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Abstract
Chronic diseases such as heart disease, cancer, and diabetes are leading drivers
of mortality worldwide, underscoring the need for improved efforts around early
detection and prediction. The pathophysiology and management of chronic
diseases have benefitted from emerging fields in molecular biology like
genomics, transcriptomics, proteomics, glycomics, and lipidomics. The complex
biomarker and mechanistic data from these “omics” studies present analytical
and interpretive challenges, especially for traditional statistical methods.
Machine learning (ML) techniques offer considerable promise in unlocking
new pathways for data‐driven chronic disease risk assessment and prognosis.
This review provides a comprehensive overview of state‐of‐the‐art applications of
ML algorithms for chronic disease detection and prediction across datasets,
including medical imaging, genomics, wearables, and electronic health records.
Specifically, we review and synthesize key studies leveraging major ML
approaches ranging from traditional techniques such as logistic regression
and random forests to modern deep learning neural network architectures. We
consolidate existing literature to date around ML for chronic disease prediction
to synthesize major trends and trajectories that may inform both future research
and clinical translation efforts in this growing field. While highlighting the critical
innovations and successes emerging in this space, we identify the key challenges
and limitations that remain to be addressed. Finally, we discuss pathways
forward toward scalable, equitable, and clinically implementable ML solutions
for transforming chronic disease screening and prevention.
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Highlights
• Machine learning (ML) shows promise for early detection and prediction
of chronic diseases.
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• Complex “omics” data from genomics, proteomics, and other fields inform
ML models.

• The review covers key ML approaches applied to diverse datasets for
chronic diseases.

• Innovations and successes are highlighted, along with challenges and
limitations.

• Pathways toward scalable, equitable, and clinically implementable ML
solutions are discussed.

1 | INTRODUCTION

Chronic diseases, including type II diabetes mellitus
(T2DM), cardiovascular disease, cancer, and chronic
respiratory diseases, are negatively impacting many lives
worldwide. Defined as a lifelong condition that requires
perpetual medical attention, chronic diseases lower the
quality of life of individuals, and presently, according to
the World Health Organization (WHO), kill an estimated
41 million people worldwide.1 Moreover, chronic
diseases increase the economic burden of sufferers,
rendering them financially impoverished due to fre-
quent hospitalization and rising costs of medications.
More disconcerting are people living in resource‐limited
countries, where 77% of all chronic disease deaths
occur. It is well established that these diseases are
potentially preventable with lifestyle modification,
which, when combined with medication, may prevent
disease progression. However, these efforts appear to be
inadequate, as the burden of disease is still rising, and
the available therapies are not curative but only
ameliorate disease‐related symptoms.2

Research has advanced to shift concepts from
reactive medicine to proactive personalized prevention,
risk stratification, diagnosis, and treatment for individ-
ual patients.3–5 This approach identifies those at risk of
developing diseases by collecting and analyzing big data
on lifestyle, demographics, anthropometrics, family
history, and more.4,5 In recent years, stratification and
diagnosis have utilized emerging fields, including
genomics, transcriptomics, proteomics, glycomics, and
lipidomics. OMICS datasets have revealed potential
biomarkers and provided insights into the aetiologies
and progressions of several diseases. OMICS data
include numbers, images, audio, video, and text, often
collected, extracted, transcribed, tracked, and seg-
mented. Despite the impact of multiomics for early
diagnosis, significant bottlenecks exist. These data
generation procedures are labor‐intensive and require
expensive equipment. Moreover, the quantity of
unlabeled data generated from OMICS processes in
our tech‐driven era is enormous.

Unlabeled data must be preprocessed and generally
has limited analytical utility. A key step in expanding
the use of OMICS data for efficient modeling and
prediction is accurate data labeling. Data labeling

involves tagging or annotating attributes, properties, or
classifications for easy identification and reference.
While potentially expensive and time‐consuming, it
aims to ensure accurate, consistent, scalable, high‐
quality tagging. In all OMICS applications, such as
studying complex biological systems and predicting
biomarkers related to human health,6 data labels serve
as learning targets in machine learning (ML) and
artificial intelligence (AI). For instance, deep neural
networks (NNs) perform best for named entity
recognition and semantic role labeling when data is
labeled.7 The various OMICS data must be classified
through data labeling, and the precise interpretation of
the subsequent complex data requires advanced
computational algorithms.

ML offers promising techniques to unlock insights
from heterogenous data sources that can enable earlier
detection of chronic diseases and better predict pro-
gression and prognosis.8 For example, techniques such
as NNs can model complex nonlinear relationships in
data, while random forest (RF) models provide addi-
tional transparency into important variables through
feature importance score measures.7–10 Over the past
decade, applications of ML for chronic disease detection
and prediction have rapidly expanded. The growth has
been further fueled by the fourth and fifth industrial
revolutions, which have emphasized the significance of
cloud computing and AI, both powered by ML
algorithms.9–11 As the medical field continues to
generate an increasing amount and variety of data,
reliance on data scientists' expertise becomes crucial for
making sense of this “big data.” Collaborations between
data scientists and medical professionals have resulted
in substantial progress in developing tailored method-
ologies for analyzing different types of medical data.9,10

ML has become an essential tool for finding optimized
solutions in disease prognosis and diagnosis, playing a
central role in most medical advancements of the past
decade.1–3,6 Based on the applications of ML algorithms
in medicine, perspectives on the pathophysiology of
chronic conditions have improved, leading to a better
understanding of their initiation and progression
(Figure 1). A common application is feature selection,
where important biomarkers are linked to various
chronic diseases, including cardiovascular, T2DM,
respiratory diseases, and cancers.4
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Although ML‐powered AI holds promise to trans-
form medical diagnosis and treatment by rapidly
analyzing massive data, it faces ethical hurdles and
practical constraints. This extensive overview study
evaluates the applications of ML algorithms to predict
and manage a range of chronic diseases by assessing the
accuracy and utility of tasks such as risk stratification,
personalized treatment plans, and disease progression
monitoring while considering the unique challenges of
the pathophysiological processes of these chronic
conditions. We further discuss the ethical implications
of utilizing ML algorithms for medical diagnosis,
treatment, and risk assessment. We highlight the ethical
issues around transparency and explainability of model
decisions, potential biases in data and algorithms,
accountability for outcomes, privacy trade‐offs, and
impacts on the doctor–patient relationship, and provide
guidance on responsible ML implementation that
upholds principles of beneficence, nonmaleficence,
and fairness.

2 | BRIEF OVERVIEW OF ML
ALGORITHMS

ML is a proponent of AI, and it is a process where
computers adapt and learn from experience and
build models without prior instructions or supervi-
sion.3 The computer receives data and utilizes

mathematical equations to predict outcomes.3 ML
algorithms can be broadly categorized into supervised
learning, unsupervised learning, and reinforcement
learning approaches.

