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Abstract

Background: Schizophrenia is a severe mental illness associated with the symptoms
such as hallucination and delusion. The objective of this study was to investigate the
abnormal resting-state functional connectivity patterns of schizophrenic patients
which could identify furthest patients from healthy controls.

Methods: The whole-brain resting-state fMRI was performed on patients diagnosed
with schizophrenia (n = 22) and on age- and gender-matched, healthy control
subjects (n = 22). To differentiate schizophrenic individuals from healthy controls, the
multivariate classification analysis was employed. The weighted brain regions were
got by reconstruction arithmetic to extract highly discriminative functional
connectivity information.

Results: The results showed that 93.2% (p< 0.001) of the subjects were correctly
classified via the leave-one-out cross-validation method. And most of the altered
functional connections identified located within the visual cortical-, default-mode-,
and sensorimotor network. Furthermore, in reconstruction arithmetic, the fusiform
gyrus exhibited the greatest amount of weight.

Conclusions: This study demonstrates that schizophrenic patients may be
successfully differentiated from healthy subjects by using whole-brain resting-state
fMRI, and the fusiform gyrus may play an important functional role in the
physiological symptoms manifested by schizophrenic patients. The brain region of
great weight may be the problematic region of information exchange in
schizophrenia. Thus, our result may provide insights into the identification of
potentially effective biomarkers for the clinical diagnosis of schizophrenia.

Keywords: Schizophrenia, fcMRI, Resting-state, Multivariate pattern analysis,
Reconstruction
Background
Schizophrenia is the most chronic and disabling of the severe mental disorders [1].

Until now, there is no definitive standard in the diagnosis of schizophrenia, which is

mainly based on patient interviews and symptom history [2].

It has been reported that patients diagnosed with schizophrenia have showed the

functional disconnections distributed in whole brain areas [3,4], suggesting that schizo-

phrenia may arise from abnormalities in a distributed network of brain regions. Using

the seed-based region-of-interest correlation analysis, Woodward et al. [5] discovered
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that RSNs were differentially affected in schizophrenic patients, and Sridharan et al. [6]

demonstrated that the anterior insula played a causal role in functions switching be-

tween the central-executive network(CEN) and default mode network(DMN). Never-

theless, the seed-based method, which only focuses on a handful of brain regions of

interest and doesn’t examine functional connectivity patterns on a whole-brain scale,

may not be a particularly effective approach to reveal the pathological mechanism that

leads to schizophrenia. Moreover, several studies have suggested that rest-based func-

tional analyses can not only detect more complete and accurate information of func-

tional connectivity [7,8], but also be easier to perform resting-state neuroimaging in

schizophrenic patients in contrast to task-related imaging. Therefore, we used whole-

brain, resting-state fMRI data for the analyses performed in this study.

Multivariate classification algorithms, which can analyze the whole-brain fMRI data,

have been increasingly used to investigate physiological disturbances that lead to men-

tal illnesses [2,9] by extracting additional information from high-dimensional neuroi-

maging data and identifying potential neuroimaging-based biomarkers to differentiate

patients from healthy controls. To improve the performance of the classification algo-

rithms, an increasing number of researchers are now using nonlinear dimensionality re-

duction methods such as local linear embedding (LLE) [10,11], and nonlinear classifiers

such as c-means [12] and neural networks [1], to differentiate patients from healthy

controls. However, these reports failed to reconstruct and identify distinct features that

quantitatively and qualitatively contributed to the classification of disease.

Here, we used a data-driven method for disease classification that integrated principle

component analysis (PCA) and support vector machine (SVM) to extract spatiotem-

poral patterns associated with schizophrenia from resting-state functional connectivity.

Most importantly, we reconstructed brain regions that exhibited functional abnormal-

ities, which might lead to schizophrenia.
Materials and methods
Participants

In this study, all subjects were right-handed, native Chinese speakers. Twenty-two

schizophrenic patients were recruited from the Department of Psychiatry, Second Xian-

gya Hospital of Central South University in Changsha, China. Patients were evaluated

based on a patient version of the Structured Clinical Interview for DSM-IV (Diagnostic

and Statistical Manual of Mental Disorders, Fourth Edition) and satisfied the DSM-IV

diagnostic criteria for schizophrenia. Patients were not included if they had a prior his-

tory of major head trauma, alcohol or drug abuse. Among the schizophrenic patients, 5

were drug naive, while the remainder were receiving antipsychotic medications at the

time of image acquisition (risperidone [n = 8, 2–4 mg/day], clozapine [n = 3, 200–

350 mg/day], quetiapine [n = 4, 400–600 mg/day], aripiprazole [n = 1, 25 mg/day], and

sulpiride [ n = 500 mg/ day ]).

