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Abstract

Objective and Methods: This paper proposes an inegrative two-stage genome-

wide search for pairwise epistasis on expression quantitative trait loci (eQTL). The

traits are clustered into multi-trait complexes that account for correlations between

them that may result from common epistasis effects. The search is done by first

screening for epistatic regions and then using dense markers within the identified

regions, resulting in substantial reduction in the number of tests for epistasis. The

FDR is controlled using a hierarchical procedure that accounts for the search

structure. Each combination of trait and marker-pair is tested using a model that

accounts for both statistical and functional interpretations of epistasis and considers

orthogonal effects, such that their contributions to heritability can be estimated

individually. We examine the impact of using multi-trait complexes rather than single

traits, and of using a hierarchical search for epistasis rather than skipping the initial

screen for epistatic regions. We apply the proposed algorithm on Arabidopsis

transcription data.

Principal Findings: Both epistasis detection power and heritability contributed by

epistasis increased when using multi-trait complexes rather than single traits.

Epistatic effects common to the eQTLs included in the complexes have higher

chance of being identified by analysis of multi-trait complexes, particularly when

epistatic effects on individual traits are small. Compared to direct testing for all

potential epistatic effects, the hierarchical search was substantially more powerful

in detecting epistasis, while controlling the FDR at the desired level. Association in

functional roles within genomic regions was observed, supporting an initial screen

for epistatic QTLs.
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Introduction

Epistasis, or interaction between genes, is a fundamental phenomenon that is

believed to play an important role in diverse fields of biology, including

quantitative genetics and genomics of complex diseases, gene regulatory networks

and biochemical pathways and sex evolution, as well as genome and proteome

evolution. Despite the growing interest in searching for epistatic interactions,

there is no consensus as to the best strategy for their detection within a genome-

wide scan [1]. The problem is particularly complicated in the case of expression

QTL (eQTL) analysis, where the expression of a particular gene is considered as a

single trait. Microarray data is used to monitor expression levels and epistasis is

searched for among numerous combinations of expression traits and genetic

markers on the chromosomes. The number of tests involved, which equals the

number of genes (traits) for which expression is profiled multiplied by the

number of eQTL pairs, is enormous even when considering only pairwise eQTL

interactions. A dimension reduction stage can be of help, nevertheless the type I

error across all tests must be controlled. A popular strategy for reducing the

number of tests for epistasis is to first screen for one-locus effects, in which the

genotype of a particular locus has a marginal effect on a particular expression

trait. Next, for each selected combination of trait and marker pair, epistasis is

searched for that trait only within the identified chromosomal regions [2]. This

strategy implies that an epistatic interaction is tested for only if there are main

effects. However, it has been shown that epistasis may appear also in cases for

which marginal loci effects are absent [2, 3] suggesting that screening by main

effects may lead to overlooking of some of the interactions. The authors tested

three-way epistasis and discovered three-locus interactions that were not apparent

from the two-way epistasis. [2] point out that the situation in which epistasis

controls variation in quantitative traits has been relatively neglected in research,

even though it possesses a significant biological meaning and may contribute

substantially to the understanding of complex gene networks.

A more recent approach takes into account the strong correlations between

neighboring markers in the new generation of ultra-dense genetic maps, enabling

a dramatic reduction in the number of tests to be performed. Such an approach is

also adopted by [4], suggesting that SNPs that lie in cis to a particular gene are

potential SNPs for epistatic effects. Thus an epistasis searching algorithm can start

with matching pairs of SNP’s based on prior knowledge from biological

experiments regarding the associations between the SNP’s. Additionally, skipping

spaces with a length of 10 cM during two-dimensional epistasis scan, and using

representative regional markers rather than considering all possible pairs of

markers, may improve the accuracy of the search [5].

A widely used approach for reducing the dimension of gene expression data is

identifying groups of genes that share similar expression profiles. For instance,

instead of analyzing each individual gene expression trait for the purpose of eQTL

mapping, treating principal components of the individual gene expression as traits

has been shown to improve the performance of eQTL analysis [6]. Considering
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correlated traits as multi-trait complexes has been shown to increase QTL

detection power, mapping resolution and estimation accuracy [7]. It was also

found that for a given set of quantitative traits, as the number of considered traits

increases, the QTL heritability (the proportion of variance explained by genetic

effects) increases as well. These findings make biological sense, as a single

mutation typically affects multiple related traits [8]. Thus traits within a particular

group may be subjected together to pleiotropic effect of the same epistatically

interacting loci as well as other genetic factors contributing to trait variation.

Taking advantage of the correlation between phenotypes for the purpose of

increasing power has been given attention also for other types of genomic studies,

such as GWAS. For instance, the correlation can be accounted for when

estimating genotypic effects by several types of SNP-phenotype association models

such as mixed models, GLM or GEE [9]. Furthermore, when multiple phenotypes

of various scales measure the same underlying traits, [10] offer a scaled model for

estimating the effects of SNPs in case-control studies. Zhang et al [11] refer to

epistasis as co-expressed genes that map to a common set of markers, and use a

Bayesian partition approach for detecting such effects.

We propose an inegrative two-stage approach for searching for pairwise

epistasis, which pursues the potential power benefits of both initial screening and

the use multi-trait complexes. In the first stage, clusters of traits are constructed,

and the first principal component of each cluster is regarded as a single (complex)

trait in eQTL analysis. Here the clusters are formed using the Weighted Gene Co-

Expression Network Analysis (WGCNA) algorithm, a clustering-based framework

for building gene expression networks [12, 13]. They offer a new dissimilarity

measure, based on a topological overlap matrix (TOM) for converting genes’ co-

expression into a degree of connectedness, and then implement hierarchical

clustering that includes a dynamic top-down branch cutting method for detecting

gene modules, depending on their shape. The second stage performs a hierarchical

search for epistasis. It starts with an initial ‘‘rough’’ scan for pairwise interactions

among ‘‘framework’’ markers, which are markers positioned at relatively distant

loci of each other. Next, a higher resolution scan only within the identified regions

is performed. In both steps of the scan, each combination of marker pair and trait

complex is tested for epistasis, interpreted as the interaction in a two-way analysis

of variance model.

