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Ting Huang‡**, Roland Bruderer§**, Jan Muntel§, Yue Xuan¶, Olga Vitek‡‡‡,
and Lukas Reiter§�

In bottom-up, label-free discovery proteomics, biological
samples are acquired in a data-dependent (DDA) or data-
independent (DIA) manner, with peptide signals recorded in
an intact (MS1) and fragmented (MS2) form. While DDA has
only the MS1 space for quantification, DIA contains both
MS1 and MS2 at high quantitative quality. DIA profiles of
complex biological matrices such as tissues or cells can
contain quantitative interferences, and the interferences at
the MS1 and the MS2 signals are often independent. When
comparing biological conditions, the interferences can com-
promise the detection of differential peptide or protein abun-
dance and lead to false positive or false negative conclusions.

We hypothesized that the combined use of MS1 and
MS2 quantitative signals could improve our ability to de-
tect differentially abundant proteins. Therefore, we devel-
oped a statistical procedure incorporating both MS1 and
MS2 quantitative information of DIA. We benchmarked the
performance of the MS1-MS2-combined method to the
individual use of MS1 or MS2 in DIA using four previously
published controlled mixtures, as well as in two previously
unpublished controlled mixtures. In the majority of the
comparisons, the combined method outperformed the in-
dividual use of MS1 or MS2. This was particularly true for
comparisons with low fold changes, few replicates, and
situations where MS1 and MS2 were of similar quality.
When applied to a previously unpublished investigation of
lung cancer, the MS1-MS2-combined method increased
the coverage of known activated pathways.

Since recent technological developments continue to in-
crease the quality of MS1 signals (e.g. using the BoxCar
scan mode for Orbitrap instruments), the combination of
the MS1 and MS2 information has a high potential for
future statistical analysis of DIA data. Molecular &
Cellular Proteomics 19: 421–430, 2020. DOI: 10.1074/
mcp.RA119.001705.

Liquid chromatography-mass spectrometry (LC-MS)1 has
proven to be a powerful and versatile tool to quantify changes
in protein abundance (1). In bottom-up proteomics, proteins
are digested into peptides, which are then subjected to mass
analysis. Two types of spectra are independently recorded: 1)
the intact peptide mass (more precise m/z) or MS1 isotope
envelope and 2) after fragmenting the peptide, the fragment
ion spectrum (MS2). The accurate masses in the MS1 and
MS2 spectra are used to identify and/or quantify the peptide.
Unfortunately, MS1 and MS2 spectra can contain interfer-
ences that distort the quantitative signals. Interferences in
MS1 spectra are typically caused by other coeluting peptide
precursor isotope envelopes. Interferences in MS2 spectra
are typically caused by fragments from coeluting peptides,
which occur independently from the interferences in MS1 (2).

The two main applications of LC-MS in discovery-oriented
investigations are data-dependent acquisition (DDA) and
data-independent acquisition (DIA). In DDA, the MS1 precursor
isotope envelope is used to generate extracted ion currents or
three-dimensional-peak reconstructions for identification and
quantification (3). Additionally, dependent on the MS1 scan, a
limited number of peptide precursor peaks are isolated, frag-
mented, and subjected to secondary mass analysis. These MS2
scans are used for identification but do not contain direct quan-
titative information. They are not triggered at a defined point in
the peptide precursor elution (Fig. 1A). In DDA with isobaric
labeling, only MS2 information can be used for quantification,
e.g. reporter ions with ITRAQ or tandem mass tag labels (4, 5)
fragment with label remnants for tandem mass tag or easily
abstractable sulfoxide-based isobaric-tag (6–8).

In contrast, in sequential window acquisition of all theoretical
fragment ions (SWATH-type) DIA, MS1 and MS2 data are gen-
erated and recorded at a high enough frequency and quality to
robustly sample the chromatographic peak (9, 10). A peak
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group of an extracted ion currents (precursor isotopes or frag-
ments) exists for every peptide precursor in both the MS1 and
MS2 space (Fig. 1B). In MS1, isotopic variants of an intact
peptide precursor are present. In MS2, a precursor is frag-
mented into multiple fragment ions with isotopic variants.
Hence, both quantitative spaces are fundamentally different,
and the coeluting interferences do not correlate. Interferences
on both levels can be corrected independently in order to in-
crease signal to noise ratios and improve the detection and the
quantification of peptide fragments. Several approaches cur-
rently perform such MS2 refinement for DIA. These include
DIA-Umpire (11), Spectronaut (10), SWATHProphet (12), NOFI
(13), TargetedMSQC (14), Encyclopedia (15), and Avant-garde
(16). The improved quality of quantitative information after the
interference correction can be relevant for projects such as
those focusing on posttranslational modifications or peptidom-
ics (2).

