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Abstract: Computational clustering methods help identify functional modules in protein–protein interaction (PPI) network, in
which proteins participate in the same biological pathways or specific functions. Subcellular localisation is crucial for proteins to
implement biological functions and each compartment accommodates specific portions of the protein interaction structure.
However, the importance of protein subcellular localisation is often neglected in the studies of module identification. In this study,
the authors propose a novel procedure, subcellular module identification with localisation expansion (SMILE), to identify super
modules that consist of several subcellular modules performing specific biological functions among cell compartments. These
super modules identified by SMILE are more functionally diverse and have been verified to be more associated with known
protein complexes and biological pathways compared with the modules identified from the global PPI networks in both the
compartmentalised PPI and InWeb_InBioMap datasets. The authors’ results reveal that subcellular localisation is a principal
feature of functional modules and offers important guidance in detecting biologically meaningful results.

1 Introduction
Protein–protein interaction (PPI) resources are invaluable for
proteomic and network related analysis, which have provided great
insights for the mechanistic understanding of human diseases and
drug design [1–9]. Computational clustering methods help identify
functional modules in PPI networks since proteins usually cluster
together to participate in the same biological pathways or specific
functions [10–14]. However, cell compartmentalisation is
overlooked by previous standard procedures, despite a large
number of exciting results emerging from analyses at the global
cellular level [15–18]. In fact, eukaryotic cells are composed of
several subcellular compartments that enable the cell to implement
various metabolic activities simultaneously, and proteins need to
target appropriate compartment to interact with each other and to
form compound functional complexes in the signalling pathways
for specialised biological processes and functions [19, 20].

Cell compartmentalisation, the formation of cellular
compartments, is physical and a vital regulator of several main
biochemical processes in eukaryotic cells, which assign certain
biomolecules in different partitions of the cell. Several properties
and characteristics like intracellular pH and enzyme systems
distinguish one compartment from the others [21]. Many works
have observed that the interactions and functions of proteins are
closely related to their localisation in the cell [22]. More
importantly, localising in common compartments is of vital
importance for proteins to interact with each other, at least
transiently or conditionally. Accumulated experimental evidence
suggested that translocation is an efficient regulation mode in cells
and erroneous localisation may lead to disorders or even diseases
[23, 24]. For instance, a transcription factor P53 may be located to
a nucleus to promote transcription of certain genes and thereby
activating autophagy program upon stimulation, a cellular process
of self-eating [25–28]. In contrast, when targeting at cytoplasm,
however, P53 plays an opposite role as a master repressor of the
autophagy program [29, 30]. Moreover, localisation-based
modulation can change cellular program completely. For instance,
the protein ATG5 is involved in several cellular processes including
autophagy and apoptosis. The two cellular programs can be
switched as the localisation of ATG5 changes between
mitochondria and cytoplasm [31]. These common examples in
experimental biology cannot be fully figured out through analysing

the global cellular network without a comprehensive study of
analysing the localisation compartmentalised subnetworks.
Therefore, identifying modules consisting of closely interacted
proteins localised in a specific compartment is expected to generate
more biologically meaningful results, as cells can naturally be
decomposed into several compartments.