The proposed framework allows flexibility in choosing the modeling approach

of epistasis. In this paper we use the Natural and Orthogonal Interactions (NOIA)

model [14] to test the null hypothesis that there is no epistasis, for each

combination of marker pair and trait. We find this model approach appealing for

several reasons. First, the NOIA framework generates orthogonal estimates for

main effects and epistasis. Orthogonality is one of the desirable properties when

modeling genetic effects, particularly when the main focus is in finding ‘‘pure’’

epistatic effects that are distinctly differentiated from other effects. Second, the

epistasis effect in the NOIA model can be easily and straightforwardly interpreted

as a statistical interaction term in an ANOVA model. Alternative models offer

different, more complex, interpretations of epistasis. The multiple locus linkage
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analysis proposed by [15] assesses the joint significance of multiple loci in

affecting a quantitative trait. For each combination of trait and a set of pre-

selected loci, Bayesian probabilities are combined to form the probability that all

loci are linked to the expression trait. The model of genetic interaction networks

proposed by [16] produces a network that exhibits between-locus interactions as

well as loci–to-phenotype effects. Third, the construction of the NOIA model

allows flexible definitions in accordance with the population in hand, as detailed

in the Methods section. In this paper we work out a modified form of the model

that matches our RIL population data, in which the dominance effect is not

present. The model can also be maneuvered to suit other populations, such as F2,

for which the NOIA model is originally defined in [14]. Fourth, [14] refers to the

potential confounding effect between allele frequencies and genotypic effects. A

simulation study performed in [14] indicated that the NOIA statistical model

enables describing multi-locus genetic interactions regardless of the allele

frequencies at the trait loci, thus avoiding estimation biases due to segregation

distortion and sampling errors. In addition, it is argued there that the NOIA

model generates orthogonal effects, regardless of the genotypic frequencies in the

population.

An important issue when testing a large amount of hypotheses is the control of

type I error across all tests. We suggest controlling the False Discovery Rate

(FDR), i.e. the expected proportion of false epistatic effects discoveries, among all

discovered epistatic effects. The initial screen for epistasis followed by a higher

resolution scan within the selected regions implies that the tests performed within

the two steps are organized in a hierarchical manner. The hierarchical FDR

controlling procedure offered by [17], which accounts for the hierarchical

organization of tests, is used in this work within the proposed algorithm. This

direction for addressing the large multiplicity problem is also suggested in [18],

explaining that if lower or higher levels of resolution are of interest, then it is

possible to use hierarchical multiple testing methods that test more than one level

of resolution simultaneously. The hierarchical procedure offered by [17] was

implemented in [19] within a gene expression study that involved a similar

screening stage for the purpose of finding genes of which expression correlated

with behavioral phenotypes. When the findings of interest were particularly

scarce, as is typically the case when epistatic effects are of concern, the procedure

was shown to have an advantage in power over an alternative method, termed

‘‘subset selection’’, which did not account for the hierarchical organization of the

hypotheses. The control the FDR by the hierarchical procedure is theoretically

established by [17] when the two scanning steps are independent. Simulation

studies have shown FDR control for the hierarchical testing also under weak

dependence [19].

We evaluate the performance of the proposed two-stage algorithm by

examining the contribution of using multi-trait complexes rather than single

traits, and of using a hierarchical search for epistasis, rather than skipping the

initial screen for epistatic regions. We first do so by implementing the proposed

hierarchical testing on single traits and on trait complexes, and implementing the
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modeling of epistasis with and without an initial screen for potential epistatic

regions. We compare these alternatives by several performance measures

including the contribution of the epistatic effect to the traits’ heritability, the

detection power of the procedure and the level of FDR control. The data is

simulated under several configurations of number of individual QTL effects and

size of epistatic effect. In addition, we compare the proposed algorithm to an

alternative QTL detection method that is based on the popular Bayesian interval

mapping approach and applies a Markov chain Monte Carlo (MCMC) algorithm

for evaluating the posterior of genetic architecture [20, 21]. Since this method

does not deal with FDR control, we also assess its power after an FDR adjustment

of the resulting posterior probabilities. Furthermore, we employed this method on

single traits and on multi-trait complexes. Finally, the proposed algorithm is

applied to Arabidopsis thaliana eQTL mapping data, and the results are compared

to those obtained by analysis of single traits. The data on a Recombinant Inbred

Line (RIL) population is used due to the simplicity of homozygous lines, yet the

methodology can be implemented to other types of mapping populations using an

appropriate formulation of the NOIA model.

Materials and Methods

The NOIA model defined for two-locus epistasis in RIL population

Consider a locus A and a quantitative trait affected by this locus. [22] proposed to

link G, the vector of expected phenotypic values of the two possible alleles, to E,

the vector of genetic effects, by G5S E, where S is a genetic-effect design matrix.

Due to the absence of heterozygotes in RIL populations, the dominance effect is

eliminated from the model of [14], and then the phenotypes can be expressed by

G~
GA11

GA22

 !
~S:E~

1 0

1 2

� �
:

R

a

� �
ð1Þ

such that R is a reference point that is interpreted as the mean over the

phenotypic values GA11 and GA22, and a is the additive effect of locus A.

Extending the model for two loci A and B, with genetic-effect design matrices

SA and SB, respectively, the two-locus vector of genetic effects, EAB, can be

expressed by the matrix product

EAB~S{1
AB
:GAB ð2Þ

where

Two-Stage Genome-Wide Search for Epistasis

PLOS ONE | DOI:10.1371/journal.pone.0115680 December 23, 2014 5 / 26



GAB~
GB11

GB22

 !
6

GA11

GA22

 !
~

G1111

G1122

G2211

G2222

0
BBB@

1
CCCA ð3Þ

where 6 marks the Kronecker product (see also [22] for further demonstration of

its use for the NOIA model). The vector G1111,G1122,G2211,G2222 denotes the

phenotypic values of the four possible genotypic combinations of the alleles A1,A2

andB1,B2, respectively, and

EAB~
1

aA

� �
6

1

aB

� �
~

1

aA

aB

aa

0
BBB@

1
CCCA ð4Þ

SAB~SB6SA~
1 {2

1 0

� �
6

1 0

1 2

� �
~

1 0 {2 0

1 2 {2 {4

1 0 0 0

1 2 0 0

0
BBB@

1
CCCA ð5Þ

Where SAB is the genetic-effect design matrix that ensures orthogonality of the

model effects and EAB5(15intercept, aA5marginal effect on A, aB5marginal

effect on B, aa 5epistasis) is the vector of genetic effects of the two loci. In this

case, NOIA functional formulation, which is concerned here with the effect of two

allele substitutions on the trait value, is also an orthogonal statistical formulation,

which interprets epistasis as an interaction effect between the loci and provides

independent estimates for the effects.

