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Single-cell analysis of germinal-center B cells
informs on lymphoma cell of origin and outcome
Antony B. Holmes1*, Clarissa Corinaldesi1*, Qiong Shen1, Rahul Kumar1, Nicolo Compagno1, Zhong Wang2, Mor Nitzan7, Eli Grunstein3,
Laura Pasqualucci1,2,6, Riccardo Dalla-Favera1,2,4,5,6, and Katia Basso1,2

In response to T cell–dependent antigens, mature B cells are stimulated to form germinal centers (GCs), the sites of B cell
affinity maturation and the cell of origin (COO) of most B cell lymphomas. To explore the dynamics of GC B cell development
beyond the known dark zone and light zone compartments, we performed single-cell (sc) transcriptomic analysis on human
GC B cells and identified multiple functionally linked subpopulations, including the distinct precursors of memory B cells and
plasma cells. The gene expression signatures associated with these GC subpopulations were effective in providing a sc-COO for
∼80% of diffuse large B cell lymphomas (DLBCLs) and identified novel prognostic subgroups of DLBCL.

Introduction
Germinal centers (GCs) are histological structures that form in
the secondary lymphoid organs in response to engagement of
mature naive B cells by the antigen. They represent the sites
of antibody affinity maturation, a process based on multiple
rounds of B cell receptor (BCR) editing by somatic hyper-
mutation (SHM) followed by affinity-driven selection. In the GC,
B cells undergo class switch recombination, although this pro-
cess can also occur outside the GC (Roco et al., 2019). The GC
includes two functionally distinct compartments: the dark zone
(DZ), representing the site of intense B cell proliferation and
SHM, and the light zone (LZ), where affinity selection occurs
(Cyster and Allen, 2019; De Silva and Klein, 2015; Mesin et al.,
2016; Victora and Nussenzweig, 2012). GC B cells recirculate
between the DZ and LZ compartments, undergoing multiple
rounds of BCR editing and affinity selection (Calado et al., 2012;
Dominguez-Sola et al., 2012; Ersching et al., 2017; Finkin et al.,
2019; Victora et al., 2010). GC B cell selection in the LZ requires
BCR engagement and B–T cell interaction that trigger the sig-
naling pathways driving the DZ reentry or differentiation to-
ward post-GC memory B cells and plasma cells. Multiple lines of
evidence support the notion that plasma cell differentiation is
favored by the acquisition of high-affinity BCRs, while memory
B cells rise from lower-affinity B cells (Phan et al., 2006;
Shinnakasu et al., 2016). However, the molecular mechanisms
driving differentiation into memory B cells or plasma cells are
not fully understood.

GC B cells also represent the normal counterpart of most
B cell non-Hodgkin lymphomas, including Burkitt lymphoma,
follicular lymphoma, and diffuse large B cell lymphoma
(DLBCL). Although they share a common GC B cell precursor,
these lymphomas appear to originate from cells at different
stages of the GC reaction and develop through distinct patho-
genetic mechanisms (Basso and Dalla-Favera, 2015; Pasqualucci
and Dalla-Favera, 2018; Shaffer et al., 2012). The cell-of-origin
(COO) classification has identified two subtypes of DLBCL: the
GC B cell–like (GCB) and the activated B cell–like (ABC) DLBCL,
which appear to originate from LZ B cells and cells committed
to plasmablast (PBL) differentiation, respectively (Alizadeh
et al., 2000). The COO classification is relevant for its associ-
ation with distinct clinical responses to therapy, with GCB cases
being, in general, less aggressive than ABC cases (Alizadeh
et al., 2000; Wright et al., 2003).

Although DZ and LZ compartmentalization has been instru-
mental in understanding GC biology, it most likely represents an
oversimplification of the complex dynamics of proliferation,
trafficking, and differentiation involving B cells within the GC.
Toward a better understanding of the GC reaction, here we
applied genome-wide single-cell (sc) RNA profiling to further
dissect the heterogeneity of GC B cells. We identified multiple
functionally linked subpopulations, as well as the precursors of
memory B cells and plasma cells. Then, the gene signatures as-
sociated with these GC B cell subpopulations were used to
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further dissect the COO of DLBCL and to interrogate the prog-
nostic significance of the newly identified sc-COO subgroups.

Results
Identification of GC B cell subpopulations by sc-transcriptomic
analysis
Human GC B cells were isolated from tonsil tissue of two donors
by cell sorting CD3−/IgD−/CD38+ cells, while DZ and LZ B cells
were purified based on the expression of the CXCR4 and CD83
markers, as previously reported (Allen et al., 2004; Caron et al.,
2009; Victora et al., 2012, 2010; Fig. S1 A). sc-RNA sequencing
(sc-RNAseq) analysis was performed by 10x Genomics technol-
ogy on ∼4,500 cells from each of two donors. RNAseq libraries
were analyzed by the 10x Genomics computational pipeline, di-
mensional reduction was performed using the UniformManifold
Approximation and Projection (UMAP) algorithm (Becht et al.,
2018), and clusters were identified by the PhenoGraph algorithm
(Levine et al., 2015; Fig. S1 B).

The independent analysis of GC B cells from the two donors
showed that they displayed remarkably similar structures and
shared the gene signatures associated with distinct sub-
populations (Fig. S1, C and D). Given the consistency between
donors, we applied batch correction using the Seurat package
(Butler et al., 2018) and merged the cells of both donors into a
single dataset. The analysis of the merged dataset, including
8,368 GC B cells, identified 13 clusters, which were annotated
based on their gene expression signatures (Fig. 1 A). An in-
verted expression pattern of CXCR4 and CD83 characterized
clusters representative of DZ and LZ B cells (Fig. 1 B; Allen et al.,
2004; Caron et al., 2009; Victora et al., 2012, 2010). Several
clusters displayed intermediate expression of DZ/LZ markers
and may represent intermediate stages in the GC differentia-
tion process (Fig. 1 C; Milpied et al., 2018). Two additional
discrete clusters were preliminarily identified as precursors of
plasma cells and memory B cells based on their gene signatures,
including expression of PRDM1 (Angelin-Duclos et al., 2000;
Falini et al., 2000) and CCR6 (Suan et al., 2017), respectively
(Fig. 1, A–C; see dedicated paragraphs for additional details).

In addition, we performed sc assessment of a few surface
protein markers in parallel with RNAseq using the cellular in-
dexing of transcriptomes and epitopes by sequencing (CITE-seq)
technology in an independent donor. Most subpopulations
identified by the sc-RNAseq analysis were detected using the
transcriptional profiles of the 8,871 cells analyzed by CITE-seq
(Fig. S1 E). The results showed that, as expected, the clusters
identified as DZ and LZ cells expressed both RNA and surface
protein for CXCR4 and CD83, respectively. In the intermediate
clusters, however, the CXCR4 and CD83 protein expressions
were less pronounced than those of their respective transcripts,
consistent with various levels of post-transcriptional regulation
(Fig. S1 E). Surface markers associated with PBL (CD9) and
precursor memory B cells (PreM; CCR6) were also detected in
the respective populations (Fig. S1 E; see dedicated paragraph
for additional details). These data show that the populations
identified based on transcriptional profiles display consistent
protein expression of known markers.