In the meanwhile, several algorithms have been designed for
the identification of protein complexes in the bioinformatics
community, although none of them take the cell
compartmentalisation into consideration. ClusterONE (Cluster with
Overlapping Neighbourhood Expansion) [16] strives to discover
not only densely connected clusters with comparable accuracies
but also possibly overlapping clusters. It executes a greedy growth
algorithm to cluster networks from small seeds supervised by a
fitness function concentrating on the cluster separability, which is
formulated by the ratio between the number of internal interactions
of a cluster and the number of all interactions linking the cluster.
Then each generated cluster is statistically evaluated by a
probability using Monte Carlo random interaction number of the
clusters. Another clustering algorithm focusing on the explicit
topological structure of protein complexes is finding low-
conductance sets with dense interactions (FLCD) [32], a two-step
algorithm considering both the internal and external connectivity of
protein complexes. It first detects clusters with high separability
and then the clusters with high edge density are detected as protein
complexes. By mimicking Markovian random walk on networks,
several other clustering algorithms were also developed, such as
Markov Clustering (MCL), regularized Markov Clustering (R-
MCL), and soft regularised Markov Clustering (SR-MCL) [12, 33].
MCL simulates many stochastic flows within a network by making
the strong flows stronger and the weak ones weaker. After multiple
iterations, the identified cluster come out with strong internal flows
and separated by the boundary with no flows [33]. R-MCL, an
improved version of MCL which is more accurate and less time
consuming, scales much better to moderate sized networks by
penalising the large clusters at each iteration. However, both R-
MCL and SR-MCL can only identify non-overlapped clusters. To
address this problem, another method SR-MCL was developed to
achieve overlapped clusters by executing R-MCL multiple times
[12].
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Additionally, it is worth pointing out that proteins are
interacting spatially to form a dynamic cellular network. Some
proteins are localised in multiple compartments and may not
directly interact with each other in the same compartment, but they
still work towards similar cellular functionalities and hence should
belong to the same modules. For instance, transmembrane receptor
proteins tend to interact with cytoplasmic proteins as well as with
extracellular ligands in signal transduction cascades [34]. Hence,
highly overlapped protein modules, either from the same or
different compartments, need to be merged to achieve the final
super modules.

In this study, we introduce a novel procedure, subcellular
module identification with localisation expansion (SMILE), to
identify subcellular modules from each cell compartment with
localisation extension. Theoretically, the identified super modules
engage interactions with high confidence. Experimentally, our
results demonstrate that SMILE outperforms the conventional
clustering method with respect to protein complex detection and
biological pathway annotation, especially for the novel modules
exclusively identified by SMILE.

2 Material and methods
2.1 Datasets

Two human PPI networks, ComPPI v1.1 [24] and InWeb_
InBioMap 2016_09_12 [15], were employed to identify the
functional modules in this study. ComPPI (compartmentalised PPI)
is an online database which provides qualitative information on
both the interactions among proteins and their localisations. With
experimental evidence, the interactions in ComPPI are collected
from nine high-quality PPI databases, i.e. the Drosophila
Interactions Database (DroID), the Human Protein Reference
Database (HPRD), the Matrix Database (MatrixDB), the Munich
Information Center for Protein Sequences (MIPS), the Biological
General Repository for Interaction Datasets (BioGRID), the Center
for Cancer Systems Biology (CCSB), the Database of Interacting
Proteins (DiP), the IntAct Molecular Interaction Database (IntAct),
the Molecular INTeraction Database (MINT). We excluded the
biological unlikely interactions with interaction scores <0.8,
resulting in 16,053 proteins and a total of 193,691 corresponding
interactions among six major cellular compartments, i.e. nucleus,
cytosol, mitochondrion, secretory-pathway, membrane, and the
extracellular compartment. The major compartments were defined
in the ComPPI database, among which several minor secretory
organelles are combined into one major compartment ‘secretory-
pathway’, including Golgi apparatus, endoplasmic reticulum,
endosome, peroxisome, lysosome, vacuole, and vesicles. The
subcellular localisation annotations are coming from both
experiments and computational predictions. The same as Veres et
al., localisation score is used to measure the probability of
localisation for each protein, depending on the evidence type
(experimental or predicted) and the number of sources. Only
proteins with a high localisation score (>0.8) are retained for
further study.

InWeb_InBioMap, or simply InWeb_IM for short, is the largest
dataset of human PPIs at present. It has an extremely large
coverage of PPIs (more than half a million) that are retrieved from
eight orthology PPI datasets. 57% of the interactions have
experimental evidence and the others were computational
predicted. Similar to Veres et al. [24] suggested we assigned the
localisation information to proteins and interactions by calculating
the localisation score and interaction score, respectively. The
interaction score distribution of ComPPI shows a majority of
interactions score higher than 0.8 as shown in Figure S1, so we can
end up with the same results with other thresholds less than it.