A two-locus statistical model of the effects on for RIL populations may be

defined as follows. A genome-wide statistical formulation for the link in (2) can be

defined as follows Let G� g,lð Þ
i denote the observed gene expression level for trait g

loci-pair l corresponding to markers A and B and replicate i,i~1,:::,n. Then for

some g and l, the statistical model can be written algebraically as follows:
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G� g,lð Þ
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..

.
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0
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~Z:S g,lð Þ
AB
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AB z"gli

~X g,lð Þ:E g,lð Þ
AB z"gli

ð6Þ

where the n rows of the Z matrix indicate the observed genotypes for the n

observed expression values and " is the vector of errors. The model can be

modified for any population by suitable adjustments of Z, EAB and SAB.

The WGCNA clustering algorithm

[12] and [13] suggest a hierarchical clustering framework for building gene

expression networks. They introduce a new dissimilarity measure for converting

genes’ co-expression into a degree of connectedness - the topological overlap

matrix (TOM), which reflects relative inter-connectedness of every two genes and

has been found useful in biological networks. [13] present a novel dynamic top-

down branch cutting method for detecting gene modules depending on their

shape. Compared to the fixed height cutoff method, this approach is shown to be

(i) flexible; (ii) capable of identifying nested clusters; (iii) better detects outliers;

and (iv) identifies biologically meaningful gene modules. The top-down algorithm

starts with a rough segmentation into a small number of large clusters by a static

tree cut. Then the accumulation of heights in each cluster is analyzed for

identification of typical pattern of fluctuations indicating a sub-cluster structure.

Clusters exhibiting this pattern are split. Very small clusters are aggregated to their

nearest major clusters to avoid over-splitting. The genes in each final cluster are

used to form a unified representation of the cluster that may be termed a meta-

gene, or eigen-gene, by taking the first principal component of the genes assigned

to the cluster.

Unlike the hierarchical approach, flat partitioning techniques such as k-means

and its variants produce independent clusters of genes. We prefer to avoid

assuming such independence due to the potential networking relations between

genes. In additions, these techniques typically require pre-specifications of the

number of clusters, which is an impractical challenge when searching for traits

connected by common epistatic effects.
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Trees of hypotheses and hierarchical FDR control

If the hypotheses can be arranged in a form of a tree, a hierarchical procedure to

control the FDR across the tree of hypotheses is suggested [17]. In our case, all

hypotheses could be arranged in a two-level structure. On the first level are the

hypotheses for all combinations of multi-trait complexes and pairs of sparse

framework markers. On the second level are the hypotheses for all combinations

selected in the first level, this time using ‘‘secondary’’, more densely positioned

markers found near the corresponding framework markers. Generally, under the

hierarchical approach, the set of tested hypotheses, H1,:::,Hm, is arranged on a tree

with L levels. The hypotheses on the first level of the tree have no parental

hypotheses; each hypothesis, Hi on level Li~2,:::,L is associated with a single

parental hypothesis, indexed by pari, on level Li{1. Let H1,:::,Ht denote the

parental hypotheses; then the m hypotheses can be divided into Tz1 ‘‘families’’,

t0,:::,tT , where t0~ Hi : Li~1f g and tt~ Hi : pari~tf g, t~1,:::,Tz1. Thus, a

‘‘family’’ is a group of hypotheses having a common ‘‘parent’’ hypothesis.

Hypotheses in the same family are tested simultaneously using the FDR

controlling linear step-up procedure (hereafter BH) [23], and testing begins with

t0. A family of hypotheses on a higher level of the tree is tested only if its parental

hypothesis is rejected.

Several types of hierarchical FDR criteria can be defined. A general FDR bound

is given by [17]

FDRƒE
RtzJ
Rtz1

� �
qd�~p0 ð7Þ

where J is the number of families tested, Rt is the total number of discoveries, q is

the level used in the BH procedure, ~p0 is a weighted mean of the proportion of

true null hypotheses in the J families of hypotheses and d� is family-specific

multiplicative factor, of which upper bound is shown in to be 1.44 [17].

Since the interest in this work is in all identified epistatic effects, whether by

framework or by secondary markers, q is chosen such that the full-tree FDR is

controlled at the desired level using the specific FDR upper bound.

FDRƒ2qd�: ð8Þ

A two-stage algorithm for epistasis detection

This work presents an algorithm based on a two-stage procedure for detecting

epistatic interactions between pairs of markers across the genome. In the first step,

multi-trait complexes are identified by the WGCNA clustering algorithm (using

the ‘WGCNA’ R package [24]). The expression traits in each final cluster are used

to form a unified representation of the cluster, which may be termed a ‘‘meta-

trait’’, by taking the first principal component of the expression traits from every

cluster.

Two-Stage Genome-Wide Search for Epistasis
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Dependence between neighboring DNA regions, arising from tight linkage of

the markers, motivates a hierarchical search which starts with an initial screen for

epistatic regions followed by a more focused search. Using sparse framework

markers distant about 10 cM from each other, a rough scan is performed for every

multi-trait complex (or meta-trait) obtained in the preceding dimension-

reduction step. In the second step, only the combinations of meta-traits and

framework marker pairs showing epistasis (regardless of the main effects) are

further explored. Now the scan is performed with higher resolution, using

‘‘secondary’’, more densely positioned markers found near the corresponding

framework markers. The NOIA model is employed individually on each tested

combination in each step, in order to test for epistasis. Due to the orthogonality

property, each identified effect is independent of the rest of the effects in the

model, such that the heritability of an effect, namely the contribution of the effect

to the total gene expression variance, can be obtained.

The full algorithm is formally described as follows. Fig. 1 provides a visual

representation of the two stages.