Overall, these results show that sc-RNAseq analysis can
capture all known GC B cell subpopulations and also inform on
additional GC heterogeneity.

Proliferative compartments within the GC
About 40% of the analyzed GC B cells belonged to clusters that
displayed high average expression of genes associated with the
S-G2-M stages of the cell cycle, including PCNA, MKI67, CDK1,
and CDC20, and mainly included cells expressing markers of DZ
or intermediate phenotypes (Fig. 1, C and D). Consistently, sc-
gene expression profiling of 8,468 sorted DZ B cells showed that
>60% of the cells displayed a transcriptional profile associated
with S-G2-M (Fig. 1 E), while only ∼20% of the 11,118 sorted LZ
B cells expressed S-G2-M genes (Fig. 1 F). These results showed
that although proliferation is a feature mostly associated with
DZ GC B cells, both proliferating and resting cells are found in
the DZ and LZ compartments.

GC B cell developmental stages
The dominant cell cycle signatures associated with transition
through the S-G2-M stages impair discriminating phenotypic
subpopulations. To capture the functional and temporal dy-
namics among the GC B cell subpopulations, we thus focused our
analysis on the GC B cell clusters (4,984 cells) with no or low
expression of genes associated with the S, G2, orM phase of the cell
cycle (Fig. 1 D). This analysis identified distinct subclusters previ-
ously hidden by the overwhelming “cell cycle signature” (Fig. 2 A).
We assumed that given the proliferative nature of GC B cells, the
analysis of this cell subset would be representative of all sub-
populations just transitioning at a specific stage of the cell cycle. The
specific contributions of cells that are in S-G2-M were investigated
separately (see the analysis of DZ and LZ compartments below).

Genes differentially expressed in each cluster were identified
by supervised analysis using model-based analysis of single-cell
transcriptomics (MAST; Finak et al., 2015; Fig. 2 B and Table S1).
Each cluster was labeled as DZ, intermediate, LZ, PBL, or PreM
cells based on the expression of previously knownmarker genes,
including CXCR4 and AICDA (DZ), CD83 and BCL2A1 (LZ), PRDM1
and IRF4 (PBL), and CCR6 (PreM; Fig. S2 A and Table S1). These
assignments were confirmed by Gene Set Enrichment Analysis
(GSEA), which showed that the DZ signatures were significantly
enriched in purified DZ bulk populations, while the LZ signatures
were significantly enriched in purified LZ bulk populations (Fig.
S2 B and Table S2). The clusters labeled as intermediate displayed
transitional profiles with some features alternatively related to DZ
(INT-a) or LZ (INT-b, -c, -d, and -e; Fig. S2 C and Table S2).

Two very well–characterized master regulators of the GC
reaction, BCL6 and FOXO1 (Basso and Dalla-Favera, 2012;
Dominguez-Sola et al., 2015; Sander et al., 2015), displayed low
levels of expression in the sc-RNAseq profiles, and they did not
score among the top differentially expressed genes. Nonetheless,
they showed the expected pattern of expression, with significant
BCL6 down-regulation in cells committing to post-GC differen-
tiation, and induction of FOXO1 in DZ GC B cells (Table S1). In
addition, enrichment analysis confirmed that BCL6 targets were
significantly overrepresented among genes down-regulated in
the DZ, in a subset of intermediate, and in the early LZ clusters,
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all consistent with the pattern of expression of BCL6. Consistent
with FOXO1 specific expression and required role in DZ devel-
opment (Dominguez-Sola et al., 2015; Sander et al., 2015), FOXO1
targets were enriched in the signatures of the DZ compartments.

Two clusters clearly branched out from the continuous
UMAP structure, composed by DZ, intermediate, and LZ GC
B cells: one displayed elevated expression of plasma cell hall-
marks such as PRDM1, XBP1, and IRF4 and was preliminarily

Figure 1. Identification of GC B cell subpopulations by sc-transcriptomic analysis. (A) UMAP projection of sc-RNAseq profiles of 8,368 GC B cells (CD3−,
IgD−, CD38+) isolated from two donors. sc-RNAseq data were merged upon batch effect correction performed by the Seurat package. Clusters in the UMAP
plots were identified by PhenoGraph and color coded according to different cell stages: DZ, LZ, intermediate (INT), PreM, and PBL. (B) UMAP projections of the
z-scored expression of selected marker genes associated with distinct stages. (C) Heat map displaying the relative expression, as fold change (log2), of selected
genes in the GC B cell clusters identified in A. (D–F) Top panels: UMAP projections of GC (D), DZ (E), and LZ (F) B cells color coded based on the expression
(black dots) or not (gray dots) of genes associated with the S-G2-M stages of the cell cycle. Bottom panels: the UMAP projections were colored based on the
z-scored expression of four representative genes associated with the S-G2-M stages of the cell cycle. See also Fig. S1.
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Figure 2. GC B cell developmental stages. (A) UMAP projection and cluster identification from sc-RNAseq profiles of 4,984 GC B cells in G0-G1 stages of the
cell cycle. (B) The heat map shows the top 50 up- and down-regulated genes for each cluster. Genes that are significantly differentially expressed in more than
one cluster are displayed in association with the cluster in which they show the best fold change. The heat map is colored by the log2 fold change of the average
expression. (C) Pseudo-time analysis by Monocle of the sc-RNAseq profiles displayed in A. The projection is colored by normalized pseudo-time. Numbers in
the circle identify distinct branches. (D) UMAP projection colored by normalized pseudo-time analysis. (E)Mapping of the PhenoGraph clusters on the pseudo-
time plot. (F) Heat map of pseudo-time gene expression changes. On the right, genes are labeled based on the phenotype in which they display the largest log2
fold change. (G) Spatial reconstruction of the inferred locations of GC subpopulations in an idealized GC structure using novoSpaRc. The most likely inferred
spatial position of a given cell type is denoted by its normalized score ranging from high (1, yellow) to low (0, blue) confidence values. See also Fig. S2, Table S1,
and Table S2.
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identified as PBL, while the other showed expression of the
marker of PreM CCR6 (Suan et al., 2017) and was thus labeled
as PreM (Fig. 2 A, Fig. S2 A, and Table S1). These annotations
were confirmed by GSEA showing that the PreM and PBL sc-
signatures displayed significant enrichment in the profiles of
bulk memory B cells or plasma cells, respectively, compared
with GC B cells (Fig. S2 D and Table S2; see paragraphs dedicated
to PBL and PreM for additional details).