Supervised learning algorithms train models to make
predictions based on labeled input‐output pairs in the
training data. Popular supervised learning algorithms
include linear regression, logistic regression (LR),
support vector machines (SVMs), decision trees (DTs),
RFs, and NNs.11 Linear regression is used for predicting
continuous values, while LR makes classifications based
on logistic sigmoid outputs.11 SVMs find optimal
decision boundaries to categorize data points.12 DTs
make step‐by‐step binary splits on the features, while
RFs improve performance by averaging predictions
across many DTs.13 NNs contain interconnected layers
of nodes inspired by biological neurons, learning to
make nonlinear transformations of the input.14 The
advantages and disadvantages of these ML algorithms
are well discussed in studies.11–14

Unsupervised learning analyses unlabeled data to
find hidden patterns. Key unsupervised learning tech-
niques include clustering algorithms like k‐means,
hierarchical clustering, and Gaussian mixture models,
which group data points based on similarity.15 Dimen-
sionality reduction techniques such as principal com-
ponent analysis (PCA) and t‐distributed stochastic
neighbor embedding (t‐SNE) identify important dimen-
sions capturing most of the variance.16,17

F IGURE 1 Laboratory methods and application of machine learning for disease prediction and diagnosis. Diagnosis of diseases begins with
screening a population, sample collection, processing, and quantitation with molecular/analytical methods (e.g., polymerase chain reaction [PCR],
liquid chromatography mass spectrophotometry [LC‐MS], high‐performance liquid chromatography [HPLC], sodium dodecyl sulfate
polyacrylamide gel electrophoresis [SDS‐PAGE]), and immunofluorescent macroscopy among others. Machine learning algorithms can discover
patterns in the data generated from analytical methods and make predictions.
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Reinforcement learning trains models to optimize
behaviors based on rewards and penalties. Instead of
exact training labels, the model learns via trial‐and‐error
interactions with a dynamic environment. Popular
reinforcement learning techniques include Q‐learning
and policy gradient methods.18

In addition to the established algorithms above,
cutting‐edge ML techniques offer new horizons that are
gaining traction in predictive modeling. Examples
include generative models like generative adversarial
networks (GANs) and variational autoencoders (VAEs)
that can create synthetic, realistic data for domains with
limited examples like medical images.19 Causal ML
techniques to determine causal predictors of disease
and outcomes for better‐guiding interventions.20 Multi-
modal ensembles synthesizing insights across data types
into unified models. Such emerging methods can unlock
new capabilities around scarce data augmentation,
optimized dynamic treatment regimens, and robust
causal insights. Overall, ML encompasses a wide range
of algorithms with different strengths suited for various
data analysis tasks. Careful selection and tuning of
algorithms are necessary to build effective ML systems.

3 | UNDERSTANDING THE
PATHOPHYSIOLOGICAL PROCESSES
OF CHRONIC DISEASES VIA ML
ALGORITHMS

Chronic diseases often have complex pathophysiologies
involving multiple risk factors and pathogenesis path-
ways.21 These diseases develop gradually over many
years and involve complex interactions between genet-
ics, lifestyle, and environmental factors that influence
disease pathogenesis.22 For example, T2DM results from
lifestyle factors such as diet and exercise interacting with
genetic predispositions that lead to insulin resistance
and impaired glucose metabolism over time.3,23 Simi-
larly, cardiovascular disease develops from athero-
sclerotic changes in arteries over decades. This process
is driven by lipid disorders, hypertension, diabetes,
smoking, and other risk factors.24 Chronic disease
pathophysiology unfolds through intricate molecular
alterations over a protracted period, reflecting the
interplay between genetic and nongenetic factors.
Understanding these complex mechanistic pathways
and interactions is key to enhancing early diagnosis,
prediction, and personalized management of chronic
conditions.

ML techniques offer opportunities to better under-
stand these complex pathophysiological processes and
improve disease prediction.25 By analyzing large, multi-
dimensional datasets, algorithms can identify patterns
linking risk factors to early biological changes that
presage chronic disease development.26 For cardiovas-
cular disease, ML models integrating genomic,

proteomic, clinical, and imaging data may enable earlier
detection of high‐risk plaque features or subclasses at
greater risk for myocardial infarction.26 In oncology,
algorithms correlating molecular tumor profiles with
clinical outcomes could refine prognostic models for
recurrence risk in breast cancer or disease progression
in prostate cancer.27 ML techniques like NNs and RFs
can analyze large multivariate datasets to uncover
predictive patterns in risk factors, biomarkers, and
clinical signs that foreshadow chronic disease onset.8

By modeling complex nonlinear relationships, these
algorithms can provide personalized risk scores and
identify high‐risk subgroups for preventive interven-
tions. Deep learning methods that extract high‐level
data representations also show promise for integrating
diverse omics, physiological, and health record data for
disease prediction.8,24–27

In the sections below, we discuss the complex
pathophysiology underlying several major chronic dis-
eases, including T2DM, chronic kidney disease (CKD),
cardiovascular diseases (CVDs), cancers, chronic respi-
ratory diseases, and inflammatory conditions. For each
disease, we highlight how the intricate molecular
changes unfolding over many years lead to pathogenesis
and complications. We also examine recent applications
of ML to analyze multidimensional data for these
conditions. Specifically, we review how advanced algo-
rithms integrating omics, imaging, electronic health
record (EHR), and other disparate datasets have
provided novel insights into prediction, prognosis, and
personalized management. This discussion illustrates
the growing complexity of biomedical data relevant to
chronic diseases and demonstrates the utility of ML
approaches for elucidating disease mechanisms, refin-
ing risk stratification, and guiding clinical decision‐
making. Overall, sophisticated modeling of heteroge-
neous data types promises to deepen our understanding
of chronic disease trajectories and enable more precise,
individualized care.

4 | PATHOPHYSIOLOGY OF T2DM

T2DM arises from the body's inability to metabolize
glucose properly, leading to the accumulation of glucose
in the blood.28 In 2015 alone, over a million people died
from the disease, as per the International Diabetes
Federation. While medications and lifestyle changes
have enhanced longevity and improved quality of life for
many patients, the complexity and heterogeneity of
T2DM continue to impede a cure.28

T2DM is caused by both insulin resistance in tissues
and deficient insulin secretion from the pancreatic beta
(β) cells.29 Initially, beta cells compensate by secreting
more insulin. However, over time, insulin production
declines as the β cells fatigue and undergo apoptosis
(Figure 2). Compared to controls, those with impaired
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fasting glucose and T2DM have shown 40% and 63% loss
of β‐cell volume, respectively. Additionally, studies
reveal that T2DM β cells frequently die by apoptosis.29

While defective beta cells strongly associate with T2DM
pathogenesis, alpha cell destruction also correlates with
disease progression.29–31 Approximately 30% of T2DM
cases result from genetic abnormalities [32]. Genome‐
wide association studies have identified over 176 loci
implicated in T2DM, including CDKAL1, SLC30A8,
HHEX, CDKN2A/B, IGF2BP2, and others.33–35 Mutations
in genes coding for glucokinase, insulin receptors, and
mitochondria also contribute.32 For example, Unoki
et al. identified a mutation in the KCNQ1 gene involved
in insulin secretion.36

Insulin resistance results in decreased glucose
uptake in skeletal muscles and reduced kidney
reabsorption. This lack of glucose reabsorption leads
to glucosuria, as glucose is excreted in the urine.
Consequently, water follows the excreted glucose. In
healthy individuals, pancreatic beta cells synthesize
proinsulin and ensure proper insulin formation during
posttranslational modification. These cells respond to
hormonal and intracellular signals by stimulating
nutrient‐stimulating factor production. However, in

diabetes, nutrient deprivation in beta cells increases
hunger.29

T2DM complications include hypoglycemia, which
can occur in those receiving sulfonylurea or insulin who
engage in excessive physical activity. A less common
complication is diabetic ketoacidosis, wherein triglycer-
ides and amino acids are broken down for energy
instead of glucose.29 Glucagon stimulates ketone forma-
tion from free fatty acids, also utilizing free fatty acids
and alanine as substrates for hepatic glucose production
via gluconeogenesis. Specifically, this generates aceto-
acetic and beta‐hydroxybutyric acids, causing abdomi-
nal pain, vomiting, and other symptoms. Insulin
deficiency can also lead to a hyperglycaemic hyper-
osmotic state.32,34 While insulin normally inhibits
lipolysis, this is countered by catecholamines, cortisol,
and growth hormones. The resulting high serum glucose
concentration and increased diuresis raise osmotic
pressure. As the kidneys eliminate free water and
electrolytes, dehydration increases. Other microvascular
and macrovascular T2DM complications include CVD,
stroke, diabetic retinopathy, nephropathy, neuropathy,
and nonalcoholic fatty liver disease,34,35 but these are
beyond the scope of this review.

