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Non-invasive nuclear imaging by positron emission tomography and single photon emis-
sion computed tomography has significantly contributed to epileptic focus localization 
in human neurology for several decades now. Offering functional insight into brain alter-
ations, it is also of particular relevance for epilepsy research. Access to these techniques 
for veterinary medicine is becoming more and more relevant and has already resulted 
in first studies in canine patients. In view of the substantial proportion of drug-refractory 
epileptic dogs and cats, image-guided epileptic focus localization will be a prerequisite 
for selection of patients for surgical focus resection. Moreover, radiotracer imaging holds 
potential for a better understanding of the pathophysiology of underlying epilepsy syn-
dromes as well as to forecast disease risk after epileptogenic brain insults. Importantly, 
recent advances in epilepsy research demonstrate the suitability and value of several 
novel radiotracers for non-invasive assessment of neuroinflammation, blood–brain 
barrier alterations, and neurotransmitter systems. It is desirable that veterinary epilepsy 
patients will also benefit from these promising developments in the medium term. This 
paper reviews the current use of radiotracer imaging in the veterinary epilepsy patient 
and suggests possible future directions for the technique.

Keywords: positron emission tomography, single photon emission computed tomography, imaging, epilepsy, 
biomarker, positron emission tomography, single photon emission computed tomography

inTRODUCTiOn

Molecular radiotracer imaging, including positron emission tomography (PET) and single photon 
emission computed tomography (SPECT), holds a tremendous potential for diagnostics of brain 
changes. These methods provide functional insight into the brain, which is difficult to assess by 
non-invasive techniques. Following injection of a radiolabeled compound, uptake and regional 
distribution in the brain is three-dimensionally visualized by a PET or SPECT camera based on 
radioactive decay detection. In addition to radioisotope imaging, up-to-date clinical scanning 
systems are equipped with fully functional computed tomography (CT). Very recently, integrated 
magnetic resonance imaging (MRI) components for anatomical co-registration are available. These 
advances make particularly PET/CT or PET/MRI in combination with various novel radiotrac-
ers very promising imaging techniques for evaluation of neurological diseases. Despite the use of 
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radiotracer imaging in human patients for some decades, this 
imaging modality is only rarely used in clinical veterinary neu-
rology. This is owing to some practical limitations. Due to high 
cost and radiosafety requirements, PET or SPECT scanners are 
usually not available in veterinary practices or clinics (1). Usually, 
only by collaboration with nuclear medicine specialists for human 
patients, can these techniques be made available for veterinary 
patients. Clinically used radiotracers have a half-life of minutes 
to hours and are injected only in nano- to pico-molar concentra-
tions making pharmacological side effects usually negligible. 
Still, injection of radioisotopes may require hospitalization under 
a radiosafety regime. Particularly some PET radiotracers with 
a half-life only up to about 1  h require onsite radiochemistry, 
often including instant isotope production using a cyclotron. 
These limitations have led to enormous efforts of radiochemistry 
research to label PET tracers with fluorine-18 with a half-life of 
almost 2  h, making delivery from central production sites to 
imaging centers possible. In spite of these restrictions, the use 
of radiotracer imaging in veterinary medicine, particularly in 
veterinary oncology, has increased during the last years. This 
increase is mostly driven by more individualized tumor diagnos-
tics and treatments (2, 3). In this area, F-18-fluoro-deoxy-glucose 
(F-18-FDG) is, in analogy to human patients, the most successful 
radiotracer. F-18-FDG is a radiolabeled glucose analog which is 
taken up and trapped in metabolically active cells. This feature 
makes it very useful not only for localization of peripheral and 
CNS tumors and its metastases but also for measurement of 
epilepsy-associated altered regional brain activity. In addition to 
F-18-FDG, in human clinical practice, more and more radiotrac-
ers are available targeting, e.g., brain perfusion, neuroreceptor 
density, brain inflammation, or the burden of amyloid beta in 
patients with Alzheimer’s disease.

