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Background: Tuberculosis has caused significant public health and economic

burdens in Vietnamover the years. The VietnamNational Tuberculosis Program

is facing considerable challenges in its goal to eliminate tuberculosis by 2030,

with the COVID-19 pandemic having negatively impacted routine tuberculosis

services at all administrative levels. While the turnaround time of tuberculosis

infection may delay disease detection, high transportation frequency could

potentially mislead epidemiological studies. This study was conducted to

develop an online geospatial platform to support healthcare workers in

performing data visualization and promoting the active case surveillance in

community as well as predicting the TB incidence in space and time.

Method: This geospatial platform was developed using tuberculosis

notification data managed by The Vietnam National Tuberculosis Program.

The platform allows case distribution to be visualized by administrative

level and time. Users can retrieve epidemiological measurements from the

platform,which are calculated and visualized both temporally and spatially. The

predictionmodel was developed to predict the TB incidence in space and time.

Results: An online geospatial platform was developed, which presented

the prediction model providing estimates of case detection. There were

400,370TB cases with bacterial evidence to be included in the study. We

estimated that the prevalence of TB in Vietnamwas at 414.67 cases per 100.000

population. Ha Noi, Da Nang, and Ho Chi Minh City were predicted as three

likely epidemiological hotspots in the near future.

Conclusion: Our findings indicate that increased e�orts should be undertaken

to control tuberculosis transmission in these hotspots.
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Introduction

Spatial science has developed markedly in recent years

due to innovations in surveying and analysis. Geospatial

data comprise a highly diverse range of features, including

geographical locations, environment features, human data such

as postal codes, and satellite-based information, with data

coverage ranging from an individual-level to population-level.

This wealth of information types creates a data network that

scientists can use to analyze and simulate realistic phenomena

based on geospatial imagery and information (1, 2). Disease

can be caused not only by individual-based risk factors but

also by environment-based factors. Exposure to risk factors in

terms of environment, living habitats, and mobility trends may

significantly contribute to the possibility of a particular disease

spreading in a community (3). To address problems of this type,

geospatial artificial intelligence (GeoAI) has been developed;

this approach has considerable applications for epidemiological

studies. In a disease context, GeoAI involves the use of

machine learning algorithms, which are supported by geospatial

datasets, to explore the impacts of social components, such as

population density and migration trends, on community-based

disease incidence rates. Such technologies are also beneficial

for epidemiologists, as geospatial insights can dramatically

strengthen study hypotheses. Maike et al. applied geospatial

modeling to identify the association between environmental

factors and gestational diabetes mellitus (2). Their study

collected postal information, with a sample size comprising

nearly 9,000 pregnant women in United States (2). Another

study by Lawrence et al. investigated the correlation between

environmental pollution and acute asthma events using a

dataset including population features, land-use data, distance

and topography reports, traffic, and road systems (4). Their

study identified a positive correlation between the concentration

of chemical gases and the risk of acute asthma events (4).

Tuberculosis (TB) is an airborne disease that can transmit

from human to human and causes severe damage to different

organs. TB has been a leading health and economic burden

worldwide, especially in low–middle-income countries, with

a global incidence rate of 127 cases per 100,000 population

recorded in 2020 (5). Vietnam remains among the 30 countries

with the highest prevalence rates of TB, despite efforts by the

Vietnam National TB Program (NTP) to decrease the disease

burden over the past decade (5, 6). Given the effects of the

COVID-19 pandemic, TB case notification was halted in 2021,

which could lead to a potential setback of 8 years on the

pathway to the program’s goal to end TB by 2030 (7). To

promote active case identification, several studies conducted

geospatial analyses to determine the distribution of TB cases

(8, 9). While TB was frequently detected in low-income areas

and those with poor sanitation, the disease prevalence was

higher in these areas among subjects who did not have consistent

residency status, such as refugees, asylum seekers, and regular

immigrants (10). A person who is diagnosed with pulmonary

TB and has a high frequency of transportation can cause

numerous human-to-human infections and seed new disease

clusters (11, 12). The turnaround time of TB infection might

also be lengthened, thereby biasing retrospective epidemiology

investigations. This issue thus highlights the need for an

improved GeoAI application to support healthcare workers in

analyzing the spatial characteristics of TB and predicting this

disease’s epidemiological trends. Thus, the current study was

conducted to develop an online GeoAI platform to temporally

and geospatially visualize, analyze, and promote TB case

notification as well as to predict the TB incidence in community.

This GeoAI platform could provide more real-time data relating

to demographic information and case distribution, allowing

physicians to identify whether a subject is likely to belong to a

high-risk group for TB infection.