Traditionally in SWATH-type DIA, quantification relies on the
MS2 information. An (optionally recorded) survey scan is fol-
lowed by consecutive DIA segments covering the entire m/z

range (9, 17). These settings are inherited from the initial devel-
opment of SWATH-type DIA on Triple TOF instruments with
moderate resolution, combined with the targeted data analysis
strategy borrowed from selected reaction monitoring (e.g. in
Spectronaut (10), OPENSWATH (18), Skyline (18)) and based on
mProphet (19). Some researchers have also explored the value
of MS1-level signals. Schilling et al. introduced MS1 data ex-
traction from DIA with filtering and quantification but did not
implement a procedure for characterizing the associated FDR,
thereby limiting it to experiments where the numbers of pep-
tides and runs are small enough to facilitate manual inspection
(20). Rardin et al. (2) performed an exploratory analysis of MS1
and MS2 extracted ion currents of SWATH DIA data and found
a strong quantitative correlation between the two. Specifically,
they found that MS1 information can be especially relevant for
studies of posttranslational modifications. DIA-Umpire (11) ex-
tracts the MS1 and MS2 information during a direct analysis of
DIA data from a fasta database and correlates this information
for identification using a search engine. In the Spectronaut
software suite, MS1 and MS2 are fully implemented for identi-
fication and quantification (10).

Since recent progress has produced new MS instrumenta-
tion with higher resolution at faster speed, both the identifi-
cation and the quantification of peptides in DIA can benefit
from the increased quality of MS1 (21, 22). In particular, high
quality and quantitative MS1 and MS2 data now enable sta-
tistical inference of differential peptide and protein abun-

1 The abbreviations used are: LC-MS, liquid chromatography-mass
spectrometry; DDA, data-dependent acquisition; DIA, data-inde-
pendent acquisition; SWATH, sequential window acquisition of all
theoretical fragment ions; MP, mixed proteomes; SFC and LFC,
small/large fold change; OT, orbitrap; TTOF, triple quadrupole time of
flight; CV, coefficient of variation; BH, Benjamini-Hochberg; FDR,
false discovery rate.

FIG. 1. Quantitative data structure
label-free discovery proteomics. (A)
Schematic representation of the acquisi-
tion layout of data-dependent acquisi-
tion methods with regular MS1 scans.
The lower panels show the extracted ion
current in MS1, which can be used for
quantification. (B) Schematic represen-
tation of the acquisition layout of data-
independent acquisition experiment
with a regular MS1 and MS2 pattern.
The lower panels show the two ex-
tracted ion currents, which can be used
for quantification.
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dance. While this can be done separately for MS1 or MS2 (as
e.g. is currently done in Spectronaut), it may be advantageous
to simultaneously model MS1 and MS2 quantitative signals by
viewing them as technical replicates from the same biological
samples (Fig. 2A). To the date, the value of a direct join
statistical modeling of MS1 and MS2 information for detecting
differentially abundant proteins has not been systematically
attempted and evaluated. This is due in part to the lack of
controlled DIA datasets that make available both MS1 and
MS2 quantitative information.

This manuscript contributes a statistical approach for the
detection of differential abundant proteins that systematically
leverages both MS1 and MS2 information. We applied this
procedure to six sets of controlled mixtures. This was includ-
ing mixtures with realistic biological background variation,
and recorded on various instruments. A comparison of the
performance of the MS1-MS2-combined method to the indi-
vidual MS1- or MS2-based methods found consistent im-
provement in our ability to detect differentially abundant pro-
teins, as judged by the quality of the candidate lists. The
influence of the quality of the MS1 data was apparent, ena-
bling the generation of optimal DIA methods for the combined
use of MS1 and MS2. Finally, we applied the MS1-MS2-
combined method to a clinical investigation and demon-
strated that the MS1-MS2-combined method increased the
coverage of known activated pathways.

EXPERIMENTAL PROCEDURES

Overview—We evaluated the impact of the use of MS1 and MS2
quantitative information in DIA using multiple datasets. To ensure the
generality of the evaluation, we relied on six diverse sets of controlled
mixtures with known ground truth and on a clinical investigation of lung
cancer. Specifically, one set of controlled mixtures had defined spike-in
of few proteins in a constant background (Spike-in-HEK293-OT data-
set). Additionally, a set of controlled mixtures had defined spike-in of
few proteins in a background with realistic biological variation (Spike-
in-biol-var-OT) (23). The third type consisted of sets of controlled mix-
tures at defined ratios (MP-LFC-OT, MP-SFC-OT, MP-LFC-TTOF, and
MP-LFC-MS1var-OT). Finally, we evaluated the MS1-MS2-combined
method in a clinical investigation, comparing healthy tissues to tissues
with lung cancer (BiolDS-OT). Data from these experiments were ac-
quired on different instruments of two main classes (time of flight and
Orbitrap). The quality of the candidate lists resulting from the statistical
testing was used as a criterion for performance evaluation.