F IGURE 2 Pathophysiology of Type II diabetes. Alpha and beta cells of the pancreas secret insulin and glucagon, respectively. These two
hormones interact with the liver to regulate blood sugar levels. While glucagon stimulates glycogenolysis and gluconeogenesis, leading to a rise in
sugar levels in the blood, insulin promotes glycogenesis and glucose uptake in skeletal muscles and other tissues. In diabetes, there is either
impaired insulin secretion or insulin resistance, resulting in elevated plasma concentration of sugar.
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5 | THE APPLICATION OF ML
ALGORITHMS FOR DETECTION AND
PREDICTION IN T2DM

Early detection of diseases is crucial for effective
intervention, but often initial symptoms go unnoticed
until it is too late. High‐throughput computational
techniques offer a promising avenue for fast‐tracking
target identification and developing improved therapies.
In the context of diabetes, various ML approaches have
been applied to distinguish between healthy individuals
and those at risk.

Polat and Günes37 utilized PCA to distinguish
diabetes from healthy individuals. Farran et al.38 applied
a K‐neural network (KNN) to identify increased risks for
hypertension (94%) and diabetes (75%). Lai et al.39

predicted diabetes using LR, RF, DTs, and a gradient
boosting machine (GBM), highlighting GBM and LR as
superior algorithms. Ravaut employed a gradient boost-
ing DT model to predict 3‐year complication outcomes
due to diabetes,40 while Perveen et al.41 used a hidden
Markov Model to identify individuals likely to develop
T2DM in 8 years.

Wang et al.42 compared multivariate LR and artificial
neural network (ANN) on T2DM data, showing that
ANN had a higher predictive value. However, another
study favored RF over DT, NN, LR, and Naïve Bayes
(NB) for predicting diabetes risk.43

In the realm of chronic diseases, RF has been employed
to identify metabolite patterns. Dias‐Audibert et al.44 used
RF to identify biomarkers indicative of weight gain and
diabetes. Peddinti et al.45 employed feature selection to
reveal metabolites associated with T2DM. Sisodia et al.
reported NB having maximum accuracy in predicting
diabetes compared to DT and SVM algorithms.46

Several studies explored predictors of diabetes. For
instance, Oh et al.47 investigated the development of
T2DM from hyperlipidemia, hypertension, and impaired
fasting glucose. Marcos et al.48 used RF and GBM to
predict obesity in children based on 190 predictor
variables of body mass index (BMI). Zhang et al.49

identified urine glucose concentrations as the top
predictor of T2DM among various features. Dinh
et al.50 documented age as a predictor, while Kopita
et al.51 identified hyperglycemia as the primary predic-
tor when compared with age, HDL‐c, TG, physical
activity, and medical history.

The reviewed studies demonstrate the potential of
ML approaches, such as LR, RF, and NNs, to identify
individuals at risk for diabetes and predict future
complications. ML innovations for diabetes include risk
stratification, patient state assessment, and complica-
tion prediction using time series data. The key predic-
tors emerging from these computational analyses align
with known pathophysiological factors that contribute to
diabetes progression. For example, elevated blood
glucose, increased BMI, hypertension, and abnormal

lipid levels were repeatedly found to be predictive of
diabetes development and outcomes. These factors
cause systemic inflammation, insulin resistance, and
metabolic dysfunction—hallmarks of diabetes patho-
physiology. ML models were also able to discern
complex patterns among hundreds of variables to
pinpoint novel biomarker signatures of prediabetes
and diabetes‐related complications. Overall, these tech-
niques can complement the understanding of the
molecular underpinnings of disease and enhance early
risk profiling, prediction of long‐term outcomes, and
personalized therapy. When thoughtfully designed and
validated, ML models hold promise to reveal complex
diabetogenic pathways for more timely and targeted
prevention and treatment.

6 | PATHOPHYSIOLOGY OF CKD

CKD progressively damages the structure and function
of the kidneys.52 It is a major contributor to global
morbidity and mortality, with an estimated 1.2 million
deaths and 35.8 million disability‐adjusted life years
(DALYs) attributed to CKD in 2017.52 Survivors, espe-
cially those with end‐stage renal disease (ESRD), face
immense costs for medications and renal replacement
therapies (RRT). Without financial capacity for ongoing
dialysis or access to RRT, many succumb to premature
death. Early detection and diagnosis of CKD risk factors
like diabetes, hypertension, high sodium intake, and
obesity can prompt timely interventions to prevent
progression to ESRD (Figure 3). However, current
diagnostic tests like measuring albuminuria, protein-
uria, or urinary albumin‐to‐creatinine ratio have ques-
tionable sensitivity for detecting CKD.53 Estimating
glomerular filtration rate (eGFR) is increasingly used
for staging CKD. Serum creatinine levels are measured,
and eGFR is calculated using equations like Cockcroft‐
Gault or Modification of Diet in Renal Disease. CKD
stages are as follows: eGFR ≥60mL/min/1.73 m2 (Stages
1 and 2); eGFR 30–59mL/min/1.73m2 (Stage 3); eGFR
15–29mL/min/1.73m2 (Stage 4); and eGFR <15mL/
min/1.73m2 (Stage 5).52

7 | THE APPLICATION OF ML
ALGORITHMS FOR DETECTION AND
PREDICTION IN CKD

Dovgan et al.54 explored the application of ML
algorithms, such as RF, SVM, LR, k‐NN, XGBoost, and
NN, to predict the optimal timing for a patient with CKD
to initiate RRT, encompassing renal transplantation or
dialysis. Another study employed an NN to forecast
which individuals with acute kidney injury would
necessitate dialysis within a 48‐h window.55 Assessing
CKD severity, ML algorithms, including lasso regression,
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NN, ridge regression, k‐NN, SVM, and XGBoost,
achieved an average area under the curve (AUC) of
0.87 and a sensitivity of 0.8.56 Proteomics data was
subjected to ML algorithms to differentiate immune‐
mediated CKD from CKD caused by other factors.57

Almansour et al.58 utilized SVM, k‐NN, and Soft
Independent Modeling of Class Analogy on the UCI
repository data set for chronic renal failure (CRF),
achieving a 93% accuracy in distinguishing CKD patients
from healthy individuals.

To predict the onset of CRF, NB, ANN, DT, and
random subspace classification algorithms were
applied, with DT identified as the best classifier among
them.59 Lee et al. employed an unsupervised bag‐of‐
words model on histopathology images from kidney
biopsies, revealing morphological features predicting
CKD existence and outcomes with a 0.93 AUC for GFR
and loss of function after 1 year.60 Bueno et al.61

demonstrated a sequential CNNs segmentation‐
classification strategy with 98% accuracy in detecting
and classifying normal and sclerotic glomeruli. Predict-
ing postoperative acute kidney injury risk in renal cell
carcinoma patients, ML models, including SVM, RF,
extreme gradient boosting, and light GBM (gightGBM),
outperformed LR.62

Kim et al.63 delved into predicting dialysis adequacy
in chronic hemodialysis patients using ML algorithms,

specifically RF, and XGBoost, alongside deep learning
models such as CNN and gated recurrent unit. The
XGBoost model emerged as the most accurate method,
demonstrating superior performance compared to other
algorithms. In summary, these studies showcase the
versatility of ML in predicting various aspects of CKD,
from onset and severity to treatment adequacy.