To investigate the temporal relationships among the identi-
fied clusters, we applied Monocle, a trajectory inference algo-
rithm (Trapnell et al., 2014), to our dataset of 4,984 GC B cells.
Monocle ordered the cells in a pseudo-temporal trajectory with
three branches. The main trajectory (branch 1 to 2 in Fig. 2 C)
ordered the DZ to LZ transition, while the differentiation toward
PreM or PBL was inferred as a distinct branch (branch 3 in Fig. 2
C). The UMAP projection was color coded based on the pseudo-
time inferred by Monocle and showed that the ordered stage
progression could be identified also in the UMAP structure
(Fig. 2 D). The pseudo-time ordering suggested that PreM B cells
were generated earlier than the PBLs, although both of them
appeared to be related to LZ B cells (Fig. 2 E). As expected, the
genes informing the pseudo-time order displayed a pattern of
expression mimicking the transitions through the GC stages
(Fig. 2 F). Of note, the pseudo-time inference is linear and not
directional; therefore, it cannot model the DZ reentry.

The sc-expression profile analysis requires disaggregation of
the tissue into an sc suspension, leading to the loss of spatial
information, which is critical for understanding of GC dynamics.
Thus, we applied novoSpaRc (Nitzan et al., 2019), which allows
for de novo spatial reconstruction of sc–gene expression data, to
infer the spatial organization of GC B cells starting from their sc-
RNAseq expression profiles. Consistent with well-characterized
DZ and LZ compartmentalization, the results showed that the DZ
and LZ cells were properly assigned at the opposite sides of a GC-
resembling physical space (Fig. 2 G). The PBL population was
closely related to an end stage of the LZ compartment, while the
PreM population appeared closer to an intermediate GC stage,
suggesting that, in agreement with the pseudo-temporal analysis
(Fig. 2, C and E), this population may originate from cells in a
stage preceding that associated with PBL commitment (Fig. 2 G).

Taken together, these results identify an ordered progression
from DZ to LZ and suggest a temporally and spatially distinct
process of differentiation into post-GC memory B cells and
plasma cells.

DZ B cell subpopulations
To investigate B cells in the DZ compartment, we analyzed 8,468
purified DZ B cells from two donors. This analysis revealed the
presence of multiple cell clusters, most of which were associated
with distinct stages of the cell cycle andwith themajority of cells
(62%) expressing S-G2-M genes (Fig. 3 A). We then analyzed
separately the cells expressing or not expressing genes associ-
ated with the S-G2-M phases of the cell cycle.

In the proliferating compartment, we identified a population
that was transitioning from G1 to S and displayed expression of
MYC (Fig. 3, B and C). Based on the known MYC expression
pattern and role in the GC (Calado et al., 2012; Dominguez-Sola

et al., 2012), this population may represent DZ B cells just en-
tering the GC and/or reentering the DZ after selection in the LZ.
Proliferating DZ cells also showed induction of numerous genes
involved in DNA damage sensing and repair (Fig. 3 C and Table
S3). Pathway enrichment analysis confirmed that cells entering
the S phase displayed the most significant involvement of DNA
repair pathways, including mismatch repair as expected for its
role in SHM (Fig. 3 D and Table S3). Although expressed in most
DZ clusters, several genes, including AICDA and EZH2, showed
transcriptional modulation during the cell cycle. Specifically,
AICDA was strongly induced in cells in G2-M, and EZH2 dis-
played a peak of expression in cells in the S phase following the
induction of E2F1, which is known to transcriptionally induce
EZH2 (Béguelin et al., 2017; Fig. 3 C).

Among the cells in G0-G1, we identified a subset of DZ cells
that appeared to down-regulate DZ markers, including CXCR4,
AICDA, and FOXP1, and to up-regulate genes involved in calcium
signaling (PRKCB and CAMK1) and BCR modulation (CD72,
PTPN6, and CD22), a signature that is then further induced in the
intermediate GC stages (DZ-exit in Fig. 3, E and F). We suggest
that these cells are preparing to exit the DZ compartment and
move forward to the LZ through multiple intermediate stages
(Table S3).

In addition, we identified clusters of cells that were not as-
sociated with a specific cell cycle stage or phenotype but dis-
played higher expression of several genes involved in the
oxidative-phosphorylation response and/or ribosome and RNA
processing (Fig. 3, B and E; and Table S3). Two additional clus-
ters carried the signatures of PreM and PBL, suggesting that
small subpopulations of these precursors were sorted together
with DZ cells, most likely based on their expression of CXCR4
(Fig. 3, B and E).

Taken together, these data confirmed the overall prolifera-
tive nature of DZ B cells but were also able to capture the
presence of quiescent cells, a subset of which displayed tran-
scriptional changes consistent with DZ exit.

LZ B cell subpopulations and fates
To investigate the heterogeneity of the LZ compartment, we
interrogated 11,118 sorted LZ GC B cells from two donors. As
mentioned above, most LZ GC B cells (∼80%) did not display
expression of genes associated with the S-G2-M phases of the
cell cycle (Fig. 4 A). The analysis of these nonproliferating LZ GC
B cells identified 12 distinct clusters that were annotated based
on their expression profiles (Fig. 4 B and Table S4). Consistent
with an initial stage of activation in the LZ, we annotated as “LZ
entry” a cluster of cells that retained modest expression of DZ
markers (CXCR4, CD27, and FOXP1; Fig. 4, B and C). This cluster
showed up-regulation of genes in the BCR (including BTK, BLK,
and BLNK) but not in the CD40 signaling pathway (Fig. 4, B and
C; and Table S4), suggesting that these cells may have just en-
tered the LZ and may be ready to interact with the antigen, but
not with T cells. An additional group of clusters displayed up-
regulation of genes associated with antigen presentation (in-
cluding genes in the MHC class II and CD74 receptors) and BCR
signaling, but they lacked expression of DZ markers. These
clusters may represent subsequent LZ stages in which B cells
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have captured the antigen presented by follicular dendritic cells
and processed it for presentation by MHC class II complex and
were thus labeled “BCR engagement” (Fig. 4, B and C; and Table
S4). In addition to genes associated with BCR engagement, cells
in these clusters displayed variable induction of genes in the
CD40 signaling pathway (including CD40, TRAF1, and ICAM1) and

NF-κB activation (including NFKB1, NFKB2, REL, and RELB),
suggesting that these cells were undergoing both antigen stim-
ulation and T cell–mediated activation.

Of note, some of these clusters retained high expression of
IGHM, while others showed expression of switched immuno-
globulin receptors (IGHG and IGHA; Fig. 4 C).