1. Identification of multi-trait complexes - using WGCNA clustering.

2. Identification of epistasis - using the two-step hierarchical testing procedure:

(i) Let mg be the number of meta-traits obtained in step 1 and let m1 be the

number of pairs of framework markers. Then for each combination of

meta-trait g, g~1,:::,mg and pair of framework markers l, l~1,:::,ml, the

NOIA model as formulated in (6) is used to test the null hypothesis

H g,lð Þ
0 : aa g,lð Þ~0, where aa is the epistatic effect defined in (6).

(ii) For each rejected hypothesis, the hypotheses within its family are tested for

the combinations of the corresponding meta-trait with all corresponding

pairs of secondary markers.

Alternative approach for epistatic eQTL mapping: Bayesian model

selection

Consider a single trait with phenotypic trait values y~ y1,:::,ynf g and marker

genotypes m. The Bayesian model selection framework proposed in [21]

partitions the entire genomic map into H loci denoted by the vector

f~ f1,:::,fHf g and assumes that the possible QTLs occur at these fixed positions. f
includes not only the marker positions but also points between markers. Thus, the

genotypes g of an unobserved marker included in loci f are unobservable, but

their probability distribution, denoted by p gjf,mð Þ, can be estimated using the

multipoint method [25].

Let l~ l1,:::,lUf g[ f1,:::,fHf g be the positions of Uputative QTLs. Then a

relationship between y and g can be expressed by

y~mzXCbze ð9Þ

where m~ m,:::,mf g
0

is the overall trait mean, X is a design matrix, b denotes the
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vector of all main genetic effects and pairwise interactions for the U potential

QTLs and e is the vector of independent normal errors, each with mean 0 and

variance s2. Let c be a 0–1 variable defined for each effect, indicating if the

corresponding effect is included in the model. Then the genetic architecture is

specified by C~diag cð Þ, where c is a matrix of which diagonal contains the c

indicators, implying also the number of QTLs in the model. The likelihood of the

model may be denoted by p yjc ,X ,hð Þ, with parameter vector h~ m,b,s2
� �

. Then

the posterior distribution can be expressed by

p ª,l,g ,hjy,mð Þ!p yjª,X ,hð Þ:p ª,l,g ,hjmð Þ ð10Þ

The parameters of interest, l,hð Þ, are estimated by profiling the likelihood

function and accounting for the genetic architecture described by ª. The posterior

Bayesian parameter estimates are developed and obtained in [21] by using MCMC

simulations. At each iteration, the full Gibbs sampler generates the indicator

variables matrix c from its conditional posterior distribution. The posterior

inclusion probability c~1ð Þ for each locus is estimated by calculating its

frequency in the posterior samples. Each locus may be included in the model

through its main effects and/or epistasis with another locus. The larger the effect

Fig. 1. A schematic description of the two-stage epistasis detection algorithm. Meta-traits with the
corresponding traits are presented as ellipses with dots. Below them a partial genetic map of five Arabidopsis
chromosomes is zoomed in. Filled circles and short vertical lines denote ‘‘framework’’ and ‘‘secondary’’
markers, respectively, and long vertical lines denote borders of sparse marker regions. The figure describes
discovery of epistasis for the combination of meta-trait g, sparse marker pair m1 and m2 in the first step, and
their ‘‘secondary’’ markers (in grey) in the second step.

doi:10.1371/journal.pone.0115680.g001
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size for a locus, the more frequently the locus occurs in the samples. Taking the

prior probability into consideration, Bayes factors (BF) can be used to show

evidence for inclusion against exclusion of a locus. The Bayes factor for comparing

two genetic structures c1,c2ð Þ is defined by

BF~
p c1jy,mð Þ=p c1ð Þ
p c2jy,mð Þ=p c2ð Þ

: ð11Þ

The procedure in [21] uses BF53 based on the findings of [26] as a threshold of

significance. For two QTLs j and k with indicators for the individual effects cj,ck

and epistasis indicator cjk, the inclusion prior probability for individual effects is

defined as P cj~1
� 	

~ ck~1ð Þ~pm and for epistasis inclusion:

P cjk~1
� 	

~

c0pm if cj,ck

� 	
~ 0,0ð Þ

c1pm if cj,ck

� 	
~ 0,1ð Þ or 1,0ð Þ

c2pm if cj,ck

� 	
~ 1,1ð Þ

8>>>><
>>>>:

ð12Þ

where here c0, c1 and c2 correspond to prior weights.

Simulation study

A simulation study was conducted in order to assess (i) an improvement in

epistasis detection power and in heritability assigned to epistasis as a result of

using multi-trait complexes and of using hierarchical testing, and (ii) the FDR

control level achieved by the procedure under the dependence structure typical to

the tree of hypotheses tested here. Intensities were generated from multivariate

normal distribution with mean similar to the observed intensity mean and with

standard deviation of 2.5, which allowed variability in power. Non-epistatic

clusters were generated with a correlation of 0.4 between the traits. Genotypic

information was based on real markers on the Arabidopsis map (see Section 2.5) at

twelve regions around framework markers in three chromosomes. Epistatic effects

were ‘‘implanted’’ on the actual markers at absolute levels ranging from 0.19 to

0.21, in accordance with effects observed for single traits included in trait-

complexes that were found to have epistatic effects. These levels also allowed

flexibility in power between single-trait analysis and meta-trait analysis. All

possible main effect and epistasis combinations were examined in the simulation

(epistasis with one main effect, epistasis with two main effects, epistasis only).

Gene expression intensities were simulated according to a four-cluster structure,

each cluster containing fifteen traits. Two of the four clusters contained traits with

epistasis attributed to pairs of markers emerging from the partial Arabidopsis map.

For a cluster simulated with epistasis, 13 (86%) of its traits had either inter-

chromosomal or intra-chromosomal epistatic effects. The two remaining non-

epistatic traits represented error generated by non-specific cluster identification.

Two-Stage Genome-Wide Search for Epistasis
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All effects were signified by NOIA model coefficients, where the interaction

coefficient reflected the size of the epistatic effect. For the epistatic traits, the

number of main eQTL effects was one, two or none. The coefficients of all effects

were set to levels that allowed flexibility in the contribution to heritability and the

detection power.