The potential of ML approaches like RF, NNs, and
SVMs to predict different aspects of CKD progression
and management has been established. The reviewed
applications leverage longitudinal EHR data for progno-
sis forecasting and precision nephrology, while medical
imaging and sensing data improve outcomes posttrans-
plantation. For example, histology images and proteo-
mics data were used to discern patterns predictive of
immune‐mediated kidney damage versus other CKD
causes. ML models were also able to integrate diverse
variables such as demographics, lab tests, and medica-
tions to forecast the onset of ESRD requiring dialysis.
Optimal timing of interventions like transplantation was
another application. Key predictors align with known
drivers of CKD, including hypertension, diabetes,
inflammation, and glomerular scarring. By uncovering
complex interactions among hundreds of factors, ML
can complement the understanding of renal decline
mechanisms and support personalized prediction of
disease trajectory. These techniques show promise in

F IGURE 3 Pathophysiology of chronic kidney disease.52 Kidney injury results in loss of nephrons and increased levels of angiotensin II.
Angiotensin II is a vasoconstrictor that triggers increased blood pressure. Alongside hypertension, there is an increase in glomerular permeability,
tubular protein reabsorption, tubular/interstitial inflammation, and eventually renal scarring.
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explaining CKD pathways for more timely and targeted
prevention and treatment. However, model interpret-
ability and causality warrant careful assessment when
applying algorithms clinically.

8 | PATHOPHYSIOLOGY OF CVDs

CVDs, including coronary artery disease, stroke,
rheumatic heart disease, and congenital heart defects
(Figure 4), are major causes of mortality worldwide.64

Key diagnostic tests for CVD risk evaluation include
blood lipid measurements, electrocardiography (ECG),
coronary artery calcium (CAC) scoring, and coronary
CT angiography (CCTA). When strapped to a patient,
ECG provides information about atrial depolarization
(P‐wave), ventricular depolarization (QRS complex),
and ventricular repolarisation (T‐wave). As a result,
ECG reveals the electrical stability of the heart and can
be used to detect whether the heart is experiencing
normal rhythm, atrial fibrillation, heart block, pre-
mature ventricular contraction, and premature atrial
contraction, among other arrhythmias. ML algorithms
like ANNs and SVMs can optimize ECG interpretation.
CAC scoring quantifies calcification in coronary arter-
ies via computed tomography (CT) and independently
predicts CVD risk.65 CCTA visualizes coronary plaque
morphology and vessel structure through noninvasive
CT imaging. However, CCTA interpretation is subjec-
tive with inter‐reader variability in diagnoses.66

Advanced computational analysis of CCTA scans could
enable more accurate and consistent CVD risk
stratification.

9 | THE APPLICATION OF ML
ALGORITHMS FOR THE DETECTION
AND PREDICTION OF CVDs

ML algorithms have proven effective in enhancing the
reliability and accuracy of scoring systems in medical
imaging, particularly in CCTA automation. Applying
SVM and nearest neighbor algorithms in CCTA automa-
tion demonstrated improved interpretability and quan-
tification of image phenotypes.67 Additionally, Bruse
et al.68 successfully employed characteristic cardiac
magnetic resonance imaging (MRI) and hierarchical
clustering analysis to subdivide aortic anatomical
models into healthy cohorts and individuals with
congenital heart disease. Similarly, cluster analysis
applied to CT data allowed the subdivision of indivi-
duals with a bicuspid aortic valve into three distinct
phenotypes.69

In predicting atherosclerotic CVD, ML methods such
as RF, GBM, XGBoost, and LR were shown to be
comparable or even superior to pooled cohort equa-
tions.70 Yang et al.71 reported the superiority of RF over
other ML methods like classification and regression
trees (CART), NB, Bagged Trees, and Ada Boost in
predicting CVDs. Quesada et al.72 found that 10 out of
15ML algorithms adequately predicted CVD in a large
cohort. AutoPrognosis, an automated framework, was
demonstrated to improve the risk prediction of CVD
compared to traditional methods such as Framingham
Score and the Cox proportional hazard model.73

Panaretos et al.74 highlighted the superior predictive
potential of ML methods, specifically RF and k‐NN, in
assessing the relationship between dietary patterns and
cardiovascular risk compared to linear regression.

In the context of congenital heart defects, Yu et al.75

applied PCA and RF to identify potential biomarkers
using DNA methylation data. Three genes (MIR663,
FGF3, and FAM64A) were identified with RF, achieving
an average sensitivity and specificity of 85% and 98%,
respectively. Principal components explained over 70%
of the variance and effectively classified samples with
congenital heart defects and control groups (Figure 5).

The reviewed studies demonstrate the potential of
ML approaches like RFs, SVMs, and clustering algo-
rithms to enhance diagnosis and risk prediction for
CVDs. ML techniques for cardiovascular risk prediction,
electrocardiogram (ECG) analysis, medical imaging
analysis, electronic phenotyping from EHRs, and
multi‐omics integrative modeling have been established.
By automating and improving the interpretation of
complex diagnostic tests like CT angiography, ECG, and
MRI, these techniques can enable earlier detection of
conditions like atherosclerosis, heart arrhythmias, and
congenital defects. For instance, ML models were able
to identify patterns in CT angiography scans that
distinguish normal anatomy from congenital defects
and progressive atherosclerosis. In addition, ML modelsF IGURE 4 Different types of cardiovascular diseases.
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were able to integrate diverse factors from genetics, diet,
and clinical data to predict individual risk of developing
CVD. Key features identified by the models provide
insight into the underlying biology. For example, DNA
methylation patterns were linked to congenital heart
defects. Overall, these computational methods show
promise in elucidating the intricate molecular pathways
driving cardiovascular pathologies. When thoughtfully
designed and validated, they could guide personalized
prevention and treatment strategies. However, close
collaboration between data scientists and clinicians is
crucial to ensure clinical validity and utility.

10 | PATHOPHYSIOLOGY OF
CANCER

Cancer, characterized by abnormal gene functioning,
arises from spontaneous DNA mutations, either inher-
ited or induced by environmental agents such as
radiation, chemicals, and viruses. These alterations
include point mutations, translocations, deletions, and
gene amplifications, affecting crucial genes like proto‐
oncogenes (e.g., K‐ras, epidermal growth factors
[EGFR]) and tumor suppressor genes (e.g., TP53,
retinoblastoma).76–78 The resulting modified cells evade
immune responses and growth inhibitory signals,
leading to uncontrolled proliferation and immortality.
Tumor cells must navigate through various stages,
interacting with the extracellular matrix, penetrating
vascular barriers, entering circulation, and ultimately
colonizing distant organs.79,80

The mechanism underlying cancer cell proliferation
involves the secretion of growth factors and their
corresponding receptors, such as nerve growth factor,
epidermal growth factor (EGF), transforming growth
factor (TGF‐α and TGF‐β), and platelet‐derived growth

factor (PDGF). These factors, in conjunction with
cytokines and hormones, trigger intracellular bio-
chemical signaling that activates or represses genes.
Lack of growth factor stimulation can result in pro-
grammed cell death and apoptosis.81–84 It is increasingly
evident that cancer results from both genetic alterations
and epigenetic changes, with cancer cells exhibiting
distinct epigenomic profiles compared to healthy cells.
Epigenetics, defined as heritable changes in gene
expression without alterations to the DNA sequence,
involves processes including DNA methylation, nucleo-
some remodeling, and histone modification. In cancer,
CpG islands in promoter regions become hypermethy-
lated, silencing crucial genes like tumor suppressors.85,86

Aberrant posttranslational modifications of histones
and altered functions of histone‐modifying enzymes
contribute to certain cancers. For instance, missense
mutations in p300 histone acetyltransferase have been
identified in colorectal and breast cancers. Changes in
histone modification patterns have been linked to
predicting prostate cancer recurrence.87–89

The pathophysiology of cancer involves a complex
interplay of genetic alterations and epigenetic changes
that disrupt normal cellular processes (Figure 6). The
transition from controlled cellular growth to uncon-
trolled proliferation and invasion is orchestrated by a
combination of mutations in critical genes and modifi-
cations in epigenetic mechanisms. Understanding these
underlying molecular events is crucial for developing
targeted therapeutic interventions and improving can-
cer management strategies.