Healthy volunteers were recruited via advertisement and were eligible for participa-

tion if they did not have a prior history of mental illness and a family history of any

psychiatric disorders. The exclusion criteria for controls were similar to those for

schizophrenic patients. Schizophrenic patients and healthy control subjects were closely

matched regarding age, gender and education (Table 1). All participants completed the



Table 1 Characteristics of the participants in the study

Variable Patients (n = 22) Healthy controls (n = 22) t/χ2 value p-value

Age (years) 24.54 ± 6.70 26.09 ± 6.47 -0.78 0.44

Sex(M/F) 15/7 15/7 0.00 1.00

Education(years) 12.14 ± 3.37 12.73 ± 2.66 -0.65 0.52

Duration(years) 3.21 ± 3.34

PANSS 75.64 ± 12.91

Logical Memory Immediate 8.86 ± 4.85 14.32 ± 3.43 -4.31 0.00

Logical Memory Delay 6.95 ± 4.73 13.36 ± 3.61 -5.06 0.00

Saving Score 0.70 ± 0.27 0.94 ± 0.15 -3.57 0.001
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neuropsychological tests of vigilance and working memory on the days before scanning.

In addition, the symptoms of all the patients were assessed with the Positive and Nega-

tive Symptoms Scale (PANSS) [13]. Test results are also presented in Table 1.

Both the patients and their guardians agreed to participate in the study and written

informed consents were obtained from all subjects after a detailed explanation of the

study. This study was approved by the Ethics Committee of the Second Xiangya Hos-

pital, Central South University.
Procedure

During the experiments, subjects were explicitly instructed to stay relaxed, keep their

eyes closed, remain awake and move as little as possible. After each scan, we confirmed

that subjects were awake during the experiments.
Imaging data acquisition

Imaging was performed at the Second Xiangya Hospital of Central South University on

a 1.5 T GE Signa System (GE Signa, Milwaukee, Wisconsin, USA). Foam pads with a

standard birdcage head coil were used to fix the subject’s head. fMRI data were col-

lected using a gradient-echo EPI sequence. The imaging parameters were as follows:

TR =2000 ms, TE =40 ms, FOV =24 × 24 cm2, Flip Angle = 90°, and matrix = 64 × 64.

Whole-brain volumes were acquired with 20 contiguous 5-mm-thick transverse slices

with a 1-mm gap. Each resting-state functional imaging scan lasted for 6 minutes. T1-

weighted images (TR= 2000 ms, TE = 7.5 ms, TI = 750 ms) were taken at the same loca-

tion as the functional images and were acquired prior to functional scanning to obtain

the subject’s anatomical information.
Data analysis

Preprocessing

All neuroimaging data were preprocessed by using the statistical parametric mapping

software package (spm8, Wellcome Department of Cognitive Neurology, Institute of

Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm) and resting-state fMRI Data

Analyze Toolkit (REST version 1.5; http://www.restfmri.net). The calculations were exe-

cuted in Matlab 7.1 (MathWorks, Sherborn, MA). The first 5 volumes of each functional

series were discarded because of magnetic saturation effects, and the remaining images

were preprocessed by using the following steps: re-alignment for head motion, spatial

http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net
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normalization to the standard MNI space and spatial smoothing with an 8-mm full-

width at half maximum (FWHM) Gaussian kernel. In this study, all subjects had less

than 1 mm translation in the x-, y- or z-axis and less than 1° of rotation in each axis.

Then we used the REST toolkit to remove the linear trend of time courses and per-

formed temporal band-pass filtering (0.01 Hz < f < 0.08 Hz).