The proposed algorithm was implemented for all configurations of simulated

data, starting by calculating the first principal component of the gene-expression

traits included in each cluster. Next, for the first step of the hierarchical testing

procedure, a scan for epistasis was performed by fitting a NOIA model (by the

‘noia’ R Package [27]) to each combination of meta-trait and twelve sparse

framework markers in the original Arabidopsis RIL map. In the second step, the

scan was performed with higher resolution on six ‘‘secondary’’, more densely

positioned markers neighboring each of the framework markers identified in the

first step. The proposed approach was compared to the Bayesian model selection

approach of [21]. The method is implemented using the qtlbim R package [28].

We used the prior inclusion probability for epistasis defined in (12) in accordance

with the simulated number of main effects in addition to epistasis. Probability of

0.5 was used for the actual simulated scenario, and probability of 0.25 was given

for the two other possible scenarios.

The power of the test for epistasis was estimated by the average across all

simulations of the proportion of detected epistatic traits/meta-traits relative to the

total number of epistatic traits/meta-traits. The contribution of epistasis to

heritability was estimated by the average across all simulations of the proportion

of variance explained by epistasis. FDR was estimated by the average across all

simulations of the proportion of falsely identified traits/meta-traits among all

identified traits/meta-traits. 200 simulations were used to obtain small enough

standard errors. For comparison, (i) the hierarchical testing procedure was also

implemented on single traits, and (ii) the analysis on meta-traits was also

implemented directly, skipping the initial screen, and the BH procedure was used

in order to control the FDR.

The Arabidopsis data

Gene expression data was downloaded from the TAIR database website (ftp://ftp.

arabidopsis.org/home/tair/Microarrays/analyzed_data/affy_data_1436_10132005.

zip). This data contains intensities for 22,810 traits from all five chromosomes of

the Arabidopsis thaliana genome. A sample of 211 RIL population individuals

derived from a cross between two inbred accessions, Bayreuth-0 (Bay-0) and

Shahdara (Sha), was used. Transcript (mRNA) levels were quantified using

Affymetrix whole-genome microarrays with two replications (arrays) for each

individual [29]. The corresponding genetic map, consisting of 579 molecular

markers, was obtained from http://elp.ucdavis.edu/data/analysis/211_RILs_SFP_

map/211_RILs_SFP_map.html. The genotypic data was preprocessed using the

MultiPoint software (http://www.multiqtl.com) for the purpose of eliminating

non informative, overlapping markers and those markers that cause local
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neighborhood instability in the map[30]. In total, 493 markers remained for the

analysis. The gene expression data was preprocessed by the Variance Stabilization

Normalization method [31]. Traits with essentially no expression (15,566 traits)

were filtered out by the EM algorithm for a mixture of univariate normal

distributions (using the ‘mixtools’ R package), leaving 7244 traits for the analysis.

Results

Simulation study

The proposed algorithm was implemented on simulated data containing epistatic

effects. The results are given here for negative epistatic effects and positive main

effects, as also used in other cases [32] within NOIA modeling, but similar results

were obtained for all other sign combinations (not shown). Main effect

coefficients were set to 0.4. The FDR controlling procedure was used at level 0.2 in

order to enable some power for the single-trait analysis.

As can be seen by the estimated epistatic contribution to heritability (Fig. 2),

epistatic effects on meta-traits explained substantially more phenotypic variation

of gene expression within the mapping population than effects on single traits. A

particularly high contribution was obtained when one of the two eQTLs in the

interaction was also a main effect. Furthermore, the search for epistasis within

single traits achieved a very low power, while the search within meta-traits

achieved far more power, particularly when there was at least one main effect in

the model (Fig. 3a). Accordingly, the FDR was controlled at the very low level of

0.0002 when single traits were analyzed and at a higher level of 0.04 when meta-

traits were analyzed. Due to the power saturation obtained by the meta-traits

analysis for the models containing main effects, the difference in power between

the one main effect case and the two main effect case is not visible in Fig. 3a (see

the two leftmost plots). Thus lower epistatic effects were used in order to

specifically assess the power for these two cases for meta-traits analysis. As can be

seen in Fig. 3b, the procedure is more powerful in the case of two main effects

compared to the case of one main effect. This may result from the decreased

residual variance at the presence of two main effects. It can also explain why most

epistatic findings from analyzing the Arabidopsis data (see next sub-section)

contain two main, and also supports the rule of thumb for finding epistasis by first

screening for traits affected by single markers. Interestingly, while heritability for

the meta-trait analysis does not much vary between the main effect configura-

tions, the power of the procedure, and thus the significance of the finding, varies

considerably in accordance with the proportion of residual variance.

Next, the impact of the hierarchical search for epistasis on meta-traits was

examined. Results are shown in Table 1 for epistatic effect size 0.12, which allowed

flexibility in power between hierarchical search and direct search. The advantage

in power of the two-step procedure over direct testing of all combinations is

clearly evident for either one or two main effects in the model. Power was very low
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for the epistatic effect used here when there were no main effects (not shown). The

FDR was controlled at somewhat lower levels when the hierarchical search was

used, in consistence with previous findings [19]. The contribution of epistasis to

heritability does not seem to be affected by the type of search. Yet the contribution

is mildly higher for the case of one main effect compared to the case of two main

effects, consistently with the finding in Fig. 2.

Examining the distribution of the total heritability across the main effects and

epistasis, it can be seen in Table 1 that in the case of epistasis with only one main

Fig. 2. Contribution of epistasis to trait heritability – simulated results. Heritability, the proportion of variance explained by the epistatic effect, is plotted
against the epistatic effect size. The solid lines mark the heritability for single trait analysis, and dashed lines mark the heritability for meta-trait analysis.
Standard error was ,0.003 for single traits and ,0.025 for meta-traits.

doi:10.1371/journal.pone.0115680.g002
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effect in the model, the contribution to heritability by the effects is enhanced,

compared to the case of epistasis with two main effects. It may be a result of the

principal component rotation, which seems to better identify the effects when

there are fewer of them. Thus in the case of one main effect, the benefit in

contribution to heritability is higher for both the main effect (about 47%) and the

Fig. 3. Epistasis detection power – simulation results. Power, estimated by the proportion of epistatic effects detected by the procedure, is plotted
against the epistatic effect size. Standard error was ,0.003 for single traits and ,0.025 for meta-traits. (a) Power levels are saturated for the multi-trait
complexes analysis on models with main effects, and thus lower epistatic effects are used in Fig. 3b. (b) Reduced sizes of epistatic effects for the multi-trait
complexes analysis, which generate non-saturated power levels, are examined on models with main effects. b. Epistasis detection power for the meta-traits
analysis on models with main effects - simulation results. Power, estimated by the proportion of epistatic effects detected by the procedure, is plotted against
the epistatic effect size. Standard error was ,0.003 for single traits and ,0.025 for meta-traits.

doi:10.1371/journal.pone.0115680.g003
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epistatic effect (about 3%), compared to the benefit for each main effect (about

30% in average) and epistasis (about 2%) in the cases of two main effects. Yet, the

principal component transformation is challenged in identifying an epistatic effect

that is not accompanied by main effects and is very small relative to the residual

variance.