To evaluate the performance of SMILE on protein complex
detection, we estimated the identified modules with two golden
standards of a protein complex, i.e. a comprehensive resource of
mammalian protein complexes and Protein Complex Database with
a Complex Quality Index (PCDq) [35–37]. The latest versions of
them were used and only protein complexes including five or more
members were considered for further study.

To examine whether the identified modules are biologically
meaningful, we used four pathway resources, Kyoto Encyclopedia
of Genes and Genomes (KEGG) [38, 39], Protein ANalysis
THrough Evolutionary Relationships (PANTHER) [40, 41],
BioCarta (https://cgap.nci.nih.gov/Pathways /BioCarta_Pathways),
and Reactome [42, 43], as the golden standards for function
prediction. Pathway annotations of PANTHER were obtained from
PANTHER Pathway 3.4.1 and the other data were collected from
the curated gene sets of Molecular Signatures Database (MSigDB
v5.2) [44, 45].

2.2 Global module identification

We used ClusterONE [16] to identify modules from the entire PPI
network. ClusterONE strives to discover not only densely
connected clusters with comparable accuracies but also possibly
overlapping regions within a given network, a distinct advantage of
ClusterONE. It plugs in Cytoscape [46] and executes a greedy
growth algorithm to cluster networks from small seeds supervised
by a fitness function. Each generated cluster is evaluated by a
cohesiveness score, which is a ratio of the practical interaction
number over the theoretical interaction number of the cluster,
measuring how likely is a group of proteins to be a module (or
cluster separability) [16]. Let V denote a cluster in the PPI network,
win(V) denotes the number of interactions contained within the
cluster, wbound(V) denotes the number of interactions coming out of
the cluster, and p |V | is a penalty term aiming to model the
uncertainty of unchecked interactions in the PPI network, the
cohesiveness of V is defined as follows:

f V =
win(V)

win V + wbound V + p |V |
(1)

In this study, we used the default function parameters of
ClusterONE and only the identified clusters with a size larger than
ten were considered as modules, as small modules are usually more
factorisable [47]. These clusters were defined as global modules
since they were identified in the entire PPI network instead of the
compartmentalised subnetworks.

2.3 Super module identification

As shown in Fig. 1, the procedure of SMILE works in three steps:
first, constructing subcellular networks based on localisation
annotation; second, identifying clusters with high cohesiveness
from each subnetwork; and third, combining highly overlapped
clusters.

(i) Subnetwork construction: Suppose the input PPI network is
G = (P, E), where P is the set of proteins and E is the set of
interactions among proteins. Each protein P is annotated to one or
more than one compartment. Based on the information of protein
subcellular localisation, we extract subnetworks where proteins are
localised in an identical compartment. For compartment Ci, we can
define its corresponding subnetwork to be Gi = (Pi, Ei), where Pi is
the subset of proteins in the compartment Ci and Ei is the subset of
interactions in the compartment Ci.
(ii) Module identification in each subnetwork: Calculate the
cohesiveness of f (Vi) (see (1)) in compartment Ci using
ClusterONE, where Vi is the clusters in the subnetwork of Ci.
(iii) Merging: The highly overlapped modules identified from
different subcellular networks are merged together to generate
super modules. Let A and B represent two clusters of proteins from
different subnetworks, respectively. Their similarity is measured by
an overlap score, which is defined as

ω A, B =
|A ∩ B|2

|A | |B|
(2)

where |A| and |B| are the sizes of the two clusters, respectively, and
|A ∩ B| is the number of the overlapping proteins annotated with
both subcellular locations.
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Lastly, we combine subcellular modules identified from
different subnetworks. Other than the module compartment, the
proteins may localise in some other compartments, considering the
multi-localisation property of proteins. We first calculate the
overlap scores for each pair of subcellular modules and constructs
an adjacency matrix in which each row (or column) represents a
module. Two modules are overlapped if the overlap score is larger
than a given threshold ω0. The threshold is set as 0.5 by default,
which implies >70% of the members of the two modules being
compared are overlapped if they have the same size. Then, we
create a graph from the adjacency matrix and split it into connected
subgraphs (or components) using depth-first search, where nodes
correspond to modules and edges denote the overlapping
relationship among all modules. Finally, the modules in each
subgraph are merged together and defined as a super module.
Mathematically, the procedure of SMILE is also shown in the box
of algorithm (see Fig. 2). The identified super modules are
essentially all connected components of subcellular modules. 