Figure 3. DZ B cell subpopulations. (A) UMAP projection and cluster identification from sc-RNAseq profiles of 8,468 DZ B cells (CD3−, IgD−, CD38+, CXCR4hi,
CD83lo). Black and gray dots mark B cells that respectively express (left) or do not express (right) genes associated with the S-G2-M stages of the cell cycle.
UMAP projections and cluster identification were performed independently for cells in the two cell cycle groups. (B) UMAP projection and cluster identification
by PhenoGraph of DZ GC B cells that express genes associated with the S-G2-M stages of the cell cycle. (C) Heat map displaying the relative expression fold
change (log2) of selected genes in the DZ B cell clusters identified in B. (D) Pathway enrichment analysis for the gene signatures associated with the clusters
identified in B. Pathways from KEGG database (KG), Hallmark database (HM), and Biocarta database that are significantly enriched (hypergeometric test with
Benjamini-Hochberg correction, q < 0.05) are shown in gray. (E) UMAP projection and cluster identification by PhenoGraph of DZ GC B cells that are at
the G0-G1 stages of the cell cycle. (F) Heat map displaying the relative expression fold change (log2) of selected genes in the DZ B cell clusters identified
in E. See also Table S3. Ox-Phos, oxidative phosphorylation.
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Figure 4. LZ B cell subpopulations. (A) UMAP projection and cluster identification from sc-RNAseq profiles of 11,118 LZ B cells (CD3−, IgD−, CD38+, CXCR4lo,
CD83hi). Black and gray dots mark B cells that respectively express (right) or do not express (left) genes associated with the S-G2-M stages of the cell cycle.
UMAP projections and cluster identification were performed independently for cells in the two cell cycle groups. (B) UMAP projection and cluster identification
by PhenoGraph of LZ GC B cells at the G0-G1 stages of the cell cycle. (C) Heat map displaying the relative expression fold change (log2) of selected genes in LZ
B cell clusters identified in B. (D) UMAP projection and cluster identification by PhenoGraph of LZ GC B cells that express genes associated with the S-G2-M
stages of the cell cycle. (E) Heat map displaying the relative expression fold change (log2) of selected genes in LZ B cell clusters identified in D. See also Table
S4. Ox-Phos, oxidative phosphorylation.
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The transcriptional effects of strong T cell–mediated activa-
tion, including a dominant signature of CD40 signaling and
NF-κB activation, were detected in a small subpopulation (“Ac-
tivation” in Fig. 4, B and C), which displayed high induction of
B cell activation markers and MYC expression. These highly
activated cells acquired transcriptional features, including en-
richment for genes in the MTORC1 signaling pathway, sugges-
tive of the metabolic burst shown in cells ready to reenter the
DZ, and a subset of them consistently displayed induction of
markers (FOXP1 and CD27) associated with a DZ phenotype
(Fig. 4 C and Table S4; Calado et al., 2012; Dominguez-Sola et al.,
2012; Ersching et al., 2017; Finkin et al., 2019).

Transcriptional changes associated with BCR engagement,
T cell–mediated activation, and LZ to DZ reentry were detected
also among cells displaying expression of S-G2-M genes (Fig. 4, D
and E; and Table S4). These results suggest that although rep-
resenting a small fraction, proliferating cells are detectable in
different LZ states. Additional clusters (PreM and PBL) showed
features of commitment to post-GC differentiation (Fig. 4, B–E;
see below for additional details). Overall, these results confirm
the heterogeneity of LZ GC B cells and provide a transcriptional
identity to the populations underlying it.

Identification of memory B cell precursors
The analysis of GC B cells identified a small (∼2%) but clearly
distinct cluster (named PreM) that shared a unique gene ex-
pression profile significantly related with that of previously
reported CCR6+ PreM B cells (Suan et al., 2017; Fig. 5 A). As
shown by GSEA, the PreM sc-signature was significantly en-
riched in the transcriptome of bulk purified memory B cells
compared with total or LZ GC B cells (Fig. 5 A and Fig. S2 D). In
addition, although naive and memory B cells share a large por-
tion of their transcriptional profiles, the genes up-regulated in
the PreM cluster were enriched in the bulk expression profile of
mature memory cells compared with naive B cells (Fig. 5 A).
Finally, PreM cells did not display expression of S-G2-M genes,
consistent with previous studies suggesting that GC B cells dif-
ferentiating into memory B cells exit the cell cycle (Laidlaw
et al., 2017; Suan et al., 2017; Wang et al., 2017). Overall, these
observations support the identification of a distinct subpopula-
tion composed of memory B cell precursors in the GC.

Although PreM cells represented a small fraction of the
overall GC B cells, clusters expressing a subset of the PreM
signature were detectable in both LZ (Fig. 4 C) and intermediate
(INT-d (Fig. 5 B) GC stages, possibly representing cells at early
stages of PreM commitment. To gain insights in the PreM de-
velopmental process, we then analyzed all clusters displaying
enrichment of the PreM signature genes independent of GC stage
(Fig. 5 B and Fig. S3, A and B). The analysis of this merged dataset,
including 1,542 cells, suggests that commitment to the PreM starts
in an LZ subpopulation expressing BACH2, consistent with pre-
vious observations (Shinnakasu et al., 2016; Fig. 5, C and D). These
early precursors appear to transit from the LZ into an interme-
diate GC stage and then to acquire a fully established GC PreM
identity characterized by high CCR6 expression (Fig. 5, C and D).

In addition to previously reported markers, including CCR6
and CELF2 (Suan et al., 2017), the PreM cells displayed high

expression of BANK1, a scaffold protein involved in BCR-induced
calcium mobilization and in the negative modulation of CD40-
mediated AKT activation (Aiba et al., 2006; Yokoyama et al.,
2002), and RASGRP2, a nucleotide exchange factor that can ac-
tivate small GTPases including RAS and RAP1 (Ebinu et al., 1998).
Based on our analysis, BANK1 and RASGRP2 appear to be the
earliest specific markers induced in the GC PreM (Fig. 4 C and
Fig. 5 B). We also detected induction of interferon-responsive
genes (IFITM1 and IFITM2), the interferon receptor IFNGR1, and
the transcription factor STAT1, which is activated by IFNγ sig-
naling (Shuai et al., 1992), suggesting that interferon signaling
may contribute to PreM differentiation (Fig. 5 D). Consistent
with a program of GC-exit, several genes showed a significant
down-regulation in PreM cells, including GC markers (MEF2B
and RSG13) and S1PR2, which is involved in GC confinement
(Fig. 5 D).

Consistent with the RNA expression data, we confirmed by
CITE-seq that surface protein expression of CCR6 was associated
with the PreM cell cluster (Fig. S1 E). In addition, the activation
markers CD44 and CD69 displayed the highest expression at
both transcript and protein levels in the PreM cells, while the
PBL marker CD9 was not associated with this population, sug-
gesting that the combination of these four markers may be im-
plemented in sorting strategies of PreM GC B cells (Fig. S1 E).

To validate these findings and spatially localize the PreM cells
within the GC, we performed coimmunofluorescence analysis
for BANK1 and CELF2 in tonsil tissue sections. As expected,
BANK1 was detected exclusively in B cells (naive and a small
subset of GC cells) and CELF2 mostly in T cells (Fig. S3 C).
However, consistent with the sc-RNAseq data, BANK1 and
CELF2 were coexpressed in a small fraction of cells (≤1% of total
GC B cells) that lacked the GC markers MEF2B and BCL6. In
agreement with previous reports (Laidlaw et al., 2017; Wang
et al., 2017), these cells localized mostly in the LZ compart-
ment or close to the GC border (Fig. 5, E and F; and Fig. S3 D). In
addition, we detected a subpopulation expressing BANK1,
MEF2B, and BCL6 in the absence of CELF2, supporting the ob-
servation that BANK1 is an early marker of PreM commitment
(Fig. 5, E and F). In conclusion, our analysis identified the
transcriptional signature and the consistent expression of sev-
eral surface protein markers of memory B cell precursors and
traced their localization in the GC by immunofluorescence
staining of BANK1 and CELF2.