Next, the performance of the Bayesian selection method was compared to our

approach (Table 2). Similarly to our method, the search for epistasis within single

traits achieved very low power. When searching for epistasis on multi-trait

complexes constructed by WGCNA clustering, both methods achieved similar

power. However, as can be seen in Fig. 4, while the proposed method controlled

the FDR at a level lower than the level desired (0.1), the Bayesian method didn’t

control the FDR at the desirable level, and generally produced higher FDR levels

compared to the proposed method. We note that a multiplicity adjustment

implemented for the frequentist p-values cannot be implemented for Bayesian

posterior probabilities. The typical approach for adjusting the posterior

probabilities uses the prior information and the Bayes Factor (see for instance

[40]). Yet if such an adjustment would be implemented on the posterior

probabilities, the FDR will naturally improve, but at the cost of reducing the

power, which will then become lower than the power achieved by the proposed

method (recall that with no calibration the power levels of the two methods are

similar, as described in the Results Section). Thus, the conclusion may also be

phrased as: ‘‘For equally powerful outcomes, the proposed method generated a

substantially lower rate of false discoveries’’.

Analysis of Arabidopsis data

The proposed two-stage search for epistasis was used for the analysis of the

Arabidopsis data. First, the WGCNA hierarchical clustering was employed on the

gene expression data for the purpose of building up multi-trait complexes (meta-

traits). The TOM-based clustering followed by the Dynamic Tree Cut procedure

discovered 314 trait clusters ranging from two to 1959 in size with mean of 23.

Following the cluster identification, a meta-trait was generated for each cluster as

Table 1. Direct testing vs. hierarchical testing for epistasis.

Testing
approach

Num. of Eqtl
main effects Power Heritability FDR

Total
Due to main
effects

Due to
epistasis

Direct one .4468 .0272 .0182

two . 3776 .0204 .0120

Hierarchical one .5812 0.4987 0.4684 .0.0303 .0175

two .5152 0.615 0.5945 .0205 .0110

Meta-trait analysis – simulation results. Distribution across effects of heritability is also shown for the hierarchical approach. Standard error is ,0.02 for
power, ,0.0007 for heritability and ,0.0009 for FDR.

doi:10.1371/journal.pone.0115680.t001
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the first principal component of the corresponding set of gene expression traits.

The individual proportion of cluster variance explained by the corresponding

meta-traits ranged between 0.2 and 0.93 with a median of 0.73.

Next, the two-step hierarchical testing procedure was employed. In the first

step, a rough two-dimensional scan for epistasis was performed for each of the

314 meta-traits obtained in the previous step, using 47 sparse framework markers.

Thus in the first step 1,081 pairs of markers were considered for each meta-trait,

resulting in a total of 1,081*3145339,434 tests. Since the interest is in epistasis at

all loci, epistatic effects attributed to either framework or secondary markers are of

importance. Thus the rejection threshold should be chosen such that the full-tree

FDR will be controlled. The multiplicative factor d* was estimated by employing

the hierarchical procedure repeatedly 10,000 times at level q50.1, resulting in an

estimate of 1.015 (SE50.008). From (3), in order to control the full-tree FDR at

level 0.1, q*50.1/2d50.0472 was used. Twelve epistatic effects were identified at

the first step. As can be seen in Table 2, the estimated contribution of epistasis to

heritability varied between 1.6% and 10.3%. The two additive main effects were

both significant in all cases except for case number 4, for which only one effect was

significant.

In the second step, only the combinations of meta-trait and marker pair

showing significant epistasis in the first step were tested for epistasis with

Table 2. Power comparison between QTLBIM and the hierarchical testing approach.

Meta/Single genes Num. of eQTL main effects Epistasis effect Power

QTLBIM Hierarchical

single 2 20.19 0.019 0.012

single 2 20.20 0.023 0.023

single 2 20.21 0.024 0.027

single 1 20.19 0.017 0.016

single 1 20.20 0.018 0.017

single 1 20.21 0.020 0.025

single 0 20.19 0.015 0.015

single 0 20.20 0.018 0.017

single 0 20.21 0.023 0.023

meta 2 20.19 0.970 0.973

meta 2 20.20 0.980 0.993

meta 2 20.21 0.984 0.995

meta 1 20.19 0.966 0.973

meta 1 20.20 0.975 0.984

meta 1 20.21 0.984 0.985

meta 0 20.19 0.371 0.365

meta 0 20.20 0.436 0.420

meta 0 20.21 0.483 0.460

Simulation results. Standard error is ,0.02 for power, ,0.0007 for single traits and ,0.0009 for meta-traits.

doi:10.1371/journal.pone.0115680.t002
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increased resolution, using secondary markers neighboring the corresponding

framework markers. The number of secondary marker pairs in the family of each

identified framework marker-pair varied between 100 and 200, and the total

number of tests in the second step was 1,673. For six families in the second step all

hypotheses were rejected, and for the other five families, the proportion of

discoveries varied between 0.6 and 0.97. In total, 1,506 epistatic effects were found

in the second stage, summing up to 1,518 epistatic effects in total for both steps.