Sample Preparation for the Controlled Dataset with Biological
Background Variation/Spike-in-biol-var-OT—To generate samples for
the controlled mixtures with biological background variation (Spike-
in-biol-var-OT), 25 mouse cerebellum samples were ordered from
AMS Biotechnology (Abingdon, UK). For tissue lysis, half of a cere-
bellum was lysed in reducing lysis buffer (8 M urea, 0.1 M ammonium
bicarbonate, 10 mM TCEP) in a bead mill (3 � 30 beats per second for
30 s, TissueLyser II, Qiagen, Hilden, Germany). To shear the DNA,
lysates were sonicated in a Bioruptor (Diagenode, Seraing, Belgium)
for five cycles at a high intensity (30 s on, 30 s off). The lysates were
cleared by centrifugation (20 min, 16,000 � g). 60 �l of the lysate were
used for digestion. For the alkylation of the samples, 60 �l of alkyla-
tion buffer (8 M urea, 0.1 M ammonium bicarbonate, 40 mM CAA) were
added, and the samples were incubated for 1 h at 37 °C. Subse-
quently, samples were diluted with 600 �l of 0.1 M ammonium bicar-

bonate buffer including 5 �g of trypsin. Digestion was carried out
overnight at 37 °C and constant shaking at 500 rpm. To stop the
digestion, samples were acidified with 20% TFA. Peptide mixtures were
purified using 96-well plate clean-up plates (NEST group, Southbor-
ough, MA) following the manufacturer’s protocol. The samples were
completely dried by vacuum centrifugation and resuspended in solvent
A (1% acetonitrile, 0.1% formic acid in water) including iRT peptides
(Biognosys, Schlieren, Switzerland). The UPS2 standard (Sigma, St
Louis, MO) was digested separately using the same protocol, but Mi-
croSpin columns were used for the cleanup (NEST group).

The concentrations of the cerebellum samples were adjusted to 1
�g/�l. Next, the samples were spiked five different concentrations of
UPS2 standard, each in five different cerebellum samples (in total 25).
Based on the lowest abundant UPS2 proteins, the spike-in concen-
trations were (assuming no losses during UPS2 sample preparation):
S1: 0.75 amol/�l, S2: 0.83 amol/�l, S3: 1.07 amol/�l, S4: 2.04 amol/
�l, and S5: 7.54 amol/�l.

For library generation, aliquots from all spiked samples were
pooled and basified using ammonium hydroxide. The peptide pool
was separated by high pH reverse-phase chromatography on a
2.1*150 mm Acquity CSH 1.7-�m column (Waters, MA) using a Di-
onex Ultimate 3000 LC (Thermo Scientific, Sunnyvale, CA) by a 30-
min nonlinear gradient from 1% buffer B (100% acetonitrile)/99%
buffer A (20 mM ammonium formate, pH 10) to 40% buffer B. A
fraction was taken every 45 s and pooled into 10 final fractions.

Preparation of the Samples for the Controlled Dataset with Varying
MS1 Resolution/MP-LFC-MS1var-OT—To generate the controlled
mixtures with varying MS1 resolution (MP-LFC-MS1var-OT), HeLa,
Caenorhabditis elegans and Saccharomyces cerevisiae digests were
prepared as described before (21). Subsequently, two samples were
generated with HeLa constant, C. elegans 30% change and S. cerevi-
siae 100% change to generate the samples for the controlled dataset
with varying MS1 resolution (MP-LFC-OT).