Discrete steps of PBL differentiation starting from a subset of
LZ B cells
Clusters displaying expression of plasma cell hallmark genes,
including IRF4, PRDM1, and XBP1, and significant enrichment by
GSEA analysis in the bulk gene expression profiles of plasma
cells compared with GC B cells were labeled as PBLs (Fig. S2 D).
Of note, mature plasma cells were not included in the analyzed
GC B cells because the sorting strategy excluded cells with high
CD38 expression (Fig. S1 A). PBLs represented <3% of the overall
GC B cells (Fig. 1 A) and ∼8% of the purified LZ B cells, 22% of
which were actively proliferating (Fig. 4).

To investigate the plasma cell differentiation process in the
GC reaction, we merged the sc-RNAseq profiles of the 1,231 cells
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Figure 5. Memory B cell precursors. (A) GSEA of PreM sc-cluster signatures in the expression profiles of purified bulk populations of CCR6+ versus CCR6− LZ
GC B cells, memory (Mem) versus LZ GC B cells, and memory versus naive B cells. (B) Heat map displaying, in the GC B cell clusters identified in Fig. 2, the
relative expression fold change (log2) of selected PreM signature genes. (C) UMAP projection and cluster identification of 1,542 GC B cells from clusters
displaying enrichment for PreM signature genes. (D) Heat map displaying the relative expression fold change (log2) of selected PreM signature genes in the
clusters identified in C. (E and F) Immunofluorescence analysis of BANK1, CELF2, and MEF2B (E) or BCL6 (F) in tonsil sections. Nuclei were stained with DAPI.
In the high-magnification insets, arrows point to representative cells displaying marker coexpression. Bar plots display the percentage of BANK1+ cells co-
expressing the indicated markers. Each bar plot shows the average cell counts and standard deviations in three independent donors. In total, 373 GCs were
analyzed for each staining combination. The scale bar corresponds to 100 µm. See also Fig. S3. NES, normalized enrichment score.
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identified as PBLs in either the total or the sorted GC sub-
populations, as described above. This analysis identified six
distinct clusters (Fig. 6 A), three of which we defined as LZ-PBLs
because they mostly comprise sorted LZ cells characterized by
decreasing expression of LZ markers, including CD83, and in-
creasing expression of PBL markers, including CD9, PRDM1, and
XBP1 (Fig. 6, B and C).We defined early PBLs, a cluster of actively
proliferating cells that displayed further down-regulation of the
LZ markers and enhanced expression of PBL markers (Fig. 6, B
and C). Two additional clusters (late-PBL) displayed no expres-
sion of LZ markers, down-regulation of MS4A1 and PAX5, and

robust expression of plasma cell markers, including XBP1, MZB1,
and TNFRSF17 (Fig. 6, B and C). Together with the absence of
proliferation signatures, this pattern is highly consistent with a
late stage of PBL differentiation, thus the name of late-PBL. In-
terrogation of these populations revealed that FKBP11, a peptidyl-
prolyl cis/trans isomerase previously implicated in plasma cell
differentiation (Ruer-Laventie et al., 2015), was highly induced
in late stages of PBL differentiation (Fig. 6, B and C). Consis-
tently, we validated FKBP11 protein expression in ∼50% of GC
B cells coexpressing IRF4 and PRDM1, suggesting that FKBP11
may represent a marker of late PBL differentiation (Fig. 6 D).

Figure 6. Plasma cell precursors. (A) UMAP projec-
tion and PhenoGraph clusters of 1,231 PBLs identified
from the analysis of GC B cells. (B) UMAP projections
colored based on the z-scored expression of genes as-
sociated with distinct stages of PBL development.
(C) Heat map displaying the relative expression fold
change (log2) of selected genes differentially expressed
across the clusters detected in A. (D) Immunofluores-
cence analysis of PRDM1, IRF4, and FKBP11 in tonsil
sections. Nuclei were stained with DAPI. In the high-
magnification insets, arrows point to representative
cells displaying marker coexpression. The bar plot dis-
plays the percentage of PRDM1+ cells coexpressing the
indicated markers, and it shows the average cell counts
and standard deviations in five donors. In total, 362 GCs
were analyzed. The scale bar corresponds to 100 µm.
ePBL, early PBL.
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These data suggest a multistep process of PBL differentiation
that starts in a subset of LZ cells and includes proliferation.

GC B cell signatures define lymphoma subgroups
To investigate whether the sc-RNAseq–defined gene signatures
of the GC subpopulations can further inform on the COO of
lymphomas, we developed a classifier that allowed tracking of
gene signatures in panels of gene expression profiles (Fig. S4 A).
Toward this goal, we selected the top 50 up- and down-regulated
genes from each sc-cluster signature in the GC dataset (Fig. 2)
and first tested them in bulk RNAseq expression profiles ob-
tained from purified normal B cell populations, including CD77+

GC B cells, DZ, LZ, and memory B cells. The results showed that
each population was properly classified using the sc-RNAseq
signatures (Fig. S4 B).

We then applied the sc-based classifier on two published
panels of DLBCL primary cases, including 481 (National Cancer
Institute [NCI]–DLBCL; Schmitz et al., 2018) and 230 (British
Columbia Cancer Agency [BCCA]–DLBCL; Arthur et al., 2018)
bulk RNAseq expression profiles, respectively. These DLBCL
panels were representative of the current COO groups (259 GCB,
333 ABC, and 119 unclassified). The two datasets were classified
independently, and the results showed that in both, ∼80% of the
DLBCL cases could be assigned to at least one sc-RNAseq cluster
with high confidence (P value <0.05; Fig. 7 A and Table S5). For
cases that could be assigned tomore than one class, wemeasured
the consistency of multiple assignments displaying similar
scores (variance 10%), and we found that 90% of cases were
associated with one (75% of cases) or with contiguous classes
and/or phenotypes (15% of cases). Each sample was annotated
based on its best score and P value (Table S5; see Materials and
methods for details). Of note, the sc-RNAseq class assignment
showed a remarkably similar distribution in both datasets (Fig. 7 B).

Consistent with previous observations associating the COO of
GCB DLBCL to the LZ (Ennishi et al., 2019; Victora et al., 2012),
the majority of the sc-classified GCB DLBCLs was shown to be
related with normal GC B cells that are in the LZ-like interme-
diate stages or early LZ (NCI: 77/108, 71%; BCCA: 52/85, 61%;
overall: 129/193, 67%; Fig. 7 A and Fig. S5 A). In particular,
clusters INT-b, INT-e, and LZ-a displayed significant enrich-
ment for GCB DLBCL (Fig. 7 C).