2.4 Section headings

To evaluate the performance of SMILE, we used three quality
measurements [11, 13, 16] to compare the results of golden
standard complexes with the global modules (modules found using
ClusterONE), the super modules (modules found by our method
SMILE), and novel modules (modules in a super module but do not
in global module). Given r predicted and s reference complexes, let
ti j denote the number of proteins that exist in both predicted
complex i and reference complex j, vi and wj represent the number
of proteins in predicted complex i and reference complex j,
respectively. Then the three measurements, Sn (sensitivity), PPV
(positive predictive value), and Acc (accuracy), are defined as
follows:

Sn =
∑ j = 1

s maxi = 1, …r ti j

∑ j = 1
s

wj

(3)

PPV =
∑i = 1

r max j = 1, …s ti j

∑i = 1

r ∑ j
s
ti j

(4)

Acc =
∑ j = 1

s maxi = 1, …r ti j

∑i = 1

r
vi

(5)

Essentially, Acc is the geometric mean of Sn and PPV. Using the
three measurements, we evaluated the global modules, super
modules and novel modules with two reference sets CORUM and
PCDq (see Section 2.1), respectively.

2.5 Evaluation of module biological relevance

The hypergeometric test was adopted to evaluate whether a
module, M, is overrepresented within a biological pathway, X. The
probability of observing at least t proteins annotated by X with size
T is defined as

P = ∑
i = t

n

N − T

n − i

T

i

N

n

(6)

where N is the total number of proteins in the given PPI network
and n is the size of the module M. The outputting P value is then
adjusted by the Benjamini & Hochberg method for false discovery
rate control. The pathway is said to be enriched in the module M at
a significance level if the adjusted P < 0.05.

The overrepresentation score (ORS) [13, 16] was used to
evaluate the biological relevance of the identified modules in
pathways. We say a module is biologically meaningful if it is
significantly enriched in any biological pathway. Given a set of
identified modules, ORS is calculated as the ratio of the number of
biologically meaningful modules over the size of the module set,
given as

ORS =
∑i

U sgn ∑ j
V sgn Pcutoff − PMiX j

− 1

U
(7)

where U is the total number of identified modules and V equals the
number of pathways. PMiX j

 represents the adjusted P value for
module M and pathway X, while Pcutoff represents the threshold of
the P value of hypergeometric test. ORS ranges from 0 to 1, where
1 represents the case that all the identified modules are
significantly associated with reference pathways.

3 Results
3.1 Super modules and novel modules

We used ClusterONE to predict functional modules from the
ComPPI network. As shown in Fig. 3, a total of 115 modules are

Fig. 1  Flowchart of the main steps for super module identification
 

Fig. 2  Algorithm: SMILE procedure
 

IET Syst. Biol., 2018, Vol. 12 Iss. 2, pp. 55-61
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

57



identified and defined as global modules. Using SMILE, on the
other hand, we identified 89, 98, 11, 11, 18, and 16 individual
modules from nucleus, cytosol, mitochondrion, secretory-pathway,
membrane, and extracellular, respectively. These subcellular
modules were then merged to generate super modules with larger
size if they share substantial module members (see Methods and
Figure S2). Eventually, we obtained 139 super modules and 28 out
of them have no functional overlap with the global ones (overlap
score <0.25). For simplicity, hereafter the super modules not
functionally overlapped with the global modules were called as
novel modules. Likewise, the modules involved in the global
module set but not included in the super module set are defined as

global unique modules. For the InWeb_IM network, as shown in
Figure S3, 261 super modules and 158 global modules were
captured using SMILE and ClusterONE, respectively. Among the
super modules, around one-third of them (82) are novel modules.
Note that here the overlap score threshold ω0 is set as 0.5 by default
since we have no preference to merge the modules with high or low
overlap for the human PPI datasets. However, for species with
quite complete PPI networks, such as yeast, a threshold of 0.75 is
suggested to guarantee only highly overlapped modules are
merged. Additionally, a series of the overlap score thresholds were
used to study the parameter sensitivity of ω0. Please refer to
Supplementary Table S2 for more details. 