11 | THE APPLICATION OF ML
ALGORITHMS FOR DETECTION AND
PREDICTION OF CANCER

The detection of various cancers poses a challenge for
clinicians, who traditionally rely on biopsies for diagno-
sis. However, this approach may underutilize significant
information. MRI has emerged as a powerful tool for
visualizing tumors, aiding in biopsy selection, assessing
tumor severity and stage, and facilitating the develop-
ment of targeted therapies. While MRI is valuable for
tumor localization and patient stratification, interpreta-
tion can be subjective, leading to interreader variability
among radiologists.90–93

Laboratory technologies such as polymerase chain
reaction (PCR) and next generation sequencing (NGS)
enable quantitative detection of gene expressions in
various tissues. Tests like in situ hybridization and DNA
microarrays identify cancer biomarkers, allowing the
classification of multiple cancers.94 The data generated
by these technologies, rich and complex, benefits from
advanced computational approaches for interpretation.
ML plays a vital role in comprehensively analyzing data,
identifying patterns, and improving patient diagnosis.

F IGURE 5 Principal component analysis (PCA) (with 95%
confidence ellipses) showcases the clustering patterns and reasonable
discriminatory power for samples with congenital heart defects (case)
and control using the top 20 expressive genes identified via RF based
on orthogonal linear combinations of the features.
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ML methods have demonstrated effectiveness in vali-
dating presumptive diagnoses, comparable to experi-
enced human radiologists.95

ML extends its application to genomics, enhancing
the understanding of cellular processes affected by
genomic alterations. ML algorithms analyze gene
sequences, expression profiles, histone modifications,
and RNA‐seq data to differentiate disease phenotypes
and make predictions. CNN integrated into DNA/RNA
sequence data predicts binding scores and DNA‐RNA‐
protein interactions. Algorithms are developed based on
patterns in genetic data to build models, unraveling the
impact of genomic alterations on cellular processes such
as metabolism and cell growth.96–98

Moreover, ML algorithms excel in detecting genomic
variants associated with diseases, whether in coding or
noncoding regions. They rank genomic variants based
on pathogenicity, providing valuable insights into
disease mechanisms. ML can also be employed to
identify missing heritability and genetic variants in rare
diseases. For instance, Yin et al.99 demonstrated that
CNN revealed a link between promoter regions and
amyotrophic lateral sclerosis.

In summary, we have highlighted key applications of
ML methods for cancer detection, diagnosis, prognosis,
and treatment prediction including medical imaging

analysis, molecular profiling integration, and patient
trajectory modeling from EHR data. The utility of ML
approaches, including CNN, in advancing cancer
detection, diagnosis, and treatment has been empha-
sized. By automating the analysis of complex diagnostic
imaging and genomic data, these computational tech-
niques can uncover novel biomarkers and molecular
patterns associated with cancer subtypes and disease
trajectories. Key applications include improving radiol-
ogist interpretation of MRI scans for tumor characteri-
zation, as well as discerning complex gene expression
signatures that provide insights into dysregulated cellu-
lar pathways driving malignancy.95–98 For example,
models were able to link promoter region mutations to
neurodegenerative disease.99 Such computational find-
ings can complement understanding of the intricate
molecular events underlying tumor initiation, progres-
sion, and metastasis.

12 | PATHOPHYSIOLOGY OF
CHRONIC RESPIRATORY DISEASES

Chronic respiratory diseases, including asthma,
occupational lung diseases, chronic obstructive
pulmonary disease (COPD; emphysema, chronic

F IGURE 6 The metastatic cascade. The spread of a tumor is characterized by a sequence of events. These events are local invasion,
intravasation, circulation through the vasculature, extravasation, formation of micrometastasis, and colonization.

10 | AFRIFA‐YAMOAH ET AL.



bronchitis, chronic asthma), and pulmonary hyper-
tension, are a group of progressive diseases that block
the airway and affect multiple sites of the lung, such
as the alveolar and perialveolar tissues. This group of
diseases may permanently deprive a person of normal
breathing and, when unmanaged, can lead to death.
In 2019 alone, asthma killed 46,100 people and
affected an estimated 262 million people.100 These
diseases are characterized physiologically by obstruc-
tion of airflow into and out of the lungs and airway
remodeling due to chronic inflammation or infec-
tions. For example, emphysema is a permanent
enlargement of alveolar spaces, and some pathologi-
cal factors that have been implicated in its develop-
ment include protease‐antiprotease activity or
increased activity of matrix metalloproteinase
(MMPs) that degrade lung matrix (MMP‐8 and ‐9),
histone deacetylase inhibition, and oxidant
injury.101–103 Like many other lung diseases, a
common environmental factor that is linked to
emphysema is tobacco smoking. Cigarette smoke
has been documented to unleash elastases, MMPs,
proteinases, and cathepsins from macrophages.
Moreover, cigarette smoke can trigger the release of
TGF‐β, EGF, and PDGF, as well as cytokines such as
IL‐8 and interferon‐gamma (IFN‐γ). Combined, these
factors lead to airway remodeling and damage of
elastic fiber that subsequently results in airflow
limitation.103 Spirometry, lung volume determina-
tions, and diffusing capacity assessments are the
common pulmonary function tests. The goals of these
tests are to measure the extent of the lung anomaly
and to describe the physiological abnormality.104

For many years, distinguishing restrictive pulmo-
nary disease from obstructive has been done by
quantifying the ratio of the 1 s forced expiratory
volume (FEV1) to forced vital capacity (FVC) and
calculating its percentage. In a normal individual,
75%–80% of the total volume of exchangeable air in
the lungs ([vital capacity, i.e., VC = tidal volume
[TV] + inspiratory reserve volume [IRV] + expiratory
reserve volume [ERV]) is exhaled in 1 s. An FEV1/
FVC < 70% indicates an obstructive lung disease,
whereas restrictive lung disorders generally have an
FEV1 to FVC ratio unchanged or greater than 70%.105

Making a correct diagnosis is a critical step to
optimizing therapy for COPDs. For example, Aaron
et al. reported that 20%–73% of cases of asthma are
undiagnosed, whereas overdiagnosis has been docu-
mented in 30% to 61% of cases.106 Also, under-
diagnosis and overdiagnosis have been documented
in 70% of COPD cases. Whereas underdiagnosis of
respiratory diseases may result in reduced quality of
life and frequent hospitalization. On the contrary,
overdiagnosis may potentially expose patients to
detrimental side effects from medications that are
unlikely to give a clinical benefit.107

13 | THE APPLICATION OF ML
ALGORITHMS FOR DETECTION AND
PREDICTION IN CHRONIC
RESPIRATORY DISEASES

The application of high‐resolution CT and bronchoal-
veolar lavage108 has become increasingly prevalent in
detecting interstitial lung diseases like idiopathic pul-
monary fibrosis and sarcoidosis.109 Surgical lung biopsy,
such as transbronchial lung cryobiopsy, may be neces-
sary for a definitive diagnosis in some cases.110