Analysis

According to the anatomically labeled template from the mask of WFU_PickAtlas

(Department of Radiologic Sciences, WFU School of Medicine, Medical Center

Blvd. Winston-Salem, NC, US http://www.fmri.wfubmc.edu/cms/software), the regis-

tered fMRI volumes with the MNI template divided the cerebrum into 90 regions

(45 regions within each hemisphere)[14]. Regional mean time series were obtained

for each subject by averaging the fMRI time series over all the voxels in each of

the 90 regions. Before the correlation analysis, the nuisance covariates, including

head motion parameters, global mean signals, white matter signals and cerebro-

spinal fluid signals, were regressed from the images. Although this technique has

been suggested to result in a negative mean correlation value during functional

connectivity analysis [15], regression analyses may enhance the detection of system-

specific correlations and improve the correspondence between resting-state correla-

tions and anatomy [16]. Next, we used Pearson’s correlation coefficients to evaluate

the functional connectivity between each pair of regions. Thereby, we obtained a

resting-state functional network that was expressed as a 90x90 symmetrical matrix

for each subject. Then, by removing the 90 diagonal elements, we determined the

upper triangular elements of the functional connectivity matrix to be the classifica-

tion features. Thus, we obtained 4005 dimensional feature vectors as the feature

space for classification [12].

Classifications with highly discriminative features

We completed feature extraction of the whole brain’s functional connectivity pattern

according to previously described methods for data processing. Followed, Fisher’s z-

transform was applied to the correlation values to ensure normality. Here, we discussed

the main procedures of classification between schizophrenic patients and healthy con-

trols, consisted of four parts: feature selection, dimensionality reduction, classification

and reconstruction (Figure 1).

After we obtained 4005 feature vectors , considering the discrete nature of these fea-

ture vectors, we used the Kendall tau rank correlation coefficient τ [17] to extract fea-

tures, which displayed highly discriminative power, and then obtained the feature space.

Suppose there are m samples in the patient group and nsamples in the control

group. Let xi,j denotes the functional connectivity feature i of the jth samples, and

yj denotes the class label of this sample (-1 for patients and +1 for controls). The

Kendall tau correlation coefficient of the functional connectivity feature i can be

defined as

τi ¼ nc � nd
m� n

ð1Þ

Where nc and nd are the number of concordant and discordant pairs respectively. Be-
cause we don’t consider the relationship of two samples that belong to the same group,

http://www.fmri.wfubmc.edu/cms/software


Figure 1 Flow chart of the algorithm.
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the total number of sample pairs is m× n. For a pair of observation dataset {xi,j,yj} and

{xi,k,yk}, it’s a concordant when

sgn xi;j � xi;k
� � ¼ sgn yj � yk

� � ð2Þ

Correspondingly, it’s a disconcordant pair when

sgn xi;j � xi;k
� � ¼ � sgn yj � yk

� � ð3Þ

Thus, the positive correlation coefficient, τi, represents the ith functional connectivity
that exhibits a significant decrease in the patient group compared with the control

group, while the negative correlation coefficient τi, represents the ith functional con-

nectivity that exhibits a significant increase in the patient group compared with the

control group. Moreover, this difference increases substantially when the absolute value

of the Kendall correlation coefficient τ is larger. Above all, the Kendall tau rank correl-

ation coefficient τ provides a distribution-free test of independence between two vari-

ables that measures the relevance of each feature of classification. Therefore, we used τ

as a foundation for extracting feature vectors. To get optimal feature number of the

final feature space for classification, the selection was performed only on training data

in leave-one-out cross-validation (LOOCV) [18].

Then, we used PCA to separately reduce the dimensionality and obtained a subspace,

~X
T ¼ ð~x1. . .; ~xdÞ, where d is the number of the reduced dimensionality. This mathemat-

ical description is provided in the Additional file 1. Here,

~X ¼ UT X� �Xð Þ ð4Þ

Where �X was the mean vector of XT= (x1. . ., xd). Usually, U was made up of d eigen-

vectors with the first d largest eigenvalues of the covariance matrix.
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Finally, we adopted linear SVM to classify the feature. Its mathematical description is

also given in the Additional file 2. Here,

Y ¼ wT~X � b ð5Þ
Where Y is the result of SVM. When Y> 0, we could classify xi as a positive sample

and otherwise a negative sample.