ROLe OF RADiOTRACeR iMAGinG in 
HUMAn ePiLePSY

Preliminary findings with newer radiotracers in human epilepsy 
patients suggest their future potential for disease evaluation 
and elucidation of pathophysiological mechanisms. However, 
the clinical application of radiotracer imaging as yet lies mainly 
on presurgical evaluation of pharmacoresistant patients being 
considered for focus resection. In these individuals, representing 
around one-third of epilepsy patients (4), PET and SPECT can be 
helpful non-invasive tools for identifying the epileptogenic zone. 
They are of particular value for drug-refractory patients with 
no structural alterations in MRI, with multifocal MRI-positive 
lesions which cannot all be assigned to the epileptic focus, or with 
inconclusive video-electroencephalogram (EEG) monitoring 
findings (5, 6).

Radiotracers typically used for this purpose target either 
brain blood perfusion [e.g., Tc-99m-hexamethyl propylenea-
mine oxime (Tc-99m-HMPAO) SPECT], metabolic pathways, 
especially glucose metabolism (F-18-FDG PET), or, occa-
sionally, neurotransmitter receptors [e.g., C-11-flumazenil 
(C-11-FMZ) PET]. Hitherto, F-18-FDG is the most commonly 
applied tracer for detection of the epileptic focus region and is 
of high sensitivity particularly in patients with temporal lobe 

epilepsy (up to 90% sensitivity) (7–9). F-18-FDG PET is usually 
performed in the seizure-free interval (interictal PET) and aims 
at identifying brain regions with decreased glucometabolism, 
being considered to partially reflect, among other factors, 
reduced synaptic activity (10). F-18-FDG PET can also deliver 
information about disease severity and progression. In this 
regard, it has been shown in children with intractable epilepsy 
that the extent of the hypometabolic brain area can be indicative 
of the seizure burden, i.e., it grows in size with increasing sei-
zure frequency and vice versa (11). Further, F-18-FDG PET can 
be indicative for occurrence of memory impairment (12, 13) 
as well as provide prognostic information on seizure freedom 
after surgery (14).

While most radiotracers targeting metabolic pathways or 
brain perfusion need an accumulation time much longer than 
the duration of a single seizure, Tc-99m-HMPAO SPECT, due 
to the high first-pass uptake of the radiotracer, can be applied 
during seizure activity (ictal SPECT). Furthermore, the radioac-
tive half-life of Tc-99m of about 6  h enables a stand-by avail-
ability of the radiotracer in a video-EEG monitoring unit. To 
enable diagnostic success, an established setup of continuous 
video-EEG monitoring for immediate seizure detection of the 
respective patient and continuous access to the radiotracer for 
prompt injection immediately after seizure onset is mandatory. 
As Tc-99m-HMPAO accumulates in areas with high blood flow, 
the hyperperfused seizure focus displays a distinct increase 
in tracer signal. Ictal SPECT is associated with a correct focus 
detection in most patients with temporal lobe epilepsy (>80% 
sensitivity) (15, 16). In case of additionally performed interictal 
Tc-99m-HMPAO SPECT, the probability for detecting the seizure 
focus may increase by applying SISCOM analysis, i.e., subtracting 
interictal SPECT images from the ictal images and displaying the 
results on co-registered MR images (5, 17).

Diagnostic evaluation for identifying increased or decreased 
regional tracer uptake is usually performed by nuclear medicine 
physicians together with neurologists primarily by visual analysis. 
In principal, every brain region can be affected, directly but also 
as a consequence of diaschisis, i.e., secondary functional lesions 
in brain areas influenced by the primary affected brain region. 
Regions frequently affected in temporal lobe epilepsy patients 
include ipsilateral hippocampus, amygdala, thalamus, frontal 
cortex, and insula (17). Other methods of data evaluation like 
statistical parametric mapping analysis are not common in cur-
rent clinical routine, yet can significantly increase the diagnostic 
sensitivity of combined ictal-interictal Tc-99m-HMPAO SPECT 
(17, 18).