Advancements in medical technology have ushered in
a new era where ML plays a pivotal role in diagnosing
lung diseases. ML algorithms analyze patterns in
diagnostic tests, automatically interpret information,
and predict outcomes.111 For instance, Finamore et al.
utilized K‐means cluster analysis to assess the associa-
tion between end‐stage COPD, chronic heart failure, and
CRF with mobility, care dependency, health status, and
life‐sustaining treatment preferences, achieving a clas-
sification accuracy of 94.22%.112 Mostafaei et al. ex-
plored the link between smoking gene expression and
COPD using various ML algorithms such as AdaBoost
Classification Trees, DT, GBM, NB, NN, RF, SVM,
adaptive LASSO, Elastic‐Net, and Ridge LR. Their
analysis identified 44 candidate genes, including
PRKAR2B, GAD1, LINC00930, and SLITRK6, implicated
in COPD pathogenesis.113

ML algorithms have also been instrumental in early
exacerbation detection and triage in COPD. SVM, LR,
NB, k‐NN, gradient boosted, and ensemble DT methods
outperformed individual pulmonologists in determining
the likelihood of exacerbation and consensus triage,
offering transparent and consistent decision‐making.114

Similarly, NN could detect cancerous lung nodules as
accurately as experienced radiologists.115 In the domain
of emphysema and interstitial lung disease, ML algo-
rithms have enhanced visual scoring with ad hoc
designed image‐based features, allowing the characteri-
zation of 10 novel emphysema radiological subtypes.116

Moreover, these algorithms have facilitated the cost‐
effective classification of fibrotic lung disease in a highly
reproducible manner.117 Combining ANN and spiro-
metric measurements, Ioachimescu et al. distinguished
between normal, obstruction, restriction, and mixed
impairments more accurately than traditional
methods.118 CNN with CT scans as output surpassed
traditional spirometry parameters and RF classifiers
in discriminating predominant emphysema/airway
phenotypes in COPD.119

In the context of COVID‐19, Ali et al. classified
pneumonia severity (mild, progressive, and severe) in
patients using SVM, DT, k‐NN, and CNN, achieving high
accuracy rates ranging from 87.5% to 95.622%.120 ML
algorithms have also been applied to predict and
explain inflammation in Crohn's disease, with GBMs
demonstrating accurate predictions of inflammation
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severity.121 Regularized regression and LR performed
comparatively well, showcasing their utility in disease
prediction.121

We have highlighted the potential of ML approaches,
such as NNs, SVMs, and cluster analysis, to advance
diagnosis and prognosis in chronic respiratory illnesses
like COPD, pulmonary fibrosis, and COVID‐19
pneumonia.108–121 These techniques could discern
distinct disease subtypes and molecular patterns associ-
ated with pathogenesis via analysis of complex imaging
data and gene expression profiles. For example, models
identified candidate genes like PRKAR2B and SLITRK6
linked to smoking‐related lung damage.113 Radiological
emphysema subtypes were also revealed. Such computa-
tional insights can reveal the intricate inflammatory,
fibrotic, and dysfunctional respiratory pathways under-
lying these conditions. Accurate classification of disease
severity and exacerbation risk using ML could also guide
triage and timely interventions. These analytical
approaches hold promise to unravel the complex
molecular underpinnings of respiratory diseases for
improved early detection, personalized treatments, and
prognostic information to enhance patient outcomes.
However, close collaboration between data scientists and
pulmonologists is key to clinically validate and imple-
ment these emerging technologies responsibly.

14 | PATHOPHYSIOLOGY OF
INFLAMMATORY DISEASES

Inflammation serves as an innate defense mechanism
involving various components such as immune cells
(e.g., leukocytes, macrophages), cell‐derived mediators
(histamines, prostaglandins, leukotrienes, cytokines,
nitric oxides), and plasma‐derived mediators (comple-
ment proteins, kinins). This collective response aims to
combat infections, eliminate dead cells or tissues, and
initiate repair and recovery processes.122,123 The inflam-
matory process can manifest as either acute or chronic.

Acute inflammation is short‐lived, with an elevated
inflammatory response that subsides once the cause of
cell injury is removed, inactivated, or degraded.122,123

Characterized by an efflux of neutrophils to the site of
injury, acute inflammation involves vascular changes
leading to increased vascular permeability, resulting in
the leakage of plasma proteins and the formation of
edema. Prostaglandins, leukotrienes, and thromboxane
A2, synthesized from arachidonic acid, contribute to
increased vascular permeability.80

Chronic inflammation, influenced by psychological,
biological, and environmental factors, is characterized by
prolonged leukocyte and macrophage accumulation,
concurrent tissue injury, or repair. Recovery in chronic
inflammation can occur through neutralization of the
irritant, destruction by leukocytes, or antibiotic use.
Alternatively, damage may be repaired through the

formation of granulation tissue (fibroblasts, blood vessels,
and macrophages), leading to fibrosis or scarring.

Both acute and chronic inflammation share a
common mechanism, though the initial stimuli may
differ. Acute inflammation is triggered by pathogenic
molecules, known as pathogen‐associated molecular
patterns (PAMPs), binding to pattern recognition
receptors (PRRs) on immune cells. PRRs include toll‐
like receptors, NOD‐like receptors, C‐type lectin recep-
tors, RIG‐1‐like receptors, and nucleotide‐binding oligo-
merization domain‐like receptors.124 Conversely,
chronic inflammation is primarily caused by damage‐
associated molecular patterns (DAMPs) and is not
dependent on PAMPs or the initial stimulus.

Cytokines play a crucial role in regulating the immune
response during inflammation, classified as pro‐
inflammatory (e.g., IL‐1, IL‐6, and TNF‐α) and anti‐
inflammatory (TGF‐β, IL‐10, and IL‐4). The homeostatic
regulation of cytokine expression in normal cells is
essential.125 Uncontrolled inflammation, such as a strong
response against self‐antigens or harmless environmental
antigens, can lead to tissue damage, impaired immune cell
function, hindered repair mechanisms, and increased
susceptibility to diseases. Abnormal inflammatory
responses are associated with pathological events such
as diabetes, inflammatory bowel disease (IBD), psoriasis,
Crohn's disease, and arthritis.124 (See Figure 7 for a visual
representation of cytokine regulation in a normal cell).

15 | THE APPLICATION OF ML
ALGORITHMS FOR DETECTION AND
PREDICTION IN INFLAMMATORY
DISEASES

In clinical practice, markers of inflammation, including C‐
reactive protein (CRP), serum amyloid A, and fibrinogen,
play a crucial role.124,126 Inflammatory disorders exhibit
diverse presentations and localizations and can affect
multiple organs. This heterogeneity poses significant
challenges for diagnosis and management. While histologi-
cal and endoscopic evaluations can be useful, they may not
be sufficient for accurate diagnosis and can be labor‐
intensive, requiring expertise. Determining the extent and
severity of tissue damage and its localization is essential for
deciding the most appropriate treatment approach. ML
algorithms offer a promising avenue for classifying various
inflammatory conditions and predicting responses to
therapy.