The ABC-DLBCL cases were scattered across the sc-RNAseq
classes, with a predominance in the late GC stages (Fig. 7 A).
Significant enrichment was observed in the intermediate INT-d,
LZ-b, and PreM clusters, which overall accounted for 60% of the
classified ABC cases (NCI: 107/193, 55%; BCCA: 54/74, 73%;
overall: 161/267, 60%; Fig. 7 C and Fig. S5 A). Of note, only 12%
(NCI: 26/193, 13%; BCCA: 7/74, 9%; overall: 33/267, 12%) of the
classified ABC cases were assigned to the PBL clusters (Fig. 7 A
and Fig. S5 A). These data suggest that, contrary to current
models, most ABC-DLBCLs may originate from cells that are not
yet committed to PBL differentiation and that correspond in as
many as one quarter of cases to PreM B cells (NCI: 38/193, 20%;
BCCA: 28/74, 38%; overall: 66/267, 25%).

A large fraction of the COO-unclassified DLBCLs (NCI: 84/
100, 84%; BCCA: 16/19, 84%; overall: 100/119, 84%) were as-
signed to an sc class, and 27% of them (27/100) were shown to

be related to PBLs, with a significant enrichment in the PBL-a
cluster (Fig. 7 C and Fig. S5 A).

Finally, we identified a small group of DLBCLs (NCI: 46/385,
12%; BCCA: 22/175, 12%; overall: 68/560, 12%) that displayed DZ
gene signatures and distributed across the ABC, GCB, and un-
classified tumors (Fig. 7, A–C). Interestingly, these tumors were
significantly enriched in double-hit (MYC/BCL2) DLBCL, as de-
fined by a previously reported double-hit gene expression sig-
nature (DHITsig; Ennishi et al., 2019), supporting a distinct
ontogenesis for this unfavorable prognostic category (Ennishi
et al., 2019; Sha et al., 2019).

Recent progress in the genetic characterization of DLBCL led
to the identification of genetic subgroups associated with dis-
tinct mechanisms of pathogenesis and displaying differences in
outcome following chemoimmunotherapy (Chapuy et al., 2018;
Schmitz et al., 2018). Comparison of the sc-COO classification
with the genetic-based groups (see Materials and methods)
showed that DLBCL classified as INT-b and INT-e were signifi-
cantly associated with the EZB (based on EZH2 mutations and
BCL2 translocations) and Cluster 3 (C3) genetic groups, while
LZ-b DLBCL were enriched in the MCD (based on MYD88L265P

and CD79B mutations) and Cluster 5 (C5) genetic groups (Fig. S5
B). As expected, these genetic classes were enriched in GCB and
ABC cases, respectively. In addition, the N1 (enriched for mu-
tations in NOTCH1) and the C5 genetic classes were significantly
associated with the PreM compartment (Fig. S5 B).

Taken together, these results provide a detailed classifi-
cation of DLBCLs that pairs DLBCL subgroups to specific GC
subpopulations.

Prognostic value of the sc-COO classification
To test whether the newly identified subgroups carry an asso-
ciation with outcome, we used progression-free survival (PFS)
data available for 356 (190 from the NCI and 166 from the BCCA
datasets) of the 560 sc-COO–classified cases and for which, as
expected, the COO classification retained its prognostic value
(Fig. S5 C). First, we analyzed the NCI dataset classified ac-
cording to the 13 sc-COO classes (Fig. S5 D). Then, in order to
simplify the interpretation of the complex picture obtained from
the analysis of 13 classes, we grouped contiguous developmental
classes that displayed similar PFS. Following this approach, we
could identify five contiguous categories (Groups I to V) that
paired specific sc-COO classes to different survival outcomes
(Fig. 8 A). Independent validation in the BCCA dataset provided
remarkably similar survival trends, both in the analysis of the
13 sc-COO classes and of themerged groups (Fig. 8 B and Fig. S5 E).

Analysis of the combined datasets corroborated the strong
association between the DZ signatures in Group II (DZ-b andDZ-c;
NCI: 14/190, 7%; BCCA: 10/166, 6%; overall: 24/356 cases, 7%) and
an extremely poor outcome (median PFS = 2 yr; Fig. 8 C and Fig.
S5 F). Conversely, tumors displaying similarities with late LZ-like
intermediate or early LZ clusters (INT-d, INT-e, and LZ-a; Group
IV; NCI: 43/190, 23%; BCCA: 47/166, 28%; overall: 90/356 cases,
25%) were characterized by the best PFS (Fig. 8 C and Fig. S5 F).
The remaining groups displayed an intermediate prognosis and
were associated either with the signatures of DZ-a (Group I; NCI:
14/190, 7%; BCCA: 10/166, 6%; overall: 24/356 cases, 7%),
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intermediate (Group III; NCI: 57/190, 30%; BCCA: 29/166, 17%;
overall: 86/356 cases, 24%), or late-GC stages, including late-LZ,
PBL, and PreM (Group V; NCI: 62/190, 33%; BCCA: 70/166, 42%;
overall: 132/356 cases, 37%; Fig. 8, A–C).

Notably, when applied separately to cases classified as GCB-
or ABC-DLBCL, the sc-COO classification identified significantly
favorable and unfavorable subsets of patients in both subgroups
(Fig. 9, A and B). Specifically, patients classified as Group II (13/
170, 8% GCB and 7/135, 5% ABC) displayed a particularly poor
outcome independent of their COO subtype, while patients

classified as Group IV displayed very similar long-term PFS
within both the GCB (76/170, 45%) and the ABC (10/135, 7%)
subsets (Fig. 9, A and B).

A DHITsig (MYC/BCL2) was previously identified and asso-
ciated with a DZ-like COO and poor outcome in GCB DLBCL
(Ennishi et al., 2019), as confirmed here (Fig. S5, G and H).
Notably, the sc classification identified distinct subgroups
within the DHITsig-positive cases, which were associated with
different PFS rates. In particular, the few cases belonging to
Group IV showed a favorable outcome, with none of these

Figure 7. GC B cell signatures define lymphoma subgroups. (A) Heat map summarizing the sc-based classification of two panels of DLBCL primary cases
for which bulk RNAseq profiles were previously reported. The datasets included 481 (NCI-DLBCL; Schmitz et al., 2018) and 230 (BCCA-DLBCL; Arthur et al.,
2018) expression profiles and were representative of the current COO groups (259 GCB, 333 ABC, and 119 unclassified [Unclass]). Each column represents a
DLBCL specimen, and each row displays the relative z-scored expression of an sc-classifier gene. The sc-RNAseq signatures include the top 50 up-regulated
and the top 50 down-regulated genes in each GC cluster. The specific sc-clusters are labeled on the left of the heat map, while DLBCL cases are labeled based
on the COO classification on the top. DLBCL samples are grouped based on their best classifier score. (B) Distribution of the DLBCL sc-cluster assignments in
the NCI, BCCA, and merged datasets. Pies are color coded based on the sc-COO groups. Gray depicts the fraction of DLBCLs that remain unclassified by sc-COO
classification. (C) Enrichment analysis in the sc-clusters of NCI, BCCA, or merged DLBCL cases based on their COO assignment (hypergeometric test with
Benjamini-Hochberg correction, q < 0.05). See also Fig. S4, Fig. S5, and Table S5.
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patients undergoing disease progression (Fig. S5 I). Conversely,
DHITsig-positive cases displaying Group II signatures showed a
significantly worse outcome (Fig. S5 I). Thus, the negative prog-
nostic value of the DHITsig can be refined in combination with
the sc-COO classification. These results indicate that the sc-COO
classification can identify clinically relevant subgroups within the
GCB- and ABC-DLBCLs, as well as DHITsig-positive cases.