CURRenT STATe in veTeRinARY 
MeDiCine

For several years now, F-18-FDG PET/CT is increasingly used 
also in veterinary oncology (2, 19). Initial reports indicate that 
F-18-FDG PET may indeed be useful for localization of brain 
tumors in dogs (20, 21). Brain tumors are one common MRI-
positive cause of structural epilepsy in dogs (22) as well as in 
human patients (23). In addition, F-18-FDG brain reference data 
in healthy Beagles have been provided (24).
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FiGURe 1 | Coronal and horizontal F-18-fluoro-deoxy-glucose positron 
emission tomography (PET) images from a 10.5-week-old puppy with juvenile 
epilepsy showing an area of hypometabolism in the left temporal lobe, 
indicated by the cross localizers. The hot scale represents radioactivity 
concentration (kBq/ml) [taken from Ref (25), permission from the copyright 
holder has been obtained].
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Neuro-nuclear imaging in dogs and cats may also serve to 
identify an epileptic focus in MRI-negative epilepsy. Currently, 
PET or SPECT are barely used for this purpose in veterinary 
medicine. Nonetheless, joint efforts in Finland have led to two 
recent publications supporting that F-18-FDG PET for identifi-
cation of the epileptic focus region is translatable to veterinary 
patients. In juvenile Lagotto Romagnolo dogs with focal-onset 
epilepsy, Jokinen and colleagues identified regions with reduced 
glucose metabolism in cortical brain regions associated with EEG 
abnormalities (25). Figure 1 shows an interictal F-18-FDG PET 
image taken from this study displaying glucose hypometabolism 
in the left temporal lobe. A second study performed by the same 
group prospectively evaluated adult Finnish Spitz dogs with focal 
idiopathic epilepsy by EEG and F-18-FDG and found abnormali-
ties by visual analysis in 9/11 dogs with occipital cortex findings 
most consistent with the epileptic status (26). Although changes 
in F-18-FDG uptake were also detected by this method in part 
of the controls of the investigated breed, quantification on group 
level resulted in statistically significant lower uptake values in 
epileptic dogs in the hippocampus, cortical regions, and the 
cerebellum. Considerably, in this regard, PET imaging data have 
been reported to be of higher diagnostic sensitivity than visual 
analysis of EEG recording (26). Preferably, further prospective 
studies with larger group sizes will confirm these findings and 
evaluate whether they are representative also for other breeds. Of 
course, studies in epileptic cats are also desirable.

Assessment of brain perfusion by SPECT was first investigated 
in healthy dogs more than 15 years ago using the Tc-99m-ethyl 
cysteinate dimer (Tc-99m-ECD) (27). More recently, interictal 
Tc-99m-ECD SPECT/CT was also explored in dogs with idi-
opathic epilepsy, reporting hypoperfusion restricted to subcorti-
cal areas of epileptic dogs (28). Subsequently, the same group 
was able to further differentiate subcortical brain regions in 
healthy dogs, including hippocampus, thalamus, and striatum, 
using a high resolution SPECT scanner, but did not yet apply 
this technique to veterinary epilepsy patients (29). Certainly, one 
has to keep in mind that interictal perfusion SPECT is distinctly 
less sensitive for seizure focus identification compared to ictal 

perfusion SPECT (16, 18). Due to the logistic requirements for 
ictal perfusion SPECT, particularly the availability of a video-EEG 
monitoring unit in proximity to the scanner, however, this tech-
nique has obvious limitations for clinical routine in veterinary 
neurology. Nonetheless, recent progress in developing devices for 
non-invasive video-EEG recording (30) or seizure-alert systems 
based on invasive EEG recording in dogs (31, 32) might pave the 
way for such efforts in the close future. Ideally, future ictal perfu-
sion SPECT studies would include the clinically more relevant 
perfusion tracer Tc-99m-HMPAO.

In contrast to human medicine, imaging procedure in veteri-
nary epilepsy patients requires consideration of several distinctive 
features. First, anesthesia necessary to achieve immobility of the 
subject for neuroimaging can considerably influence functional 
brain imaging results (33, 34). Another impact factor is the chronic 
anti-seizure medication in epilepsy patients. Indeed, phenobar-
bital, which still represents the most widely applied anti-seizure 
drug in dogs and cats, seems to reduce brain glucometabolism 
and hereby also F-18-FDG PET signal in human epilepsy patients 
(35). A further factor in veterinary medicine is variation in brain 
and skull anatomy and size of different dog and cat breeds (36, 37) 
hampering application of reference PET, SPECT, or MRI brain 
templates for image analysis. In consequence, for reliable image 
interpretation establishing diverse sets of reference images for 
different breeds will presumably be necessary.