3.2 Performance comparison for protein complex
identification

We found SMILE outperforms the conventional procedure of
ClusterONE based on two protein complex reference sets,
CORUM and PCDq, on two PPI networks ComPPI and
InWeb_IM. Three measurements, Sn, PPV, and Acc, were used to
assess the quality of the identified module sets with respect to
protein complex prediction. As shown in Fig. 4, it is clear that the
super modules generated by SMILE have the highest Acc score
and cover more proteins clustered into the reference complexes or
modules on both networks. For the ComPPI network, SMILE
consistently gets higher Sn and Acc scores based on both
references and can identify a comparable proportion of matched
complexes in CORUM. Although ClusterONE has a higher PPV
than SMILE when using PCDq as the golden standard, SMILE is
able to detect more matched protein complexes (76 versus 68,
Table S1). For the InWeb_IM network, we can achieve the similar
result for the performance of SMILE, which consistently achieves
the highest scores of Sn and Acc and a comparable PPV. Strikingly,
the exclusively identified novel modules tend to match more
protein complexes from both CORUM and PCDq. In particular,
0.3701 and 0.4139 of the novel modules are highly associated with
reference complexes from CORUM and PCDq, respectively,
whereas the figures are only 0.2885 and 0.3820 for the ClusterONE
unique modules. It makes an opposite result in the ComPPI dataset
for PPV instead, the reason might be that the coverage of ComPPI
is much lower than InWeb_IM and therefore a larger number of
unpredicted interactions have yet to be addressed. For more details
please refer to Table S1. 

The ORSs (see (7)) are calculated for the three types of modules
of the two networks, respectively, among four pathway resources,
KEGG, PANTHER, BioCarta, and Reactome. The composite score
is the sum of ORS for the four resources.

3.3 Performance comparison for biological pathway
annotation

Then, we examined the biological relevance of the detected
modules by performing overrepresentation analysis of pathway
associations. As shown in Table 1, super modules, especially the
novel ones, consist of more proteins in the biological pathways on
all the four resources on both PPI networks of ComPPI and
InWeb_IM. Specifically, in ComPPI, 106 out of 139 super modules
(76.26%) are significantly over represented in the KEGG
pathways, while this number is dropped to 83 (72.17%) for the
modules identified using ClusterONE. For the novel identified
modules, 75% of them are significantly enriched in the KEGG
pathways, which is also higher than the figure of global modules
and its unique subset. In particular, Fig. 5 illustrates the KEGG
pathway, ‘SNARE interactions in vesicular transport’ (hsa04130),
comprise a significant proportion of proteins that are predicted as
members of super modules. Specifically, the proteins in two super
modules, module 26 and module 51, were mapped to the KEGG
pathways [38, 39] using the KEGG Mapper facility (http://
www.genome.jp/kegg/mapper.html). The proteins involved in
modules 26 and 51 are marked in yellow and red, respectively,
while proteins contained in both modules are marked in orange. It
is clear that all the members of module 26 and six proteins in
module 51 are the important components of the KEGG PATHWAY:

Fig. 3  Overview of the module numbers and the comparison between
super modules and global modules in ComPPI
(a) Number of identified subcellular modules (243), super modules (139), and global
modules (115), (b) Heatmap of the overlap scores between super modules and global
modules. It is essentially an adjacent matrix between the two module sets, in which red
represents high score while blue represents low score, (c) Venn diagram for the super
modules and global modules. The super modules involve 28 novel modules and the
global modules contain seven unique modules

 

Fig. 4  Performance of the protein complex prediction. Two PPI networks
and two complex references were used for evaluation
(a) Results using ComPPI network and CORUM reference, (b) Results using ComPPI
network and PCDq reference, (c) Results using InWeb_IM network and CORUM
reference, (d) Results using InWeb_IM network and PCDq reference. Sn, sensitivity;
PPV, positive predictive value; Acc, accuracy
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hsa04130, despite the size of the two modules are merely 10 and
15. Strikingly, module 26 is a novel module that is exclusively
identified using SMILE, implying its powerful ability in mining
pathway relevant information. 