Preparation of the Lung Cancer Samples/BiolDS-OT—For the clin-
ical cancer dataset (BiolDS-OT), 12 nonsmall cell lung cancer and 12
matching normal adjacent tissue were purchased from Proteogenex
(Culver City, CA). Around 30 mg per tissue were cut and lysed in lysis
buffer (8 M urea, 0.1 M ammonium bicarbonate) in a bead mill (3 � 30
beats per second for 30 s, TissueLyser II, Qiagen, Hilden, Germany).
DNA was digested by benzonase (Sigma-Aldrich, St. Louis, MO)
treatment according to manufacturer’s instructions. Lysates were
cleared by centrifugation (20 min, 16,000 � g). 80 �l of the lysate were
used for digestion. For reduction and alkylation of the samples, 80 �l
of reduction/alkylation buffer (8 M urea, 0.1 M ammonium bicarbonate,
10 mM TCEP, 40 mM CAA) were added, and the samples were
incubated for 1 h at 37 °C. Subsequently, the samples were diluted
with 500 �l of 0.1 M ammonium bicarbonate buffer including 10 �g of
trypsin. Digestion was carried out overnight at 37 °C and constant
shaking at 500 rpm. To stop the digestion, samples were acidified
with 20% TFA. Peptide mixtures were purified using 96-well plate
cleanup plates (NEST group) following the manufacturer’s protocol.
The samples were completely dried by vacuum centrifugation and
resuspended in solvent A (1% acetonitrile, 0.1% formic acid in water)
including iRT peptides (Biognosys). Prior LC-MS analysis peptide
concentrations were adjusted to 1 �g/�l. For library generation, ali-
quots from all samples were pooled (in total 200 �g) and basified
using ammonium hydroxide. The peptide pool was fractionated by
high pH reverse phase chromatography as described above. Pooled
fractions were completely dried by vacuum centrifugation and resus-
pended in solvent A (1% acetonitrile, 0.1% formic acid in water)
including iRT peptides (Biognosys).

LC/MS Acquisition of Spike-in-biol-var-OT, MP-LFC-MS1var-OT
and BiolDS-OT—For DDA and DIA, 2 �g of each sample were sepa-
rated using a self-packed analytical PicoFrit column (75 �m � 50 cm
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length) (New Objective, Woburn, MA) packed with ReproSil-Pur 120A
C18-AQ 1.9 �m (Dr. Maisch GmbH, Ammerbuch, Germany) with a 2-h
segmented gradient using an EASY-nLC 1200 (Thermo Scientific).
The datasets were acquired in a block randomized manner. The
Spike-in-biol-var-OT and the MP-LFC-MS1var-OT were acquired on
a Q Exactive HF mass spectrometer (Thermo Scientific) with methods
modified from (21). The BiolDS-OT dataset was acquired on a Q
Exactive HF-X mass spectrometer. The DIA method contained 43 DIA
segments of 30,000 resolution with injection time set to auto and
automatic gain control of 3*106 and a survey scan of 120,000 reso-
lution with 60ms max injection time and automatic gain control of
3*106. The mass range was set to 350–1650 m/z. The default charge
state was set to 3. Loop count 1 and normalized collision energy
stepped at 25.5, 27, and 30. For the dataset with varying MS1
resolutions, the number of DIA segments was adapted to maintain a
constant method cycle time. For the acquisition of the fractionated
sample for the library, a DDA method was applied. The TOP15
method was modified from (24) (MS-Methods.xlsx).

Mass Spectrometric Data Analysis of Spike-in-biol-var-OT, MP-
LFC-MS1var-OT and BiolDS-OT—DIA data were analyzed with Spec-
tronaut Pulsar X 12.0.20491.6, (Biognosys (10)). The default settings
were used for the targeted analysis of DIA data in Spectronaut. The
initial mass tolerance for MS1 and MS2 was 15 ppm. High precision
iRT calibration was used (25). The analysis was performed with and
without the built-in interference correction (10). The FDR was calcu-
lated according to (19). The DDA spectra were analyzed with the
MaxQuant (Version 1.5.6.5) analysis software (26, 27) using default
settings (Trypsin/P, two missed cleavages). The search criteria in-
cluded carbamidomethylation of cysteine as a fixed modification and
oxidation of methionine and acetyl (protein N terminus) as variable
modifications. The initial mass tolerance for the precursor was 4.5
ppm and for the fragment ions was 20 ppm. The Spike-in-biol-var-OT
DDA were searched against the mouse isoform UniProt fasta data-
base (state 11.12.2014, 24,723 entries) and the Biognosys iRT pep-
tides fasta database (uploaded to the public repository). The DDA
from the BiolDS-OT dataset was searched against the UniProt fasta
database (state 11.12.2014, 20,215 entries) and iRT fasta. The library
was generated in Spectronaut by importing the MaxQuant search
results using the default settings. Supplemental Table S1 shows the
number of entries in the libraries.

Analysis of the Spike-in-biol-var-OT Dataset—The dataset was
normalized in Spectronaut Pulsar X by the default normalization
option. The blood proteins ALBU_MOUSE, ALBU_HUMAN,
TRFE_MOUSE, and TRFE_HUMAN, were removed due to the in-
terference between the spiked-in proteins and the background
proteins. Precursor and protein FDR were set to 1%. Since the
detection limit of MS1 signal was around 100, normalized MS1
intensities below 100 were considered as missing values. Precur-
sors with any missing MS1 intensities or MS2 intensities over all the
MS runs were filtered out.