FUTURe DiReCTiOnS

Nuclear imaging is currently experiencing broad application to 
help filling several gaps in epilepsy research: (i) to elucidate the 
pathophysiological processes underlying epilepsy development 
and disease progression (38, 39), (ii) to identify predictive bio-
markers for stratification of individuals with high risk of disease 
development after epileptogenic brain insults (38, 40), and (iii) to 
identify mechanisms of drug resistance (41).

Lasting seizure burden despite state-of-the-art anti-seizure 
pharmacotherapy remains a serious problem also in epileptic 
dogs (42, 43). Interest in establishing epilepsy surgery in phar-
macoresistant cats and dogs will probably grow. As in human 
patients, surgical resection of the epileptic focus region may 
be advantageous in veterinary patients for achieving seizure 
freedom or control in carefully chosen refractory individuals. 
For selection of appropriate epilepsy surgery candidates, proper 
presurgical evaluation needs to be established. MRI is already 
widely used as a reliable technique to identify brain abnormali-
ties in epileptic companion animals (44). However, in epilepsy 
cases with negative MRI, application of nuclear imaging, e.g., 
F-18-FDG PET or Tc-99m-HMPAO SPECT, has a significant 
potential to provide the necessary data for epileptic focus locali-
zation also in animals.

Besides its established benefit for presurgical patient evalu-
ation, neuroimaging of glucose metabolism might also provide 
hints for ongoing epileptogenesis before clinical seizures occur. 
In addition, it might offer information on the brain regions 
involved in epilepsy development and progression. Meanwhile, 
a whole batch of F-18-FDG PET studies performed in several 
rodent models of epileptogenesis shows that glucose metabolism 
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decreases in brain regions associated with epilepsy development 
already during the latency phase, i.e., the time period between 
the epileptogenic insult and the first clinical seizure (45–48). In 
combination with other markers, F-18-FDG PET might, there-
fore, also serve as a prognostic biomarker for an increased risk 
to develop epilepsy, which is investigated in ongoing studies. An 
attempt to use F-18-FDG PET as a marker to predict the epileptic 
outcome in rats showed indeed promising preliminary results 
(47), but further studies in larger animal groups will be needed 
to confirm this approach.

An emerging field in epilepsy research is assessment of neu-
roinflammation as a process present during epileptogenesis as 
well as in chronic epilepsy (41). Particularly, radioligands of the 
so-called translocator protein (TSPO; also known as peripheral 
benzodiazepine receptor) can be utilized to visualize activated 
microglia, and to a lesser extent, of reactive astrocytes (49). In 
animal models of epileptogenesis and chronic epilepsy, various 
radiolabeled TSPO ligands have been evaluated. The newest-gen-
eration ligand F-18-GE180 is characterized by a favorable signal-
to-noise ratio across species (50). Data gained by F-18-GE180 
PET in a rat model of epileptogenesis demonstrates the suitability 
of TSPO PET to reveal the time course of neuroinflammation 
during epilepsy development and to identify brain regions 
involved in this process (51). Further, TSPO PET at disease onset 
with a different ligand (F-18-PBR111) has recently been shown 
to have potential of predicting the frequency of later spontaneous 
recurrent seizures in rats (52). In chronic epileptic rats, increased 
TSPO signal was found in phenobarbital-unresponsive but not in 
phenobarbital-responsive individuals, suggesting that TSPO PET 
might also serve as an indirect marker for pharmacoresistance 
(53). In parallel, studies in human patients support potential 
value of TSPO PET for localizing the seizure focus (54, 55).