Mossotto et al.127 utilized unsupervised ML algorithms
(PCA, multidimensional scaling) and supervised ML
algorithms such as ensemble learners, linear discriminant
analysis, and SVM to classify children with pediatric
inflammatory bowel disease (PIBD). Applying these
algorithms to endoscopic and histologic data enabled the
classification of 83.3% of individuals.127 Similarly, in
another study, SVM, XGBoost, dense neural network, RF,
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and CNN were employed to classify PIBD using historical
data. CNN emerged as the best performer, achieving an
accuracy of 90.57% with a standard deviation of 3.45.128

Among patients with IBD receiving intravenous gluco-
corticosteroids, RF identified higher levels of CRP and
longer disease duration as predictors of their hyperglycae-
mic status.129 Additionally, RF accurately predicted IBD
(AUC> 0.9) based on 117 differential bacterial taxa.130

Kraszewski et al. developed ML algorithms to predict
Crohn's disease and ulcerative colitis using historical data
from fecal, urine, and blood tests. RF emerged as the best
classifier for Crohn's disease and ulcerative colitis with a
precision of 97% and 91%, respectively.131

To distinguish between IBD and alimentary lym-
phoma in cats, Awaysheh et al.132 created three ML
algorithms, including NB, DT, and ANN. Models trained
on data from complete blood count and serum
chemistry tests showed that NB and ANN were better
classifiers (sensitivities of 70.8% and 69.2%, respectively)
than DT (63%, p < 0.0001). ML algorithms were also
employed for risk prediction and early diagnostic
disease of IBD associated with arthropathy, achieving
promising results with an ROC of 0.90 (95% confidence
interval [CI] 0.80–0.99; accuracy 96%).132

ML techniques, including RF, NNs, and SVM, offer the
capability to analyze complex patterns in biomarkers,
histology, microbiome, and other clinical data. By applying
these techniques, distinct molecular subtypes of inflam-
mation affecting specific organs could be identified. For
instance, models have successfully differentiated Crohn's
disease from ulcerative colitis based on data from fecal
and blood tests.131 Some of the key variables identified by
algorithms, such as CRP levels and bacterial composition,
provide valuable insights into the drivers of chronic
inflammation.129 ML approaches can also integrate diverse
factors to predict steroid response and anticipate compli-
cations, such as arthropathy.

16 | CHALLENGES OF ML
APPLICATIONS IN CHRONIC
DISEASE DETECTION AND
PREDICTION

Currently, there are a limited number of internationally
approved products specifically designed for chronic
disease detection and prediction using ML techniques.
However, there are several promising initiatives and

F IGURE 7 Response to inflammation. The components of inflammation include vascular changes―vasodilation that results in increased
blood flow and increased vascular permeability that allows fluids to reach the infected site. Immune cells, including macrophages and leukocytes,
are also activated to phagocytose infectious agents. Monocytes are also recruited, which become macrophages. These macrophages can
differentiate into M1 and M2 when stimulated by cytokines. M1 releases the anti‐bactericidal compound NO, whereas M2 macrophages promote
wound healing and tissue repair. Protein systems, including the complement, coagulation, and kinin, are all activated inflammatory responses.
Depending on the stimulus, T‐cells may be differentiated into TH1, TH2, and TH17, and all these are involved in various stages of inflammation.
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ongoing efforts to bring such products to market (see
https://www.fda.gov/medical-devices/software-
medical-device-samd/artificial-intelligence-and-
machine-learning-aiml-enabled-medical-devices). One
notable example is the FDA‐approved IDx‐DR, an AI‐
based digital diagnostic system for detecting diabetic
retinopathy, a common complication of diabetes that
can lead to blindness. IDx‐DR, developed by Digital
Diagnostics, uses ML algorithms to analyze images of
the retina and identify signs of diabetic retinopathy,
enabling early detection and intervention. Another
example is the CE‐marked KardioScreen™, an ML‐
based tool developed by Kardiolytics for predicting the
risk of CVD. KardioScreen analyses various patient data
points, including demographics, medical history, and
lifestyle factors, to provide personalized risk assess-
ments and recommendations for preventive care.

While these examples demonstrate the potential of
ML in chronic disease detection and prediction, it is
important to note that the regulatory landscape for AI‐
based medical products is still evolving. ML holds
immense potential to transform chronic disease detec-
tion and management, yet thoughtful implementation is
key to realizing benefits while navigating pitfalls,
including model transparency, causality, bias, valida-
tion, data quality and EHR limitations and privacy trade‐
offs, and impacts on the doctor–patient relationship.

16.1 | Model transparency and
interpretability

Model transparency and interpretability have emerged
as major challenges in the application of ML, particu-
larly deep learning, to healthcare.133 Complex algo-
rithms like deep NNs comprise multiple hidden layers
and intricate connections between computational
nodes. This complexity enables powerful pattern
recognition from data but also leads these models to
behave as inscrutable “black boxes”, obscuring the basis
for their predictions and diagnoses. Without transpar-
ency into the reasoning behind AI system outputs,
barriers are posed to clinical acceptance and real‐world
deployment of such tools. Moreover, the opaqueness
prevents accountability in auditing model decisions that
impact patient care.

Some strategies have been proposed to open the
black box and improve model interpretability. For
example, Ribeiro et al.134 proposed the novel Local
Interpretable Model‐Agnostic Explanations technique
that can help provide local explanations about the
contributions of individual inputs to model outputs.134

However, fundamental trade‐offs remain between accu-
racy and explainability. Simpler and more interpretable
models like DTs often achieve lower performance than
black‐box models, and explanations of model function-
ing may not fully capture the intricate interactions

occurring within multilayer NNs. Interpretability tech-
niques also make assumptions or approximations about
the model to generate explanations rather than reveal-
ing the true reasoning process. Significant research is
still needed to make deep learning models more
intrinsically understandable without sacrificing predic-
tive power. For now, pragmatic approaches that provide
post hoc explanations of model behaviors may present a
middle ground. However, ultimately, reasonable inter-
pretation of the causal mechanisms linking input
features to outputs is key to engendering appropriate
trust in ML algorithms and enabling responsible clinical
adoption.

16.2 | Inference on causality

Determining causality versus correlation is another
fundamental challenge in applying ML to healthcare.135

ML models are efficient at finding predictive patterns
and correlations in data. However, just because a model
identifies a correlation between variables does not
necessarily mean that one causes the other. For
instance, an algorithm may predict disease outcomes
based on detected biomarkers, but those markers may
simply be correlates rather than true causal factors
driving pathogenesis. While predictive correlations can
still be clinically useful, revealing underlying causative
mechanisms is critical for developing effective
interventions.

Most ML models are statistical rather than causal by
nature—they uncover mathematical relationships but
cannot confirm causal mechanisms like biological
experiments can. Combining ML with biological knowl-
edge and experimental validation in a feedback loop is
key to moving from correlation to causation. For
example, putative causal genes identified by algorithms
can be experimentally perturbed to validate effects on
disease processes. Promising new techniques are also
emerging from the field of causal inference that
integrate causal assumptions into ML models.136 How-
ever, causal inference from observational data remains
challenging. Access to large datasets from interventional
studies, where variables are manipulated rather than
just observed, can enhance the ability to discern
causation. Overall, ML offers a valuable hypothesis‐
generating tool, but collaborations with domain experts
and experimentalists are crucial to substantiate causal
discoveries, explain disease mechanisms, and guide
therapeutic development.

16.3 | Algorithm biases

Algorithmic biases pose a major challenge in applying
ML to healthcare, as models can perpetuate disparities if
trained on skewed or incomplete data.137 Real‐world
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datasets often reflect societal biases and lack diverse
representation. If certain populations are underrepre-
sented in training data, models may learn patterns that
disproportionately benefit the majority groups. For
example, an algorithm to predict disease risk could be
less accurate for minorities if developed using data from
predominantly white patients.

Several strategies exist to help mitigate algorithmic
bias and promote fair representation.138 Careful sam-
pling and data augmentation techniques can improve
model training with balanced, representative data.
Algorithms can also be constrained to satisfy mathe-
matical definitions of fairness, like producing equal false
positive/negative rates across groups. However, com-
pletely eliminating bias is enormously challenging,
given the complexities of real‐world data. Bias can be
introduced from many sources, including incomplete
knowledge of confounding variables, and equitable
outcomes may require trade‐offs between fairness
constraints and model performance.