Analysis of the Spike-in-HEK293-OT Dataset—The published con-
trolled dataset from Bruderer et al. (10) was analyzed with Spectro-
naut Pulsar X using default settings using the published library. The
dataset was normalized in Spectronaut Pulsar X by the default nor-
malization option. Shared peptides of the spike-in proteins with the
human background were removed. Four proteins, P07724, Q921I1,
P02768, and P02787, were removed due to the interference between
the spiked-in proteins and the background of human proteins. The
three replicates from group S8 were not used for statistical testing
(28). Next, the data were filtered by FDR and intensity thresholds like
the Spike-in-biol-var-OT dataset.

Analysis of the MP-LFC-OT, MP-SFC-OT, MP-LFC-TTOF, MP-
LFC-MS1var-OT, and BiolDS-OT Datasets—The published mixed
proteome controlled datasets MP-LFC-OT and MP-SFC-OT from

Bruderer et al. (21) and MP-LFC-TTOF from Navarro et al. (29) were
analyzed with Spectronaut Pulsar X using default settings. The MP-
LFC-MS1var-OT dataset was analyzed with Spectronaut Pulsar X
using default settings using the spectral libraries from Bruderer et al.
(21). The BiolDS-OT dataset was analyzed with Spectronaut Pulsar X
using default settings using the project spectral library described
above. All the datasets (MP-LFC-OT, MP-SFC-OT, MP-LFC-TTOF,
MP-LFC-MS1var-OT, and BiolDS-OT) were normalized based on
housekeeping proteins using a global median approach for MS1 and
MS2 separately (30) (supplemental Table S2). Shared peptides be-
tween the proteomes were removed. Next, the data were filtered by
FDR and intensity thresholds, as in the Spike-in-biol-var-OT dataset.

Statistical Modeling—For a given protein, let Xiprg be the log2

intensity of peptide precursor ion p in replicate r from group g, where
i� {1, 2}, p� {1, . . . , P}, r� {1, . . . , R}, and g� {1, . . . , G}. The index
i � 1 indicates that X1prg is estimated from MS1 signal, and i � 2
indicates that X2prg is estimated from MS2 signal.

The methods of statistical analysis are summarized in supplemen-
tal Fig. S1. When separately analyzing MS1-based quantification, we
first summarized the protein abundances in an LC-MS run, by calcu-
lating the median MS1 intensities across all its matching peptide ions.
In other words, the summarized MS1 intensity of one protein is Z1rg �
medianp{X1prg}, the median of all X1prg across all peptide ions p, in
replicate r from group g. Next, since all the experiments in this
manuscript had a multiple group design, we fit a one-way analysis of
variance (ANOVA) model:

Z1rg � � � Group1g � �1rg (Eq. 1)

�
g�1

G

Group1g � 0

�1rg � N�0,�1
2�

In this notation, Group1g describes the deviation of the MS1-based
expected protein abundance in group g from the average expected
protein abundance in all the groups. This term is of the main interest
in MS1-based quantification. The term �1rg is the random experimen-
tal error with mean 0 and a constant variance. Hypothesis testing for
differential abundance was performed based on this model. P-values
of all the proteins were adjusted for multiple testing by the method of
Benjamini and Hochberg (31).

We analyzed MS2-based quantification using the same method
(supplemental Fig. S1).

Z2rg � � � Group2g � �2rg (Eq. 2)

�
g�1

G

Group2g � 0

�2rg � N�0,�2
2�

Here Z2rg is the summarized MS2 intensity of the same protein, i.e.
Z2rg � medianp{X2prg}, the median of all X2prg across all peptide ions
p, in replicate r from group g. Group2g describes the deviation of the
MS2-based expected protein abundance in group g from the average
expected protein abundance in all the groups. This term is of the main
interest in MS2-based quantification. The term �2rg is the random
experimental error with mean 0 and a constant variance. p-values of
all the proteins were also adjusted for multiple testing by the method
of Benjamini and Hochberg.

In order to jointly analyze the MS1 and MS2 precursor intensities in
a statistical model, we first separately normalized MS1 and MS2
intensities of each peptide precursor ion to have zero median across
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all the replicates. That is, X�iprg � Xiprg � medianrg{Xiprg} is the nor-
malized log2 intensity of peptide precursor ion p in replicate r from
group g. Then normalized protein intensity Z�irg � medianp{X�iprg}, the
median of all X’iprg across all peptide ions p, in replicate r from group
g. Next, we extended the ANOVA models in Equations (1) and (2)
above, to express both MS1 and MS2 signals.