Because of the limited number of samples in our study, we used LOOCV strategy

[19] to estimate the generalized performance of our classifier. Thus, for N samples, the

LOOCV would train the classifier N times. The performance of the classifier could be

quantified by using Generalization Rate GR, Sensitivity SS and Specificity SC based on

the results of LOOCV,

GR ¼ TP þ TN
TP þ FN þ TN þ FP

ð6Þ

SS ¼ TP
TP þ FN

ð7Þ

SC ¼ TN
TN þ FP

ð8Þ

where TP, TN, FP and FN, denote the number of correctly predicted schizophrenic

patients, correctly predicted control subjects, control subjects incorrectly classified as

schizophrenic patients and schizophrenic patients incorrectly classified as control sub-

jects, respectively. Note that Generalization Rate GR, Sensitivity SS and Specificity SC rep-

resent the overall proportion of samples that are correctly predicted, the proportion of

patients correctly predicted and the proportion of controls correctly predicted, respectively.

Reconstruction

After classification, we reconstructed features and brain regions for functional connect-

ivity. The process of reconstruction is an inverse process of classification. In fact, we

combined the Equation (4) and Equation (5) in the classifier training procedure, and

then we obtained the following Equation:

Yi ¼ wT UT xi � �xið Þ� �� b ¼ Uwð ÞT xi � �xið Þ � b ð9Þ

Suppose Λ=Uw= (λ1, . . ., λd)
T, then the absolute value of the element λj(j2 1, . . ., D)

represents the contribution of the corresponding feature to the discriminative score.

Hence, these values can be used to measure the discriminative power of the corre-

sponding feature, called feature weight. Because of the LOOCV, we initially computed

the weight, Λi in every LOOCV.

After LOOCV, we averaged the absolute value of Λ:

Λ ¼ ð Λ1j j þ Λ2j j þ . . .þ ΛNj jÞ=N ð10Þ

where N is the number of subjects. The final step for reconstruction was to compute

the weight of each brain region. For instance, the weight of brain region A was com-

puted as follows:

Step 1: Determine all the brain regions that have functional connections with A and

obtain their corresponding feature weights.
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Step 2: Assign half of each feature weight to A.

Step 3: Sum all of the corresponding half-weights for each feature. This sum is the

weight of brain region A.

Permutation tests

Many studies assess the performance of a classifier by conducting permutation tests

[20-23]. In this study, we used this approach to assess the statistical significance of all

the LOOCV results. For each LOOCV, the classification labels of the training data were

randomly permuted 1000 times. Afterwards, the entire classification operation, includ-

ing the feature selection, dimensionality reduction, and SVM, was carried out on every

set of randomized class labels. The GR is defined as the classification prediction rate

obtained by the classifier trained on the randomly re-labeled classification labels, and

the GR0 is the classification prediction rate obtained by the classifier trained on the real

class labels. The p-values reported for accuracy represent the probability of GR being

no less than GR0. When p < 0.05, it was assumed that the classifier could reliably assign

labels from the data.
Results
Classification results

Using 550 features in the feature selection, SVM clustering results demonstrated that

the final correct classification rate (generalization rate, GR) was 93.2% (100% of healthy

controls and 86.4% of schizophrenic patients) (Figure 2).

To estimate the effect of the number of selected features on the performance of the

classifier, we repeated this calculation with a varying number of different features in the

feature selection [12,20]. We found that the classifier’s best performance was achieved

at 550 (Figure 3) by examining a range of feature numbers (from 50 to 800). Therefore,

we selected 550 as the optimal feature number of the final feature space for classifica-

tion in LOOCV.
Figure 2 The discriminative scores of all subjects. The first 22 samples represented schizophrenic
patients. The remaining samples represented healthy controls.



Figure 3 The curve of the generalization rate to the number of features. The horizontal axis
represents the number of selected features and the vertical axis represents the generalization rate.
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The similar methods of the selection for optimal feature number of the final feature

space for classification also were used to choose the dimension for PCA and C for SVM.

We repeated this calculation with a range of different values (dimension: 2-20 and C:

0.005:0.05:2). Then, we chose the value when the classifier achieved its best performance

(that is generalization rate).Therefore, we selected 6 as the optimal dimension for PCA

and 0.255 as C for SVM. Several studies selected the parameters in this way, just as

Besga et al. [18] and Dosenbach et al. [20] selected the number of features in LOOCV.

