: Retinoblastoma – 1 gene.

Table 4. Selected features after both filter and wrapper methods.

Feature
Label

Image Type Feature Class Feature Name

TexF1 wavelet-HLL GLDM Dependence
Entropy

TexF2 wavelet-LHL FIRST ORDER Maximum

TexF3 wavelet-LHH GLRLM Low Gray Level
Run Emphasis

TexF4 wavelet-LHH GLSZM Gray Level Variance

TexF5 wavelet-LHH GLSZM High Gray Level
Zone Emphasis

TexF6 wavelet-LLH FIRST ORDER Energy

TexF7 wavelet-LLH GLSZM Gray Level Variance

TexF8 wavelet-LLH NGTDM Strength

TexF9 wavelet-HHH FIRST ORDER Skewness

TexF10 wavelet-HHH GLSZM Gray Level Non
Uniformity

TexF11 wavelet-LLL GLCM Correlation

TexF12 original GLCM Correlation

L: Low, H: High, GLDM: Gray-level dependence matrix, GLRLM: Gray-level run-
length matrix, GLSZM: Gray-level size-zone-matrix, NGTDM: Neighboring Gray-
tone difference matrix, GLCM: Gray-level co-occurrence matrix.
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In the literature, radiomics with texture analysis has been studied in
bladder cancer on differentiating low-grade and high-grade tumors [22,
23, 24] and tumors with the status of perivesical infiltration [25], pre-
diction of disease-free survival [26], recurrences [27, 28], and response
to the treatment [29]. Any gene mutation dedicated study could not be
seen in the literature. To our knowledge, this study is the first that
evaluates machine learning models’ performances in the classification of
bladder cancer by RB1 gene mutation status.

Histopathological examination of cystoscopic punch biopsy is the
gold standard in the staging of bladder cancers. However, this procedure
Figure 3. Correlation matrix of selected features are shown in the hea

5

is invasive, requires hospitalization, and has challenges such asbiopsy
specimen inadequacy and sampling error [30, 31]. Our study shows that
machine learning-based models may contribute to the diagnosis preop-
eratively and non-invasively. Furthermore, it would be possible for pa-
tients to preoperatively benefit from rapidly developing precise medicine
applications [32], which target the cyclin-dependent kinase (CDK) 4/6
pathway. There are currently promising new immunotherapy and vac-
cine trials targeting different molecular oncogenesis pathways in bladder
cancer in the literature [33, 34, 35]. Considering these novel applica-
tions, determining the RB1 gene mutation directly at low cost and
non-invasively would be pivotal in clinical practice.

Our study has several limitations. Firstly, this is a retrospective
study, and all the data were obtained from previous recordings that
could lead to a selection bias. Secondly, the patient population was
small, and there was an imbalance between groups. Class imbalance is
an issue for most machine learning algorithms that run around the
assumption that all the classes are distributed equally. In such a case,
models tend to predict in favor of the majority class. Data augmentation
is a proven technique that can be used for preventing the imbalance
between the classes or reducing the risk of overfitting where the number
of samples is small [36]. Using various synthetic oversampling methods
like Synthetic Minority Over-sampling (SMOTE) and Adaptive Synthetic
(ADASYN) oversampling algorithm would be more timesaving [37, 38].
However, that would have caused the majority of the data to be
synthetic.

For this reason, the authors performed multiple segmentations from
the actual images of the minority class. Thirdly, two radiologists
segmented the tumors in consensus to increase the segmentation accu-
racy. Therefore, interobserver analysis in segmentation could not be
done. Fourthly, segmentations were done in the largest slice of the tumor
in a 2D plane. Volumetric segmentation could represent the tumor better
but requires an exceeding amount of time to perform [39]. Also, most of
the studies in the literature are based on 2D segmentation. Several
automated segmentation software is being used in the studies in the
literature [40]. The authors acknowledge that they are currently in the
development process of automated segmentation software for the
bladder. Using such software, volumetric segmentations could have been
performed more effortlessly and faster in the future. Fifthly, the
TGCA-BLCA dataset consisted of various scanners from different centers
with different protocols. Although it is essential since that represents
clinical practice, this multiplicity may be challenging for machine
learning algorithms. However, similar results from different models show
the importance and necessity of image and data preprocessing steps.
Lastly, we split the dataset to train and test sets that caused the models to
tmap. None of the features are correlated to each other (r < 0.7).



Figure 4. Calibration plot of three algorithms is shown. Each of the algorithms has better calibration, especially in higher probabilities.

Table 5. Performance metrics and confusion matrices of three algorithms.

Accuracy Sensitivity Specificity Precision Recall F1 AUC TP/FP TN/FN

XGBoost 84% 80% 88% 86% 80% 0.83 0.84 12/2 15/3

RF 72% 80% 65% 67% 80% 0.73 0.72 12/6 11/3

kNN 66% 53% 76% 67% 53% 0.60 0.65 8/4 13/7

RF: Random forest, kNN: k-Nearest Neighbors, AUC: Area under receiver operator characteristics curve, TP: True positive, FP: False positive, TN: True negative, FN:
False-negative.
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test with smaller data sets. It is needed to test the models with larger
datasets from external centers.

In conclusion, machine learning-based models with radiomics from
CTU images show promising results in classifying bladder cancer by their
RB1 gene mutation status non-invasively. Nevertheless, further studies
with larger datasets are needed to test the models from external centers
before their clinical use. Radiomics will have great potential when
combined with artificial intelligence techniques like machine learning in
the future.
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