The FDR control level can be obtained from (2), using ~p0~1:

Fig. 4. FDR comparison between QTLBIM and the hierarchical testing approach for meta-traits analysis – simulation results. FDR, estimated by the
average proportion of erroneously identified epistatic effects among all identified epistatic effects, is plotted against the epistatic effect size. The solid lines
mark the FDR obtained by the QTLBIM method, and the dashed lines mark the FDR obtained by the proposed hierarchical approach. Standard error was
,0.025 for single traits and ,0.003 for meta-traits.

doi:10.1371/journal.pone.0115680.g004
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FDRƒ0:0472|1:015| 1518z12ð Þ= 1518z1ð Þ~0:0483

We examined what would be the results for the discovered effects on meta-

traits, if instead the analysis was performed on single traits. Interestingly, the same

pairwise effects on the corresponding single traits were not found significant. This

may be explained by the poor testing power found by the simulation study for

single traits. Yet, their p-values are clearly differentiated from those of all other

non-significant effects on single traits (Fig. 5), as their distribution involves

smaller values than the null distribution U(0,1). The significant effects involved

101 effects on expression of 75 single traits. Most of the effects included pairs of

chromosomal intervals that were also involved in effects on meta-traits. The

affected single traits did not show any correlation structure, which may explain

why they were not discovered within meta-traits.

The markers associated with the detected epistatic effects are all concentrated in

chromosomes 2, 4 and 5. Most epistatic effects are in sub-telomeric regions

(telomers are repetitive DNA regions at the ends of chromosomes). Seven of the

epistatic effects were found between eQTLs of two different chromosomes, and

the remaining four were between two eQTLs of the same chromosome. As shown

in Table 3, there are several genomic regions that are involved in more than one

interaction. In addition, meta-traits 34 and 75, which represent 23 and 19 traits,

respectively, were found to be affected by more than one pair of eQTL. It is

noteworthy that only one of the twelve epistatic pairs included markers that have

not been both simultaneously involved as main effect eQTLs as well (markers 267

and 490 identified in the initial scan, with only marker 267 identified also as a

main effect eQTL). A schematic presentation of the results on a genomic map is

provided within S1 Fig.

Discussion

Epistasis is a genetic phenomenon that is challenging for detection within a

genome-wide scan. It has been given relatively small attention until recently, even

though it possesses a significant biological meaning and may contribute

substantially to the understanding of complex gene networks that can lead to

deciphering important biological mechanisms. This paper proposes a searching

approach for epistasis effect on gene expression traits. It offers an analytical

framework that, unlike other alternatives, combines the treatment of several

important issues for the benefit of power gain and deeper biological

interpretability. By taking advantage of the correlations between traits, the

proposed two-stage algorithm is capable of identifying small epistatic effects

which are otherwise challenging for detection, without relying on additional

biological information. It performs an initial screen that is driven by the local

dependence between markers, for potential epistatic regions. It guarantees control

of the FDR at the desired level by using a procedure that accounts for the
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hierarchical testing structure generated by the screen. It shows advantage in power

over similar procedures that do not include one of the key components of trait

complexes and hierarchical testing. It allows flexibility in the choice of epistasis

modeling approach, which should be in accordance with the interpretation of

epistasis that is of interest for the researcher. The NOIA system, which is used in

this study, models simple-to-interpret epistatic effects and can be tuned to match

the type of population in hand.

A major strategy of the proposed approach is to reduce the very large number

of tests for epistasis typical for a genome-wide scan. First, correlations between

traits affected by epistasis are accounted for by considering unified representations

Fig. 5. Q–Q-plot of –log(p-values) in single-trait analysis, assuming exponential distribution under the null. The p-values are for significance of
epistatic interaction in the NOIA model. As expected, the p-values corresponding the null cases (marked by diamonds) follow a straight line that represents
their distribution under the null. The p-values corresponding the presumably weak epistatic effects on meta-traits (marked by squares) generate p-values
that are distinctly lower than the null p-values. The p-values corresponding the presumably strong epistatic effects on single-traits (marked by triangles)
generate the lowest p-values.

doi:10.1371/journal.pone.0115680.g005
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of the expression quantitative traits. Aside from the reduction in the number of

traits, a multi-trait complex (meta-trait) that is defined based on correlation may

also provide a firmer base of evidence for phenotype-genotype relationships by

relying on many traits altogether [33]. Furthermore, the identified effects also

provide a broader picture on related co-regulation and network of genes [34].

Analysis of multi-trait complexes seems particularly beneficial for the case of small

effects that are challenging to identify, since the chances to detect them is

evidently higher compared to single trait analysis. It proved to be effective also for

the alternative method we tested, the Bayesian model selection, which was not able

to detect single genes effect, but gained substantial power when implemented on

the multi-trait complexes. This finding is in consistence with the finding of [7]

related to individual QTL effects. Second, similarities between the effects of

neighboring loci are also accounted for by an initial screen for epistatic regions.

The testing procedure controls the FDR while accounting for the hierarchical

nature of the searching process.

The use of multi-trait complexes and the hierarchical search together achieves a

dramatic reduction in the number of statistical tests. In the exemplifying analysis

of the publicly available genome expression data for a RIL mapping population of

the central plant model species Arabidopsis thaliana, a considerable reduction in

the number of tests for epistasis was achieved by constructing 314 meta-traits by

clustering expression data of 7,244 genes. Using the two-step hierarchical testing

on the generated multi-trait complexes, 1,081*314+1,6735341,107 hypotheses

were tested. If, instead, all possible combinations of markers and single traits were

tested directly, namely 121,278 marker pairs for each one of the 7,244 traits,

878,537,832 tests would have been performed. Thus the overall number of tests

was reduced by 2,575 folds.

A simulation study revealed the gain in both epistasis detection power and the

contribution to heritability by the epistatic effects resulting from using multi-trait

Table 3. Arabidopsis genome - detected epistasis effects.

Id Meta-trait Marker 1 Marker2 Heritability

Total Due to epistasis

1 106 257 297 0.565 0.083

2 34 462 481 0.776 0.064

3 34 472 481 0.948 0.017

4 57 442 452 0.857 0.062

5 172 267 490 0.357 0.103

6 166 237 452 0.427 0.070

7 75 237 452 0.651 0.047

8 75 237 462 0.655 0.045

9 41 351 490 0.459 0.081

10 48 381 481 0.541 0.067

11 163 237 297 0.884 0.017

12 173 490 381 0.681 0.048

doi:10.1371/journal.pone.0115680.t003
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complexes rather than single traits. These observations are consistent with the

initial findings of [7, 33, 35]. The case for which the performance measures

obtained the lowest values was of epistasis with no main effects. These results seem

to corroborate the findings in the early ‘‘deterministic sampling’’ study [33]

regarding the detectability of two linked epistatic QTLs. The decrease in power at

the presence of only epistasis may be explained by the relatively high residual

variance characterizing a model containing only a weak epistatic effect. The PCA

transformation seems to enhance the effect to a level that depends on the presence

of other (main) effects, and the optimal configuration according to our findings

was of one main effect. Thus it seems that certain relations between the number of

main effect and the residual variance set the optimal conditions for identification

of epistasis, Additional research is required for better understanding the impact of

the model content on epistasis detection and the effectiveness of using the first

principal component as a meta-trait may be further explored.