Altered resting-state functional connections in schizophrenia.

Because the performance of the classifier was tested with an LOOCV strategy, a given

functional connectivity feature might display a different discriminative power in differ-

ent iterations of the LOOCV. Based on statistical analyses, we found that more than

68% of the functional connectivity features had positive Kendall tau correlation coeffi-

cients, indicating that more than 68% of functional connectivities decreased in schizo-

phrenic patients compared with controls. Moreover, the majority of the functional

connectivity, which was characterized by a high discriminative power, decreased in

schizophrenic patients compared with healthy controls.

As described above, on every fold of the LOOCV, we selected 550 of the highest-

ranked features. Because feature ranking was based on a different subset of data for

each iteration, the selected features differed with every LOOCV. However, 408 features

were included in every fold of the LOOCV for the SVM classifier, resulting in 846 fea-

tures that were represented across all folds of the LOOCV. We considered these 846

features to be the “participating” functional connections. The 408 functional connectiv-

ity’s map was graphed in Figure 4.

The 408 functional connectivity related to the brain regions primarily located within

the visual cortical network (VN), an area that controls visual processing [24-26]; the

DMN [27-35], which controls episodic memory[33] and self-projection [36]; the self-

referential mental network(SRN), which plays an important role in self-referential

mental activity [37]; and the sensory-motor network(SMN) [33,38] (Figure 4). In

addition, there were some functional connections related to regions within the audi-

tory network (AN), which regulates mood and affective processing [25,30,39].



Figure 4 The functional connections of the fusiform gyrus and the whole brain. (A) is the functional
connectivity between the left fusiform gyrus and other brain regions. (B) is the functional connectivity
between the right fusiform gyrus and other brain regions. (C) is the 408 functional connections. The node
represents the brain region. The line represents the related functional connection. The color of the node
represents a specific network: blue represents the VN, red represents the DMN, green represents the SMN,
and yellow represents the other regions. The color of the line signifies the alteration of the functional
connections: blue denotes greater and purple denotes lesser.
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Brain regions with highly discriminative power

To evaluate the relative functional contribution of different brain regions to schizo-

phrenia, we computed the value of the “region weight” for each brain region with the

sum of their feature weights. We noted that there were several brain regions that exhib-

ited greater weight than others. Furthermore, the fusiform gyrus exhibited the greatest

weight. Alterations of functional connectivity of the fusiform gyrus were presented in

Figure 4 and Table 2.
Discussion
This study demonstrated that schizophrenic patients might be discriminatively identi-

fied from healthy controls using whole-brain rs-fcMRI with an excellent generalization

rate. In addition, we found that most of the identified brain regions located within the

VN, the DMN and the SMN. Particularly, the bilateral fusiform gyrus exhibited the

greatest weight, suggesting that aberrant functional connectivity of the fusiform gyrus

with other brain regions might proportionally contribute to the impairment of the per-

ception of emotions caused by facial stimuli in schizophrenia.
Reliable identification of schizophrenia

These years, some studies have attempted to identify biomarkers to differentiate

schizophrenic patients from healthy controls [1,9,12,40-44]. To the best of our



Table 2 Altered functional connectivity between fusiform gyrus and other brain regions