Discussion
Transcriptomic analyses at the sc level in the context of develop-
ment have been instrumental for the discovery and characterization

of novel populations, developmental stages, and transcriptional
states. Our analysis of GC B cells allowed reconstructing their de-
velopmental stages and provided a granular reference to investigate
the COO of lymphoma.

While the current view identifies the GC as a two-
compartment structure (Mesin et al., 2016; Victora and
Nussenzweig, 2012), our data expand on previous ob-
servations (Milpied et al., 2018) showing that a large fraction
(in our analyses ∼50%) of GC B cells do not express the classic
immunophenotype of DZ or LZ cells. These cells display in-
termediate/low expression and/or coexpression of the CXCR4
and CD83 markers and represent transitional stages between

Figure 8. Prognostic value of the sc-COO classifi-
cation in DLBCL. (A–C) Kaplan-Meier plots for PFS
analysis in NCI (n = 190; A), BCCA (n = 166; B), and
merged NCI+BCCA (n = 356; C) DLBCL cases classified
based on the sc-COO classification. P values were ob-
tained by applying the Mantel-Cox test. See also Fig. S5.
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the DZ and the LZ. Although previously published data (Milpied
et al., 2018) reported the presence of two intermediate pop-
ulations transitioning from the DZ to the LZ and vice versa, our
observations expand on the heterogeneity of this compartment
by identifying multiple distinct subpopulations that display
different levels of relatedness to DZ and LZ GC B cells, as well as
to memory B cell precursors. Of note, these intermediate sub-
populations appear to represent the COO for a large fraction
(∼50%) of DLBCLs. Overall, our data confirm that the transition
between DZ and LZ occurs through a gradient of transcriptional
changes that define distinct intermediate phenotypes.

For a long time, cell division in the GC was considered a
feature of DZ B cells (MacLennan, 1994). Later studies showed
that cells could enter the S phase while in the LZ (Allen et al.,
2007; Hauser et al., 2007), although progression into the G2/M
stage of the cell cycle was not detected in this compartment
(Victora et al., 2010). Our data on sorted LZ GC B cells clearly
demonstrate that∼20% of LZ GC B cells express genes associated
with all stages of the cell cycle. These data establish that a subset
of phenotypically characterized LZ GC B cells is transcriptionally
programmed to undergo complete cell division.

The distinct states characterizing LZ GC B cells appear to
depend largely on the different stimuli that they receive. Our
data are consistent with a model of progressive engagement of
the BCR followed by T cell–mediated activation, which leads to
DZ reentry or commitment to post-GC differentiation (Cyster
and Allen, 2019; Mesin et al., 2016).

The signals and the transcription factors that control differ-
entiation of GC B cells into memory or plasma cells are not fully
understood. One notable finding of our analysis is that PreM
cells and PBLs appear to originate from distinct phases of the GC
reaction. In particular, PreM cells appear to start their com-
mitment in the early stages of the LZ, while PBLs seem to
originate from LZ cells that have fully transited through the LZ
stages. These notions are consistent with previous observations
showing that post-GC fate depends on the BCR affinity and
strength of T cell–mediated activation and includes a temporal
switch (Ise et al., 2018; Shinnakasu et al., 2016; Suan et al., 2017;
Weisel et al., 2016).

Several studies reported on the identification of memory
B cell precursors in the GC, most likely representing different
stages in the memory B cell differentiation process (Laidlaw
et al., 2017; Suan et al., 2017; Wang et al., 2017). We identified
commitment to PreMs in an LZ population that displayed
transcriptional evidence of BCR signaling and modest NF-κB
activation and expressed BACH2. Previous work showed that
BACH2 promotes differentiation of GC B cells into memory
B cells, and its expression inversely correlates with the strength
of T cell help (Shinnakasu et al., 2016). In our study, PreM
commitment in the LZ unfolds through an intermediate stage,
leading to a population characterized by high expression of
CCR6, previously shown to define memory B cell precursors in
the GC (Suan et al., 2017), and of the CD44 and CD69 surface
markers. The same population is also characterized by the ex-
pression of BANK1 and RASGRP2 transcripts. Although BANK1-
deficient mice displayed enlarged GC (Aiba et al., 2006), a
finding consistent with impaired post-GC differentiation, the
role of BANK1 and RASGRP2 in memory B cell development
remains to be elucidated. Finally, our analysis of PreMs revealed
a potential role of interferon signaling in the commitment of
GC B cells toward memory differentiation. Although previous
studies established that, in humans, STAT3 but not STAT1 de-
ficiency impairs memory B cell development (Avery et al., 2010;
Domeier et al., 2016), we identified a significant transcriptional
induction of IFNGR1 and STAT1, but not STAT3, in the PreM
population. Consistent with our results, STAT1 and IFNGR1, but
not STAT3, are transcriptionally induced in mature memory
B cells compared with bulk GC B cells (data not shown). Further
functional studies, including genetic-based approaches, are
needed to address the role of these factors in memory B cell
differentiation.

Our data provide transcriptional identities to PBL sub-
populations and model a multistep process of PBL differentia-
tion that starts in a subset of LZ cells displaying transcriptional
changes associated with both BCR engagement and NF-κB ac-
tivation. This process is consistent with the substantial body of
data supporting the origin of plasma cells from GC cells ex-
pressing high affinity receptors and receiving T cell help (Ise

Figure 9. Prognostic value of the sc-COO
classification in the GCB- and ABC-DLBCL
subtypes. (A and B) Kaplan-Meier plots for PFS
analysis in GCB-DLBCL (n = 170; A) and ABC-
DLBCL (n = 135; B) cases as classified by the
sc-COO classifier. P values were obtained by
applying the Mantel-Cox test. See also Fig. S5.
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and Kurosaki, 2019; Nutt et al., 2015). During this differentia-
tion process, PBLs remodel their transcriptional program by
down-regulating GC markers and inducing plasma cell
markers.