A multidimensional approach is, therefore, essential.
In addition to technical bias mitigation techniques,
diversity among data scientists and interdisciplinary
teams incorporating domain experts can improve
consideration of biases throughout development. Open
communication, standardized evaluation metrics, and
careful scrutiny of model behavior across user groups
are imperative. However, understanding the limitations
of available data and inevitable gaps in knowledge is
key. The continuous evolution of best practices for
responsible design is crucial to fulfilling the full
potential of ML in supporting chronic disease prediction
and management. Above all, these technologies should
augment human intelligence and not replace human
accountability for equitable care.

16.4 | Model validation

Rigorous validation on heterogeneous datasets is critical
to assess the real‐world generalizability of ML models
and avoid biases from overfitting to limited data.139

Common practices like cross‐validation on held‐out test
sets, while useful, may not adequately evaluate model
performance across diverse settings. Algorithms tuned
on data from a single institution, for instance, may not
generalize well to other populations and care
environments.

Robust validation requires testing models on data
that differ meaningfully from the original training
distribution. Strategies include evaluating models across
multiple datasets from distinct institutions or locations
and on patient subgroups with differing demographics,
risk factors, and disease stages. Challenging models with
synthesized data containing novel combinations of
features can also assess generalizability. Furthermore,
standardized reporting guidelines have been proposed

to improve reliability and transparency in describing
model development, evaluation, and real‐world
testing.140

However, major barriers to rigorous validation
remain around data availability, quality, and inter-
operability across settings. Thoughtful regulatory guid-
ance can help stimulate the generation of high‐quality,
heterogeneous datasets.140 But ultimately, cooperation
across institutions and the healthcare ecosystem is
imperative to enable robust model evaluation and
sustain trust in ML technologies. Ongoing monitoring
of performance across populations and care settings
should be embedded in clinical deployment. Although
resource‐intensive, a dedicated focus on generalizability
can ensure ML lives up to its potential while avoiding
the pitfalls of overfitting.

16.5 | Data quality

Data quality issues like incompleteness, noise, biases,
and variability pose major obstacles to developing
accurate and robust ML models in healthcare.141 Real‐
world health data is often messy, with challenges like
missingness, duplication, and errors. Missing data can
stem from skipped measurements or documentation
lapses. Strategies like imputation methods have been
proposed to address incomplete datasets. But there are
limits to techniques for handling missing data, and
lowered data quality can hamper model performance
and validity.

More fundamentally, success with ML hinges on
access to comprehensive, high‐quality, standardized,
and well‐curated data. This necessitates dedicated
efforts to properly generate, record, structure, validate,
integrate, and prepare data for computational use.
Standardized terminologies and ontologies are key to
unifying data from disparate sources. But thoughtfully
designed EHR, transparent data management protocols,
and governance policies are equally crucial to engender
trust and enable effective sharing.

The FAIR principles provide useful guidelines,
emphasizing the findability, accessibility, inter-
operability, and reusability of data.142 Adherence to
such principles can fuel ML by facilitating aggregation of
diverse, high‐fidelity data. But this requires cross‐
institutional and cross‐stakeholder collaboration. While
data curation demands resources, the investments can
pay long‐term dividends for developing and responsibly
implementing AI in medicine.

16.6 | Quality, structure, and
fragmentation of EHRs

EHRs offer a valuable source of real‐world clinical data.
However, major challenges exist around the quality,
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structure, and fragmentation of EHR data, which can
limit utility for ML.143 Records often contain irregular
sampling, redundant entries, missing values, and coding
errors. Lack of standardization across healthcare sys-
tems also hinders the integration of records. Finally,
EHRs are designed for billing and clinical workflows—
not computational analysis.

However, advances in transfer learning and genera-
tive modeling show promise in leveraging EHR data
despite limitations.144,145 Transfer learning adapts mod-
els trained on rich datasets to new tasks where data is
sparse, enabling learning from imperfect EHR data.
GANs can simulate realistic synthetic EHR records to
augment training data, while federated learning also
allows collaborative model development across systems
without centralized data sharing. Yet gaps remain in
effectively harnessing EHR data, and the key priorities
include improving data quality through error correction
techniques and enhanced documentation practices.
Clinical and computational experts collaborating to
optimize data collection, structure records suitably for
analysis, and apply privacy‐preserving analytic tech-
niques will further enhance the promise of EHR mining.

16.7 | Privacy trade‐offs and impacts on
the doctor–patient trust

The increasing use of ML algorithms in medicine has
the potential to alter the traditional doctor–patient
relationship and responsibility structures, potentially
leading to tensions between privacy and utility
trade‐offs.146 To train accurate models, ML systems require
large, high‐quality datasets, which may involve collecting
and analyzing sensitive patient information without
explicit consent.147 Moreover, the opacity of ML models
challenges informed consent and makes it difficult for
clinicians to explain ML‐aided diagnoses, disrupting
doctor‐patient trust and shared decision‐making. This
creates an ethical dilemma regarding patient privacy
versus the potential public health benefits.146,147

To ensure responsible implementation, data collec-
tion and ML model development should adhere to
principles of data minimization, transparency, and
patient consent.148 While ML can provide diagnostic
and treatment recommendations, the clinician remains
responsible for the final judgment and care of the
patient. To uphold ethical doctor–patient relationships
as ML adoption accelerates, clinicians must communi-
cate the role and limitations of ML in a transparent
manner to patients, invite patient participation in ML‐
related decisions, advocate for explainable ML systems,
audit ML‐aided diagnoses for biases, and retain respon-
sibility for all clinical judgments, advocating against fully
autonomous ML diagnosticians.149,150 To this end,
explainable AI systems should be favored over black‐
box models when reasonable, and ML‐aided decisions

must be audited for biases that could exacerbate
healthcare disparities.149 Additionally, guidelines and
policies are needed to clarify liabilities and preserve
clinician accountability as the human linchpin in
healthcare.

17 | CONCLUSION AND OUTLOOK

The exponential growth of complex biomedical data
from sources like genomics, medical imaging, EHRs,
and wearables has outpaced traditional statistical
analysis methodologies. ML offers a promising avenue
to help researchers, clinicians, and healthcare profes-
sionals exploit the rich insights of multimodal data. A
key advantage of ML is the ability to rapidly process
expansive, high‐dimensional datasets to identify pat-
terns and make predictions with reasonably high
accuracy. While the full potential of ML in biomedicine
remains untapped, we are already witnessing revolu-
tions in data‐driven fields ranging from genomics to
medical imaging enabled by its application.

However, realizing the promise of ML in the chronic
disease space requires thoughtful consideration of both
its practical implementation and theoretical under-
pinnings. Practically, issues around data quality, algo-
rithmic bias, model interpretation, validation, and
integration into clinical workflows need to be pro-
actively addressed. Furthermore, while ML excels at
pattern recognition, incorporating causal domain
knowledge is imperative for elucidating biological
mechanisms and guiding therapeutic development
rather than just making black‐box predictions. Theoret-
ically, intensive research is still required to develop
tailored techniques that handle the distinct properties of
biomedical data structures while ensuring general-
izability across diverse cohorts. Promising directions
include hybrid ML pipelines, explainable AI, and deep
NNs capable of learning multimodal feature representa-
tions. Overall, the future is promising for ML in
augmenting human intelligence for discovery and
improved decision‐making. Nurturing collaborations
between data scientists and clinical researchers and
pursuing responsible and ethical ML development will
be key to successfully harnessing its potential for
combating chronic diseases.
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