Materials and methods

Study subjects

The participants in our study were bacteriologically

confirmed TB patients managed by the Vietnam NTP.

Study design

This is a cross-sectional study, conducted from the 1st of

January 2020 to the 30th of April 2022.

Study location

The study location comprises all of the facilities that

provided TB services at any administrative level and that were

managed by the Vietnam NTP.

Study content

The factors that were deemed to contribute to an increased

risk of TB infection are as follows:

• Transmission factor: the number and distribution of TB

cases from both temporal and spatial perspectives.

• Individual factor: comorbidities and living habits that

increase the risk of TB transmission.

• Mobility factor: internal or external migration of residents.

Migration and contact events increase the likelihood of

pathogenic human-to-human transmission.
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FIGURE 1

Home screen of the GeoAI platform.

• Climate factor: factors including temperature, humidity,

evaporation, radiation, sunshine h, rain, and wind regimen;

these depend on the season and, therefore, promote or

reduce the likelihood of TB infection.

• Spreading factor: facility-based factors around TB patients

that directly affect disease progression, such as high-risk

areas (hospitals, industrial clusters, schools, restaurants,

tourist areas, crowded areas), population density (typically

urban, rural, or mountainous areas), and sensitive

areas (boundary areas).

• Socio-economic factor: affects the capacity of TB patients

to pay for consultation and treatment. Factors included in

the modeling were Gross Domestic Product per person and

the rate of poor households in the simulated area.

• Policy factor: administrative solutions by governmental

agencies to control the risk of outbreak spread.

Intervention policies, such as zoning of epidemic areas and

supporting treatment will directly affect the progression

of infections.

Data collection

We collected data from the Vietnam NTP program from

the 1st of January 2016 to the 31st of July 2020. Data including

the name, age, gender, ethnicity, and physical address of the TB

patients were collected for modeling.

Algorithm features

The cause of TB infection is the transmission of

Mycobacterium tuberculosis from TB patients to others in

the community, which can be reflected by mobility and contact.

The transmission magnitude can be considered a function of

environmental factors, the infectiousness of TB patients, and

the medical status of contacts, including their comorbidities,

age, smoking and drinking status, etc. The mobility in the

prediction model is indicated by the number of people moving

across regions in real time. TB patients would encounter people
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FIGURE 2

Distribution of TB notifications by sex and age group in Vietnam in 2020.

in an area and their movement to other regions is randomly

simulated at all levels of prediction.

Factors relating to population (population density, gender,

age), social–economy, climate status, and individual history (i.e.,

comorbidities and living habits) were included in the predictions

to enhance the AI-based simulation, in addition to information

from the collected database. Multiple variables were modeled

as weighting parameters for users to modify in real time. One

such variable is the policy factor, which can indirectly affect

the infection magnitude through other factors. To predict TB

notification, the GeoAI model includes all the factors described

above contributing to TB transmission. The accuracy of the

simulation is determined by the quality of the input data; the

more detailed the input data is, the more accurate the prediction

that can be achieved.

The input parameters which were included during the

modelling comprised transmission factor; individual factor;

mobility factor; climate factor; socio-economic factor and policy

factor. These input parameters were divided into different classes

of the Deep-LSTM (Long Short Term Memory) network. The

model development was conducted based on the following

steps: (1) the above-mentioned parameters were assigned as

initial values, a cost function was then developed, (3) the

gained values were modified across different steps of looping

in order to optimize the developed cost function, and (4) the

model were continuously processed until the converged value

was achieved. Subsequently, the values which were the inputs

of the prediction model was retrieved after the Deep-LSTM

model development had been completed. Finally, upscaling

methodology was applied to cover all of administrative levels,

from district- to nation-level.

We developed an online geospatial platform to support

efforts for visualization, analysis, and prediction of TB

cases nationwide. The GeoAI platform is managed via

a uniform resource locator (WebGIS), which requires

log-in credentials to access the user interface. The users

who registered and provided credentials can log in and

review the distribution of TB notifications in space

and time. The platform can be viewed in Vietnamese

for the convenience of local users in medical practices.

Users can access the platform at the following web

address: https://geotb.herokuapp.com/.

Statistical analysis

The distribution of TB cases was visualized while the model’s

prediction outcomes were both plotted and visualized.

Ethical approval

All procedures used in this study followed the ethical

standards of the Ethical Review Board of the National Lung

Hospital (IRB approval No. 48/20/CN-HDDD; approved on 31st

December 2020).
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FIGURE 3

Prediction of TB hotspots in Vietnam.