Z�irg � � � MSi � Groupg � Replicater� g� � �irg (Eq. 3)

�
i�1

2

MSi � 0

�
g�1

G

Groupg � 0

Replicater� g� � N�0,�R
2�

�irg � N�0,�2�

In this notation MSi is the contribution of MS1 signal and MS2 signal
to the estimate of protein abundance Z�irg. Groupg describes the devi-
ation of the expected protein abundance in group g from the average
expected protein abundance in all the groups, on average over MS1 and
MS2 signals. This term is of the main interest in joint MS1- and MS2-
based quantification. Replicater(g) expresses the variability of protein
abundance in replicate r within group k. �irg is the random experimental
error with mean 0 and a constant variance. As above, hypothesis testing
for differential abundance was performed based on this model. Impor-
tantly, the combination of MS1 and MS2 signals allows us to distinguish
the sources of biological and technological variation (supplemental Fig.
S1). p-values of all the proteins were adjusted for multiple testing by the
method of Benjamini and Hochberg.

We evaluated the performance of the statistical methods in the six
controlled mixtures by sorting the candidate lists by p-value and exam-
ining the true positives as a function of candidate list length. Addition-
ally, for simpler visualization, cuts were taken at fixed candidate list
lengths (Top200 for spike-in and Top2000 for proteome mixtures). Fi-
nally, the candidate lists were analyzed in terms of the number of true
positives and false positives determined based on the ground truth. The
BiolDS-OT was evaluated by comparing the candidate lists against an
independent study of the same cancers in lung (32). The R script for the
analysis was uploaded to the proteomeXchange repository.

RESULTS

Separately Characterizing the MS1 and MS2 Quantification
in DIA—Before integrating the MS1 and MS2 in the statistical
modeling, we sought to separately characterize the strengths
and weaknesses of the quantitative information of MS1 and
MS2. In each dataset, we visually inspected the peptide pre-
cursor and fragment signals of the truly differentially abundant
proteins. We compared the precision, accuracy, and correla-
tion of precursor quantification by MS1 and MS2 globally
across all the proteins.

Visual inspection of the DIA data using Spectronaut showed
that the MS1 and MS2 interferences occur independently. In
the controlled mixtures, interferences of peptide precursors
with differential abundance can be clearly spotted because
they do not follow the expected patterns of abundance be-
tween conditions. In an example with interference on MS1, a
coeluting peptide was of the same m/z (Fig. 2B, upper panel)

In an example with interference on MS2, a fragment of a
coeluting and cofragmented peptide precursor was of the
same mass (Fig. 2B, lower panel).

To globally assess the precision of MS1 and MS2 quantifi-
cation, we calculated the CVs on the precursor level for the
controlled mixtures within conditions. For all the tested data-
sets, the precision of MS2 quantification was higher than that
of MS1, when counting precursors with CVs �20%. The
number of precursors with CVs below 20% (on MS2) was
between 11 and 61% higher than MS1 (Fig. 2B). Consistently,
the medians of the CVs of MS2 quantification were consis-
tently lower than those of MS1 (supplemental Fig. S3A). The
CVs of precursors on MS1 had a median between 9% and
25%, and CVs on MS2 it was between 7% and 15%.

In the controlled mixtures based on mixed proteomes ac-
quired on the Orbitrap instruments, the accuracy of fold change
estimation was similar between MS1 and MS2 (supplemental
Fig. S3B). In the MP-LFC-TTOF dataset recorded on the time of
flight instrument, the fold change was more compressed in the
MS1 space than in MS2, while the fold change estimate of the
combined MS1 and MS2 information was between the esti-
mates of the individual (supplemental Fig. S3B). The Pearson
correlation between MS1 and M2 quantification had a median
value of 0.5 (Fig. 2C). These analyses demonstrated that, al-
though MS1 and MS2 are of generally similar quality, they can
be of variable quality for specific analytes.

Combining the Quantitative Information in MS1 and MS2—
Our next step was to evaluate the ability of the proposed
MS1-MS2-combined method to statistically detect differen-
tially abundant proteins in the controlled mixtures. First, we
compared the true positive and false positive differentially
abundant proteins (as defined by the ground truth), detected
by MS1 alone, by MS2 alone, and by the MS1-MS2-combined
method. The MS1-MS2-combined method always outper-
formed the individual tests (Fig. 3A, supplemental Fig. S4A,
supplemental Table S4, and statistical-inference-results.zip).
In the controlled mixtures with spike-in proteins, the top dif-
ferentially abundant proteins consisted mostly of the true
positives (the number of true positives among the top 200
differentially abundant proteins were as follows. Spike-in-
HEK293-OT, MS1: 129, MS2: 160, and MS1-MS2: 164;
Spike-in-biol-var-OT, MS1: 72, MS2: 111, and MS1-MS2:
113). In the proteome mixtures, the performance of the MS1-
MS2-combined method was similar or better than the individ-
ual (Fig. 3B, supplemental Fig. S4B, supplemental Table S4,
and statistical-inference-results.zip).