Cluster size may play an important role in epistasis identification. The obtained

Arabidopsis meta-traits, of which variances were partly explained by epistasis, were

based on clusters of a relatively small number of traits (5–23). This result may

indicate that traits included in relatively large clusters are more likely to be related

to each other by reasons other than being subjected together to the same epistatic

effect, such as linkage and co-regulation of expression. Yet, they may also be

affected by several different epistatic effects, in which case they must be further

divided into sub-clusters, or alternatively the next principal components may be

used.

The methodology used for the purpose of constructing multi-trait complexes

based on the expression trait data should be a relatively minor stage. As many

clustering techniques can be used, the chosen one must achieve high stability for

the given data. The hierarchical clustering utilized in this study was based on a

TOM-based dissimilarity measure and attained stability by merging a Dynamic

Tree Cut algorithm [13]. This method has flexible parameterization and can be

calibrated easily.

The hierarchical testing enabled control of the FDR across all tests for epistasis,

thereby making our approach competitive in restraining the expected rate of false

positive identifications. The hierarchical testing procedure achieved a considerable

gain in power compared to direct testing of all combinations of marker-pairs and

meta-traits. Under the dependence structure characterizing the tree of hypotheses

used in this study, the FDR was controlled at a level lower than the boundary level

established in [17] for independent hypotheses. The gain in both power and FDR

control under some dependence is consistent with the findings of [19].

The implementation of the hierarchical testing scheme of the proposed

approach may be further investigated in two aspects. First, the methods by which

markers are chosen may take the genome-wide marker distribution into

consideration. In this work, framework markers were chosen such that their

regions will contain the same number of secondary markers. However, this may

result in highly variable regional density of the secondary markers. An alternative

strategy is also to account for distances between the markers. For example, it has
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been proposed to use biological information, such as locations with common

mutation incidence, in order to choose the genotypic marker pairs for testing

epistatic effects [4].

Second, the discovery of epistasis may depend also on the definition of epistasis

within the statistical model. Indeed, some reports suggest that the way in which

alleles interact is highly variable. For instance, the findings in this work suggest

that several regions are involved in interactions with more than one region, and

that the epistatic effects of one particular locus with several other loci may vary in

form. In addition, for pairs of epistatic loci originating from two given regions,

the corresponding effects sometimes may be of different form. Such effects were

studied by [36], who inserted transposable elements into random positions within

the bacterial genome, and found that fitness declined with increasing number of

mutations. The fact that there was no evidence for effects of gene interaction was

shown to result from the tendency of gene interactions to be highly variable and

thus to even cancel each other out. Similarly, a study on epistasis in Aspergillus

niger showed that fitness declined linearly with the number of mutations, without

any evidence of epistasis on average [37]. However, genetic interactions explained

variation in the reproductive success between different strains (see review in [3]).

Both examples support the possibility that scanning for average epistatic effect

may miss some of the effects that tend to cancel each other out. A possible

alternative direction is to generalize the NOIA model, which tests for epistatic

effects on an additive scale under the common linear regression assumptions. A

more flexible modeling approach may achieve an improved fit, for instance by

allowing (i) to define epistasis under a variable scale using a link function to

exploratory variables, (ii) to consider non-monotonic effects (see [38] and [39])

and (iii) to account for differences in the marginal distributions of phenotypes.

Twelve combinations of meta-traits and framework marker pairs, all residing in

A. thaliana chromosomes 2, 4 or 5, were identified as epistatic effect at the first

step of the hierarchical search. For each of these marker pairs, most of the

neighboring secondary markers were found to have an effect on the corresponding

meta-trait. This further validates the already acknowledged regional association in

functional roles of genomic sequences and supports an initial screen based on

framework markers for the purpose of identifying epistatic eQTLs. Notably, one

of the twelve framework marker pairs included a locus that has no main effect,

thus strategies that test for epistasis only among pairs with main effects would fail

to detect many of the effects identified here.

Single-trait eQTL analysis of the Arabidopsis data did not identify the effects

corresponding to the ones identified in the analysis on meta-traits, but included

marker pairs from the same DNA regions, which may be suspected as epistatic

hotspots. The traits detected in single-trait analysis which also had strong epistatic

effects were poorly correlated, while those that were not detected may have

suffered a very low chance to be identified in a single trait analysis, as indicated by

the simulation study for correlated single traits. These findings may suggest the

existence of epistatic gene networks, having common epistatic effect and relatively

small individual effects, as well as common involved chromosome regions. These

Two-Stage Genome-Wide Search for Epistasis

PLOS ONE | DOI:10.1371/journal.pone.0115680 December 23, 2014 23 / 26



are difficult to identify by a genome-wide association study due to low power. But

analyzing them based on multi-trait complexes can dramatically increase the

probability of their identification. Yet, the expression of some genes is not

correlated with other expression traits but controlled by ‘‘individual’’ epistatic

marker pairs that have a relatively large epistatic effect. These pairs can be

effectively identified by single-trait analysis.

Supporting Information

S1 Fig. A schematic representation of the epistatic findings on a genomic map –

the Arabidopsis data. Epistatic effects are shown on a partial map that includes

only chromosomes found to contain epistasis (2, 4 and 5). An ellipse represents a

meta-trait (of which id is specified on top), and the single traits it is based on are

schematically shown inside. The ellipse is connected by two lines to two

interacting markers located on the map. The vertical lines on the chromosomes

mark the groups of ‘‘secondary’’ markers that make up the ‘‘framework’’

markers’’. Each color corresponds to a particular epistatic effect on a particular

meta-trait. The meta trait 75(19) was found to be affected by two pairs of markers

that have one common marker (id 237). See Table 3 for the list of the twelve

epistatic effects found and their heritability due to epistasis.

doi:10.1371/journal.pone.0115680.s001 (TIF)
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