The tendency is even more apparent for the InWeb_IM network
and other pathway resources. SMILE identified modules,
especially the novel modules among them, consistently obtain the
highest ORS (Table 1). The composite score is the sum of all ORSs
among the four pathway resources and it was used to compare the
overall performance of pathway annotation. As expected, the novel
modules and super modules consistently obtained the highest and
the second highest composite score, both of which are higher than
that of the global modules and its unique subset.

3.4 Super modules tend to have more biological relevance

The novel modules identified by SMILE are not only likely to
over-represent in specific biological pathways, but also tend to
involve in gene families. As shown in Fig. 6a, the novel module
exclusively identified by SMILE in ComPPI consists of 23 proteins
and 15 out of them belong to the Bcl-2 family, an apoptosis
regulator filled with evolutionarily related proteins. The proteins in
this family supervise mitochondrial outer membrane
permeabilisation and usually work as promoters or suppressors of
apoptosis [48, 49]. Fig. 6b shows another novel module that is
enriched with SNARE proteins. Nine out of ten proteins in the

module are involved in the protein family of SNARE. The SNARE
proteins play a key role as the mediator of vesicle fusion, the fusion
of vesicles and their target compartments, among an assortment of
others. These results reveal that the SMILE-identified novel
modules are highly associated with biological functions, especially
the compartment related functions. 

Also, SMILE outperforms ClusterONE with respect to the
functionally overlapping modules, the super modules that share a
large fraction of proteins with global modules. Fig. 6c and d
illustrates a super module and its corresponding highly overlapped
global module captured from the ComPPI network. The super
module covers all the members of the global module except
STK19, a protein with unknown specific function. These common
proteins are mainly involved in two protein complexes, POLR2
(RNA polymerase II) and INTS (Integrator complex), which are in
charge of regulating RNA polymerase II and RNA processing.
POLR2 is an enzyme that can promote the transcription of DNA to
synthesise the precursors of mRNA, snRNA, and microRNA [50,
51]. INTS is a highly conserved nuclear complex that usually
interacts with the C-terminal tail of the largest subunit of the
POLR2 complex to promote 3′-snRNA processing [52].
Interestingly, three more proteins exclusively detected in the super

Table 1 Performance comparison for pathway annotation from four resources
Module set KEGG PANTHER BioCarta Reactome Comp score
ComPPI
global 0.7217 0.2081 0.313 0.9391 2.1819
unique 0.5714 0.2857 0.1428 0.7143 1.7142
super 0.7626 0.3165 0.3165 0.9496 2.3452
novel 0.75 0.3929 0.3929 0.9286 2.4644
InWeb_IM
global 0.7975 0.4177 0.3228 0.9241 2.4621
unique 0.6667 0.3333 0.2667 0.8 2.0667
super 0.8314 0.4444 0.3716 0.9579 2.6053
novel 0.8537 0.4878 0.3902 0.9634 2.6951
 

Fig. 5  SNARE interactions in vesicular transport pathway in KEGG.
Genes clustered in modules 50, 138, and both, are marked in yellow, red
and orange, respectively. Module 50 is a super module while module 138 is
a novel module

 

Fig. 6  Super modules identified using SMILE are more biologically
relevant
(a) Novel module involved in Bcl-2 family, the proteins in the module are localised in
nucleus and cytosol, (b) Novel module enriched SNARE protein and all its proteins
are localised in the extracellular region. Proteins of interest are marked in orange, (c-d)
Comparison of a global module and its corresponding super module. Blue nodes
denote the common proteins involved in both modules, red nodes denote proteins
exclusively detected in the super module, and grey nodes denote the global module
unique proteins
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module, ASUN, RPAP2, and NABP1, are closely related to RNA
polymerase II. More specifically, ASUN is a member of the
complex INTS, RPAP2 is an RNA polymerase II associated
protein, and NABP1 functions in snRNA transcription from RNA
polymerase II promoter [52, 53]. Overall, SMILE is superior in
identifying super modules, either overlapped with global modules
or not, with higher biological relevance and functional
significance.