In order to distinguish the role of increasing the number of
replicates from that of reducing the undesirable effects of inter-
ferences in MS1 or MS2 signals, we reanalyzed the datasets
with and without interference correction implemented in Spec-
tronaut. The interference correction improved the statistical
power in all the datasets (supplemental Fig. S5A). The combi-
nation of MS1 and MS2 information could mitigate the negative
impact of interferences. The performance of the combined
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method without interference correction was comparable to the
performance of MS2 alone with interference correction in all but
one set of controlled mixtures (supplemental Fig. S5B).

Next, we analyzed the effect of the magnitude of the fold
changes on the performance of the statistical models. We
split the pairwise comparisons of the Spike-in-biol-var-OT
into subsets with decreasing maximal fold changes from
900% to 10% (Fig. 3C). Additionally, for the controlled mix-
tures Spike-in-HEK293-OT and MP-SFC-OT (supplemental
Fig. S6), the MS1-MS2-combined method performed better
with smaller fold changes than the individual MS1- or MS2-

based quantification. Detecting small fold changes proved
challenging because the observed maximum of true positives
was reached more slowly in all the three methods. This chal-
lenge also manifested itself by the earlier deviation from the
perfect candidate list.

We further evaluated the effect of replication on the out-
come of the statistical analyses. We used the three statistical
approaches to analyze the Spike-in-biol-var-OT dataset with
a decreasing number of replicates. The MS1-MS2-combined
method maintained higher statistical power than the individual
tests (Fig. 3D). At the lowest number of replicates (two), the

FIG. 2. MS1 and MS2 quantification characteristics in DIA (A) The MS1 and MS2 quantitative signals can be viewed as technical replicates
from the same biological samples. (B) Extracted ion currents of two peptides derived from spike-in proteins from the Spike-in-biol-var-OT
dataset of sample 1, 3, and 5. The interferences were manually identified as not following the predefined pattern of differential abundance. (C)
The CVs for all precursors on condition level were calculated for the controlled datasets separately for MS1 and MS2 and separately for each
condition. The graph displays the counts of precursors with CVs below 20%. (D) Pearson correlation between the precursor abundances in
MS1 and MS2 space in the controlled datasets. The median is indicated by the red dotted line.
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FIG. 3. Benchmarking of the MS1-MS2 combined method (A) Statistical inference of differential abundance was performed for spike-in
datasets. The 200 proteins with the smallest adjusted p values were sorted by their p value. Next, the number of true positive differentially
abundant proteins was displayed as a function of the candidate list containing true and false positives. The dotted line indicates a perfect
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MS1-MS2-combined method had a 13% better sensitivity as
compared with MS1 and 17% as compared with MS2.

An important parameter of DIA is the time allocated to MS1
and MS2, respectively (thus affecting the resolution for Or-
bitrap instruments). Because current DIA methods have been
mostly optimized for MS2-based quantification, we evaluated
the influence of the experimental MS1 resolution on an Or-
bitrap mass spectrometer on the MS1-MS2-combined statis-
tical procedure. The controlled mixture MP-LFC-MS1var-OT
was profiled with DIA while varying MS1 resolutions (30,000 to
240,000) and balancing MS2 time (at a constant resolution of
30,000) to keep the cycle time of the methods constant. We
then characterized the quantitative precision, as well as the
detection of differentially abundant proteins in these settings
(supplementary File MP-LFC-MS1var-OT.zip). The DIA
method with 120,000 MS1 resolution consistently produced
most precursors with CVs below 20%, both for MS1 and MS2
(supplemental Fig. S7A). This can be explained by the fact
that peak picking and integration in Spectronaut is dependent
on MS1 and MS2. For all three statistical models, the best
candidate lists were obtained at the 120,000 MS1 resolution.
The MS1-MS2-combined approach showed the best overall
performance, likely due to a sufficient MS1 resolving power
and a balance in the number of MS2 segments (supplemental
Figs. S7B and S7C). This is practical because it corresponds
to the widely used DIA methods.