Brain region A Brain region B Tau

’fusiform_R’ 'angular_L' 0.3017

’calcarine_L' 0.5165

'calcarine_R' 0.5413

'cingulum_ant_L' 0.343

'cingulum_mid_L' 0.442

'cingulum_mid_R' 0.417

’cuneus_L' 0.682

'cuneus_R' 0.5868

'frontal_inf_tri_L' 0.4504

'frontal_inf_tri_R' 0.405

'frontal_sup_L' 0.471

'frontal_sup_media_L' 0.3388

’frontal_sup_orb_L' -0.4545

'frontal_sup_orb_R' -0.5909

'hippocampus_L' 0.3017

'lingual_L' 0.5372

'lingual_R' 0.686

'occipital_mid_L' 0.4793

'occipital_mid_R' 0.5041

'occipital_sup_L' 0.4835

'occipital_sup_R' 0.5455

'Olfactory_L' -0.3058

'Olfactory_R' -0.5082

'paracentral_lobule_L' 0.3884

'parahippocampal_L' -0.3512

'rectus_L' -0.5248

'rectus_R' -0.5661

'temporal_inf_L' -0.6488

'temporal_inf_R' -0.7066

’fusiform_L’ 'amygdala_L' 0.3471

'calcarine_L' 0.4711

'calcarine_R' 0.376

'cingulum_ant_L' 0.2975

'cuneus_L' 0.7438

'cuneus_R' 0.6446

'frontal_inf_tri_L' 0.3306

'frontal_inf_tri_R' 0.3223

'frontal_sup_L' 0.3843

'frontal_sup_orb_L' -0.5702

'frontal_sup_orb_R' -0.6115

'heschl_R' 0.3802

'hippocampus_L' 0.4256

'lingual_L' 0.4917

'lingual_R' 0.5372
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Table 2 Altered functional connectivity between fusiform gyrus and other brain regions
(Continued)

'occipital_mid_L' 0.5165

'occipital_mid_R' 0.5124

'occipital_sup_L' 0.5703

'occipital_sup_R' 0.5868

'Olfactory_L' -0.2934

'Olfactory_R' -0.3471

'paracentral_lobule_L' 0.343

'rectus_L' -0.6735

'rectus_R' -0.686

'rolandic_oper_R' 0.2893

'temporal_inf_L' -0.5909

'temporal_inf_R' -0.657

'temporal_sup_R' 0.3967
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knowledge, the performance accuracy of the current classifier is approximately 85%

[9,40,41]. Nevertheless, the overall generalization rate in this study achieved 93.2%

(100% of healthy controls and 86.4% of schizophrenic patients, p < 0.001) by using 550

resting-state functional connectivity features. With generalization rate as the statistic,

permutation distribution of the estimate was shown in Figure 5, which revealed that

this classifier learned the relationship between the data and the labels with a risk of

being wrong with probability of lower than 0.0001.

In this study, we used the linear method to reduce the dimension of the feature space

and classify the subjects, and we found that the results were still satisfactory. Thus,

whole-brain patterns based on rs-fcMRI may provide insight into our understanding of

the pathophysiology of schizophrenia.

Analysis of resting-state network

In this study, we observed that most of the functional connections characterized by a

high discriminative power located within the VN(an area comprising regions including
Figure 5 Permutation distribution of the estimate using SVM (linear kernel). The x-axis and y-axis
labels are the GR and occurrence, respectively.
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the precuneus, the fusiform gyrus, the lingual gyrus, the occipital cortex, and the cal-

carine gyrus), the DMN (including regions such as the inferior temporal gyrus, anterior

cingulate cortex, middle cingulate gyrus, posterior cingulated cortex, superior parietal

gyrus, hippocampus, parahippocampal gyrus, thalamus, and dorsomedial and medial

prefrontal cortex) [27-32] and the SMN (including the precentral and postcentral gyri,

the primary sensory-motor cortices, and the supplementary motor area). As shown in

Figure 4, we found that, compared to the controls, some of the functional connectivity

within or between these networks increased in patients diagnosed with schizophrenia

and some of them decreased, which was consistent with the results obtained by several

other studies [25,28,33,45]. For example, our results showed that the functional con-

nectivity of ACC with the superior frontal cortex in DMN decreased in schizophrenic

patients, which was in accordance with the result of the previous study [46]. In

addition, we also found that the functional connectivity of superior temporal gyrus with

the inferior frontal cortex in DMN increased in schizophrenic patients, which was con-

sistent with the result of another study [47].

Overall, the abnormal functional connectivities within or between these networks

might account for the cognitive and emotional disturbances, the abnormal filtering of

visual information and dysfunction in working memory and motor and sensory control

observed in schizophrenic patients [48-51].