3.5 Application to MCL

By default, SMILE use ClusterONE to detect functional modules
in a given biological network, because ClusterONE is an efficient
algorithm that allows identification of overlapping modules and its
plugin in Cytoscape is user-friendly. However, SMILE can be
easily applied to other clustering algorithms such as MCL [33],
which identifies modules in networks using a mathematical
bootstrapping procedure. Hence, MCL was adopted for module
identification on both PPI datasets, although it cannot handle
overlapping modules. In ComPPI, 28 and 234 modules were
identified using MCL and SMILE-MCL (MCL under the strategy
of SMILE), respectively; among them, 200 modules were
exclusively selected using SMILE-MCL while the counterpart is
only 2 for MCL. Importantly, based on CORUM and PCDq
references, results of MCL revealed that complexes detected with
the SMILE strategy consistently have higher scores on all the
evaluation scores including Sn, PPV, and ACC. The two algorithms
are comparable when comparing pathway ORSs. For the ComPPI
dataset, the ORS of SMILE-MCL for KEGG is less than that of
MCL, but SMILE-MCL outperforms MCL on the other three
pathway references. For the PPI dataset of InWeb_IM, almost all
the ORSs of SMILE-MCL are to some extent less than the scores
of MCL. The reason is that only 38 modules are identified using
MCL, while the number is 246 for the SMILE-MCL modules,
indicating that it is not a powerful way to detect modules merely
using MCL.

4 Conclusions
Considering the importance of cell compartmentalisation, we
propose a novel procedure SMILE for identifying functional
protein modules, which first predict modules separately from each
cell compartment, and then compound the highly overlapped ones
to generate super modules. These super modules derived by
SMILE demonstrated better correspondence with known protein
complexes on two databases and biological pathways in four
resources than the results of conventional procedures.

Although the dataset used in this study has integrated several
available data sources to improve data coverage and quality, the
method is limited to those proteins with subcellular localisation
information. This limitation can be partially addressed using
prediction tools, but in the future, much more work is needed to
improve the accuracy of these tools.

Taking the protein subcellular location information into account
is the major part of the SMILE procedure and it is a general
transformation that universally helps existing complex prediction
algorithms perform better, although only ClusterONE and MCL
were compared in this study. Specifically, ClusterONE outperforms
MCL based on the reported performance evaluation scores in the
main manuscript and the Supplementary tables. As shown in Table
S3, the super modules identified using ClusterONE consistently
obtain the highest evaluation scores except for the pathway
composite score of the ComPPI data. For the ComPPI dataset, the
accuracy scores of ClusterONE are 0.3212 and 0.3978 for the two
references CORUM and PCDq, respectively, both of which are
much higher than the other accuracy scores calculated from MCL.
The pathway composite score of ClusterONE is 2.3452, which is
also comparable to that of MCL (2.3547). Better yet, for the
InWeb_IM dataset, the ClusterONE induced super modules to
show the best performance amongst the others regardless of the
clustering strategies and algorithms.

Not limited to ClusterONE and MCL, SMILE is also applicable
to other module identification algorithms depending on users’
preference, since it provides more meaningful biological data by

evaluating how within a compartment or cross-compartment
protein interactions altered or propagated within proteomic
datasets. Furthermore, SMILE can be easily applied to other types
of network studies to capture modules with multiple components
like lncRNA, miRNA, and mRNA [54–57]. In future studies, we
will provide more computational procedures to both the coding and
non-coding molecules to build a more comprehensive picture of
how compartmentalised networks can interact.
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