Testing Proteins for Differential Abundance in the Set of
Clinical Samples with Lung Cancer—Finally, we evaluated the
performance of the MS1-MS2-combined method in a clinical
investigation of 12 healthy lung and 12 cancer samples (six
adenocarcinomas and six squamous cell carcinomas). We
performed an exploratory analysis, statistical analysis of dif-
ferential abundance using the MS1- or the MS2-based
method or the MS1-MS2-combined method (supplementary
File BiolDS-OT.xlsx), and biological pathway analysis using
ingenuity pathway analysis (IPA) (33). Principal component
analysis-based clustering revealed a clear separation of
healthy and tumor samples, indicating the biological separa-
tion between the two sample sets (Fig. 4A). The MS1-MS2-
combined method produced the largest list of differentially
abundant proteins (multiple testing correction BH, FDR �1%).
The three methods shared 65% of the union of differentially
abundant proteins (Fig. 4B). The MS2-based and the MS1-
MS2-combined method showed a large portion of unique
candidates, respectively (7.5% and 5.8% of the union). The
results of the MS1-MS2-combined method had a larger over-
lap with the MS1 approach, missing 79 candidates. The MS2-

based method missed 238 differentially abundant proteins
that were reported by MS1.

Because the true differentially abundant proteins are un-
known, we compared our results to the results of an inde-
pendent study based on the same cancer type by Tenzer et al.
(32). The results of the MS1-MS2-combined method had the
largest overlap with Tenzer et al. The overlap had 70 proteins
more than the overlap based on the MS2 method (and 79
more than the MS1-based) (Fig. 4C). Upon investigation of
pathway enrichments in the candidate lists, we found that
among the 64 most enriched pathways there was a high
degree of overlap between all three different methods. The
pathways were consistently either activated or deactivated
(Fig. 4D). The proteins uniquely identified by the MS1-MS2-
combined method belonged to the same pathways, such as
the pathways for the shared proteins, indicating a more com-
prehensive description (supplemental Fig. S8).

DISCUSSION

In complex mixtures, peptides of the same mass can coe-
lute, and the coeluting peptides can share fragments of the
same mass. Modern DIA experiments allow us to characterize
these two independent quantitative spaces. The combined
use of MS1- and MS2-level information increases the number
of technical replicates and, therefore, the precision of the
measurement. The improved precision, combined with the
ability to separate the sources of biological and technological
variation by the statistical modeling, in turn improve the power
of detecting differentially abundant proteins.

Moreover, because interferences in MS1 and MS2 usually
do not correlate, another strength of the combined use of
MS1 and MS2 is in reducing the negative impact of the
interferences in one of the quantitative spaces on the down-
stream statistical analysis (Supplemental Fig. S5).

To take advantage of both layers of quantification, we de-
veloped a statistical model that combines the use of MS1 and
MS2. We demonstrated the advantages of this approach on
multiple sets of controlled mixtures from multiple instrument
platforms. We noticed the largest improvement in the detec-
tion of differential abundance for small fold changes, a finding
that is particularly relevant for plasma studies and in cases of
a low number of replicates (34–36). On a clinical investigation
of lung cancer, the proteins uniquely identified by the MS1-
MS2-combined method increased the coverage of the path-
way enriched by MS1- and MS2-based quantification. De-
spite this improvement, the MS1-MS2-combined method is
not a substitute for adequate biological replication.

candidate list containing only true positives (slope � 1). Inset: the number of true positives in the list of 200 proteins with the smallest adjusted
p values. (B) As in (A), but for the mixed proteome datasets as in (A). (C) Statistical detection of differentially abundant proteins was performed
as above for subsets of the Spike-in-biol-var-OT dataset with decreasing maximal true fold change, by selecting subsets of the dataset. The
first plot to the left is based on the samples 1 to 5, the second to the left on 1 to 4, the third from the left on 1 to 3, and the right plot shows
1 to 2. The resulting candidate lists were analyzed as above. (D) Statistical detection of differentially abundant proteins was performed as above
for subsets of the Spike-in-biol-var-OT dataset with decreasing numbers of replicates. The resulting candidate lists were analyzed as above.
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We believe that the proposed approach may have a high po-
tential in the future as the technology evolves. For example, the
recent development of BoxCar MS1 acquisition (37) improves the
intrascan dynamic range, which leads to better MS1 quantifica-
tion. Therefore, it is conceivable that the approach presented here
will become even more powerful and will lead to sensitive and
robust statistics when combining BoxCar MS1 and DIA.
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FIG. 4. MS1-MS2-combined method based differential abundance testing in clinical samples (A) 12 healthy lung and 12 cancer (six
adenocarcinomas and six squamous cell carcinomas) were analyzed by mass spectrometry. The resulting data were subjected to principal
component analysis. (B) Statistical detection of differentially abundant proteins was performed with MS1-, MS2-based and the MS1-MS2-
combined method. The overlap of differentially abundant proteins (FDR �0.05) was calculated on the protein level. (C) The candidate lists from
the testing approaches were compared with the candidate list of an independent lung cancer study by Tenzer et al. (32). (D) The functional
analyses were generated through the use of IPA (33). The figure plots the activation states of the pathways according to IPA.
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