In close interaction with, or even as one relevant source of 
neuroinflammation, increased permeability of the blood–brain 
barrier (BBB) leading to extravasation of blood compounds like 
albumin is considered to be another crucial factor for epilepsy 
development (56). Extravasated albumin was found also in brain 
tissue of human patients with chronic epilepsy (57), suggesting 
that BBB leakage might also play a role in epilepsy maintenance 
or progression. In vivo imaging approaches to visualize a leaky 
BBB are based on detection of contrast agents or radiotracers 
which do not cross the intact BBB. Contrast-enhanced MRI is an 
established technique to diagnose BBB leakage after epileptogenic 
insults (e.g., status epilepticus, stroke, or traumatic brain injury) 
in rodents and human patients (58, 59), but SPECT and PET 
using the radiotracers Tc-99m-diethylenetriaminepentaacetic 
acid and Ga-68-DTPA have also been demonstrated suitable for 
this purpose (58, 60, 61). While the application of gadolinium-
based MRI contrast agents is related with safety risks due to 
compound accumulation in human brain and kidneys (62, 63), 
administration of nuclear imaging tracers is considered to be safe. 
Findings in animal models suggest that BBB leakage is highest in 
brain regions which are also affected by microglial activation dur-
ing epileptogenesis (58, 59). The role of BBB leakage for epilepsy 
development in canine and feline epilepsy and the applicability of 
respective imaging techniques still remain to be assessed.

Nuclear imaging has also proven to be of some value for 
identification of human drug-refractory epilepsy patients. 

Drug-refractory epilepsy patients represent a large proportion of 
patients in both human and veterinary medicine. One mecha-
nism attributed to drug refractoriness in epilepsy is overexpres-
sion of the efflux transporters like P-glycoprotein at the BBB, 
which extrudes anti-seizure drugs back into the blood, therefore 
resulting in sub-therapeutic drug levels at the site of the epileptic 
focus (64). Increased P-glycoprotein expression as mechanism of 
pharmacoresistance has also been suggested for canine patients 
(65, 66). Both human and veterinary patients affected by this 
mechanism might profit from alternatively being treated with 
anti-seizure drugs not being extruded by P-glycoprotein, or with 
transporter inhibitors or modulators (64, 67, 68). Prerequisite for 
translation of such therapeutic approaches to the clinical situa-
tion would be a diagnostic tool for identification of individuals 
with actual transporter overactivity. PET with the P-glycoprotein 
substrate tracer C-11-verapamil was shown to identify increased 
transporter function at the BBB in a post-status epilepticus model 
in rodents (69). This preclinical setup was successfully translated 
to drug-refractory human patients, demonstrating higher 
P-glycoprotein activity in pharmacoresistant individuals (70).

Besides F-18-FDG PET, the GABA-A receptor ligand 11-C-
FMZ, and more recently also 18-F-FMZ, is more and more used 
for epileptic focus localization (41). In human patients with 
mesial temporal lobe epilepsy, F-18-FMZ PET can be even advan-
tageous over F-18-FDG as it can result in more circumscribed 
visualization of altered temporal lobe areas like the hippocampus 
(71, 72). Recent generation of other radiolabeled receptor ligands 
like the NMDA glutamate receptor tracer F-18-GE179, will 
allow to further assess the role of neurotransmitter systems in 
epileptogenesis and chronic epilepsy (41). Various other ligands 
targeting neurotransmitter systems including the serotonin, 
dopamine, cannabinoid, opioid, or acetylcholine system have 
been investigated in human epilepsy patients (41). Their potential 
for canine and feline epilepsy patients still needs to be assessed.

COnCLUSiOn

Radiotracer imaging protocols for detecting abnormal glucose 
metabolism and brain perfusion appear prospective tools for pre-
surgical evaluation of MRI-negative veterinary epilepsy patients 
in the future. Growing access to nuclear imaging modalities and 
recent advances in video-EEG monitoring for seizure warning will 
likely support this development. Evolution of diverse promising 
radiotracers for epilepsy research, like TSPO and neuroreceptor 
ligands, opens up new vistas for elucidating the pathophysiology 
of epileptogenesis and for predicting the risk of disease develop-
ment in man, including realistic chances of being subsequently 
translated to veterinary medicine.
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