Analysis of the greater weight region

By reconstruction, we found that the fusiform gyrus, which played an important role in

face, body, and word recognition, exhibited the greatest weight in this study. As shown

in Table 2, the fusiform gyrus decreased the functional connections with the visual cor-

tex areas including the calcarine, the lingual gyrus and the cuneus, indicating that the

fusiform gyrus might be a core brain region in visual and cognitive process in schizo-

phrenia[52,53]. We also found that fusiform gyrus decreased the functional connections

with the hippocampus, parahippocampus and the amygdale, suggesting that the dys-

function of the fusiform gyrus might be related to the facial expressions and produce

hallucinations of faces. Britton et al. [54] found the amygdale and fusiform had a

within-run “U” response pattern of activity to facial expression blocks. Moreover, as

shown in the Table 1, the logical memory scores of schizophrenia were lower than the

controls. It suggested patients diagnosed with schizophrenia displayed logical deficits,

which led to the symptoms such as hallucination and delusion. Several studies have

demonstrated it [55,56], just as Hall et al. [57] found the patients with schizophrenia

showed a relative lower overall connectivity between the fusiform gyrus and amygdale

and Onitsuka et al. [58] found performance deficits on both immediate and delayed fa-

cial memory tests significantly correlated with the degree of bilateral anterior fusiform

gyri activity reduction in patients with schizophrenia. Besides, we found the increased

functional connection of fusiform gyrus with the orbital part of superior frontal cortex,

the gyrus rectus and the inferior temporal gyrus in Table 2, just as Jafri et al. [53] and

Zhou et al. [59] found that some functional connections increased in schizophrenia.

Accordingly, the dysfunctions of fusiform gyrus may be a very important core in vis-

ual and cognitive processing of facial and logical information in schizophrenia. More-

over, this result may provide insights into the identification of potentially effective

biomarkers for the clinical diagnosis of schizophrenia.
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Reliability of the algorithm

LOOCV

Cross-validation is a commonly used technique for prediction and estimation of how

accurately a predictive model will perform in practice. LOOCV can be a good choice

when data available for test is not enough. LOOCV also works well for estimating

generalization error. So, in the study, we used LOOCV to estimate generalized per-

formance of our classifier. In LOOCV, the final feature set differed slightly from iter-

ation to iteration. We finally analyzed the consensus functional connectivity which was

defined as the functional connectivity feature appearing in every fold of the LOOCV.

The changes in the consensus functional connectivity represent the common alterna-

tion in patients.

In addition, considering the restriction of our sample size which was relatively small,

the three parameters such as number of features, dimension for PCA and C for SVM,

were also estimated using LOOCV to achieve best performance of the classifier and

greatest discrepancy between schizophrenia and control in resting-state functional con-

nectivity. Naturally, if we had enough samples, we could get the optimized value of

parameters in train data using LOOCV and predicted the test data using the optimized

value of parameters. In paper, we reported best results which could obtain the differ-

ence functional connectivity between schizophrenia and control. However, as in figure 3,

even when the three parameters were not optimized, the worst result of classification

we got was 75%, which was enough for discrimination of schizophrenia subjects from

controls. Similar applications of LOOCV in obtaining the optimized parameters were

seen in previous reports [18,20,60].

Permutation test

We also employed permutation test to assess the statistical significance of all the

LOOCV results. For each LOOCV, the classification labels of the training data were

randomly permuted 1000 times. With generalization rate as the statistic, the result of

permutation distribution of the estimate revealed that this classifier learned the rela-

tionship between the data and the labels with a risk of being wrong with probability of

lower than 0.0001. Similar evaluations of the algorithm performance were reported

using permutation tests [20,21,23].

Limitations and future work

There are a few limitations in our current study. On the one hand, our sample size was

relatively small. We wish to test our methods on a larger independent dataset to con-

firm our findings. On the other hand, participating schizophrenic patients were

recruited from the inpatient hospital, so that patients were treated with antipsychotic

medication during the data collection. Thus, it is possible that some of the differences

found between schizophrenic patients and controls may relate to effects from medica-

tion. Furthermore, our data was collected in 1.5 T MRI, which may bring about the

problem of the quality of image.
Conclusion
In this study, we successfully differentiated schizophrenic patients from healthy con-

trols and determined weighted brain regions by using whole-brain rs-fcMRI analysis.
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Our results demonstrate a good performance of the classification algorithm. Therefore,

we believe that schizophrenic patients have dysfunctions in the visual cortical areas, the

DMN, and the SMN, and the fusiform gyri play a very important role in the dysfunc-

tions in patients diagnosed with schizophrenia.

Additional files

Additional file 1: The descriptions of PCA algorithm.

Additional file 2: The descriptions of linear SVM algorithm.
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