Results

We achieved a sample size of 400,370 TB cases with bacterial

evidence. To account for the effects of the COVID-19 pandemic

in 2020, we excluded the data from 2020 from the prediction

modeling. The data for 2020 were included for epidemiological

visualization purposes alone. Based on the study’s data, the

prevalence of TB in Vietnam was calculated at 414.67 cases per

100,000 population.

Figure 1 shows the home screen of the GeoAI platform,

including interactive elements. The left part of the screen

visualizes the distribution of TB notifications using a color

spectrum, with darker colors representing more TB cases. Users

can enter a full-screen view by clicking on the button.

To view the map at a province level, users can click on the

“T” button while the “H” button and the “X” button represent

district and commune levels, respectively. Users can also click

on the “+/–” buttons to zoom the map view in and out.

The right part of the screen visualizes TB epidemiological

parameters by either population or region, the number and

rate of TB cases by time, the distribution of drug-resistant

TB cases by age, the distribution of TB cases by treatment

outcomes, and the distribution of HIV status in Vietnam. We

also designed a filter bar located at the top of the platform that

allows users to adjust the data visualization based on either time

or administrative levels.

The spatial distribution of TB notification rates in Vietnam

at a province level from 2016 to 2020 is illustrated in Figure 1.

The TB notifications were relatively higher in the southern part

of the country than in the central and northern regions. The TB

notifications were notably high in the An Giang, Tay Ninh, Can

Tho, Dong Thap, and Soc Trang areas.
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Figure 2 shows the TB notification rates in Vietnam by sex

and age in 2020. TB notifications tended to increase with age,

with different TB notification rates recorded between men and

women. Adult men had a higher TB notification rate than

women of the equivalent age groups, with the lowest male-to-

female case ratio of 1.5:1 in the 15–24 age group and the highest

ratio of 4.7:1 in the 45–54 age group.

Figure 3 illustrates the spatial predictions of TB notification

in Vietnam based on our model. With all the transmission

factors included in the model, three were three cities which were

predicted as major TB hotspots, namely Ha Noi, Da Nang, and

Ho Chi Minh City.

Discussion

Our findings indicate that TB notifications in Vietnam show

spatial heterogeneity, as demonstrated by the spatial clustering

of notifications and predicted hotspots in certain provinces and

cities. TB notification rates tend to increase with age and men

have higher TB notification rates than women in all age groups.

The high TB rate notification clusters are concentrated in the

south of the study area, especially in the southwestern part of the

country. This result is consistent with the findings of the second

TB prevalence survey in Vietnam, in which TB prevalence was

found to be higher in the south compared to the central and

northern areas of Vietnam (13). The predicted TB hotspots in

the model are Vietnam’s three main cities, which are Ha Noi, Da

Nang, and Ho Chi Minh City. With the rapid pace of migration

and urbanization in Vietnam during the past decade, almost half

of the migration in the country was from rural areas to cities

(14). Our predictions suggest that TB patients could move to

major cities, thus transmitting the infection and creating TB

hotspots in these areas. These results are in line with other

studies from Zimbabwe (15, 16), where TB hotspots and clusters

can be found in urban areas with large populations.

Spatial analysis of TB notification distribution shows that

TB is heterogeneous in both time and space, meaning that

TB control strategies should be individualized for each area;

thus, provinces or regions with high TB rates require increased

control efforts compared to those with low TB rates. Areas

that are hotspots or clusters of TB cases should be subjects

for active TB case identification and innovative interventions.

Healthcare policymakers should thus focus on strengthening TB

prevention and control measures in these hotspots to mitigate

the transmission of this disease.

In addition to the above findings, our study also has certain

limitations. Firstly, our main input data source is the TB

notification data in Vietnam; due to the effects of the COVID-

19 pandemic, the notification data do not accurately represent

the TB caseload in Vietnam during the pandemic period, thus

greatly affecting the accuracy of our predictions. Secondly,

we used aggregated notification data from provincial-level TB

hospitals. With the high migration rates in Vietnam, TB patients

may have visited more than one provincial TB hospital, thus

resulting in duplicate entries. Thirdly, the TB notification system

does not include data from TB cases whose treatment was

initiated in the private sector. Lastly, the current modeling

sample excluded data from 2020 and thus does not fully reflect

the most up-to-date epidemiological situation. These problems

might cause bias and subsequently affect the prediction of TB

hotspots in our model.

Conclusion

Our GeoAI platform predicted the distribution of

TB hotspots, which are located in the major cities of

Vietnam. Our findings provide new insights into the

spatial patterns of TB, which is essential for targeted

regional TB control interventions. This approach is highly

important in lower–middle-income countries such as

Vietnam, where available resources for TB control are

limited and need to be carefully allocated to areas with higher

TB caseloads.
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