Gene expression–based classifications of DLBCL proved in-
formative to dissect the heterogeneity of this malignancy and to
identify subgroups associated with different outcomes (Alizadeh
et al., 2000; Monti et al., 2005; Rosenwald et al., 2002). As of
today, the COO classification represents the World Health
Organization–approved reference to stratify patients into the
clinically relevant GCB- or ABC-DLBCL subgroups. Using sc-based
signatures, we revisited the COO of DLBCL, and we provide more
detailed assignments for the putative normal counterparts of
DLBCL. Notably, a significant fraction of COO-unclassified cases
have found a clear address in various sc-defined clusters. In par-
ticular, and in contrast with current notions (Basso and Dalla-
Favera, 2015; Pasqualucci and Dalla-Favera, 2018; Shaffer et al.,
2012), our results indicate that a sizable (88%) fraction of ABC-
DLBCLs are not yet committed to PBL differentiation and, in a
significant subset of cases (25%), seem to derive from cells that are
committing to PreM. Conversely, a clear PBL relationship emerged
in 27% of the COO-unclassified cases. These conclusions appear ro-
bustly validated, since they consistently emerged from the analysis
of two distinct panels of cases.

In general, our results indicate that the identification of
additional GC subpopulations and corresponding sc-COO sub-
groups does lead to the recognition of additional prognostic
subgroups. Despite the complexity of the emerging picture, it is
notable that the sc-COO classification identifies dramatically
distinct subgroups, both favorable and unfavorable, within GCB,
ABC, and DHIT DLBCL. The gene signatures associated with
these subgroups are ready for development in clinically estab-
lished diagnostic platforms (Michaelsen et al., 2018) and even-
tually for further clinical validation.

Materials and methods
B cell isolation
Palatine tonsils were obtained at the Children’s Hospital of
Columbia–Presbyterian Medical Center as residual material
from anonymous patients who had undergone elective tonsil-
lectomy due to chronic tonsillitis in compliance with Regulatory
Guideline 45 CFR 46.101 (b)(4) for Exempt Human Research
Subjects of the US Department of Health and Human Services
and according to protocols approved by the Columbia University
Institutional Ethics Committee. Tonsil specimens were placed on
ice immediately after surgical removal. Mononuclear cells were
isolated from three donors by disaggregating tissues in RPMI
1640 medium (Gibco), followed by Ficoll-Isopaque (GE Health-
care) density centrifugation (Klein et al., 2003). Tonsillar
mononucleated cells were stained using the following anti-
bodies: anti-CD38-PE (clone HB7; BD Biosciences), anti–IgD-
FITC (clone IA6-2; BD Biosciences), anti–CD3-FITC (clone
UCHT1; Beckman Coulter), anti-CD184 (CXCR4)–Brilliant Violet
421 (clone 12G5; BioLegend), and anti–CD83-APC (clone HB15e;
BioLegend). Total GC (CD38+/IgD−/CD3−), DZ (CD38+/IgD−/CD3−/
CXCR4high/CD83low), and LZ (CD38+/IgD−/CD3−/CXCR4low/

CD83high) B cells were sorted using a FACSAria flow cytometer (BD
Biosciences). Data renderingwas performed using FlowJo (TreeStar).

Immunofluorescence analysis of paraffin-embedded
lymphoid tissues
Human tonsil tissue was formalin fixed and paraffin embedded
to prepare 3-µm-thick slides to perform immunofluorescence
analysis. Deparaffinization and rehydration of the tissue sec-
tions were performed before the heat-induced epitope retrieval
(10 mM sodium citrate buffer, pH 6.0, or 10mMTris-Base, 1 mM
EDTA, and 0.5% Tween20 buffer, pH 9.0). Endogenous peroxi-
dases were quenched with 3% H2O2 in 1× PBS, and endogenous
biotin was blocked with the Avidin-Biotin Blocking Kit (Vector
Laboratories) according to manufacturer’s instructions. All
slides were blocked in 1× PBS with 0.5% Tween20, 3% BSA
(Sigma-Aldrich), and 5% serum of the species in which the
secondary antibody was raised. Blocking was followed by
overnight incubation at 4°C with primary antibody (Brescia
et al., 2018). After repeated washes in 0.5% Tween20 in 1×
PBS, tissue sections were incubated at room temperature with
HRP- or biotin-conjugated isotype-specific secondary anti-
bodies. For detection of BCL6 (clone E5I8I; Cell Signaling Tech-
nology), CELF2 (Sigma-Aldrich), MEF2B (Brescia et al., 2018),
PAX5 (NeoMarkers), and PRDM1 (clone EPR16655; Abcam), a
polymer-enhanced HRP-conjugated secondary antibody (EnVi-
sion+ system; Agilent) was used, and immune-complexes were
detected by tyramide-fluorescein isothiocyanate or tyramide-
Cy3 amplification (in 1:1,000 dilution for 3 min; Perkin-Elmer).
After tyramide detection, a heat-mediated antibody-stripping
procedure, consisting of boiling the slides in citrate buffer, pH
6.0, was performed if primary antibodies from the identical host
species were applied on the same slide (Tóth and Mezey, 2007).
For detection of BANK1 (Sigma-Aldrich), FKBP11 (clone D-3;
Santa Cruz Biotechnology), and IRF4 (clone M-17; Santa Cruz
Biotechnology), we used the following biotin-conjugated sec-
ondary antibodies: Donkey anti-Goat IgG (Millipore), Donkey
anti-Rabbit IgG (H+L; Jackson ImmunoResearch Labs), and
Horse anti-Mouse IgG (Vector Laboratories). Streptavidin-
fluorochrome Cy5-conjugated (Jackson ImmunoResearch Labs)
or Cy3-conjugated (Molecular Probes) was added as a final step.
After repeated washes in 0.5% Tween20 in 1× PBS, tissue sec-
tions were mounted (VECTASHIELD Antifade Mounting Me-
dium with DAPI; Vector Laboratories).

Immunofluorescence images were captured on the Aperio
VERSA Digital Pathology Scanner (Leica Biosystems) using the
20× objective using the Zyla 5.5 SCMOS camera (Andor). Image
analysis was performed using the NIS-Elements Imaging Soft-
ware (Nikon), ImageJ (Schindelin et al., 2015), the Aperio Im-
ageScope (Leica Biosystems), and/or Halo (Indica Labs). GCs
were identified by the expression ofMEF2B or BCL6 andmarked
using the drawing tool in the Aperio ImageScope toolbar or the
annotation tools in Halo. In the absence of GC markers, we an-
notated the GC using the image registration tool in Halo, which
allows alignment and synchronization of two or more images
from different serial sections of the same donor. The quantifi-
cations were restricted to the GC areas, as defined by expression
of BCL6 or MEF2B. When analyzing expression of BANK1 (Fig. 5,
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E and F; and Fig. S3 C), we restricted our analysis to the inner
part of the GC (on average, three to five cell layers from the
border of the GC) due to the inability to discriminate at the GC
border between naive B cells and BANK1+ GC B cells (Fig. S3 D).
Cell counting on the acquired immunofluorescence images was
performed manually using the ImageJ Cell Counter plugin
(Schindelin et al., 2015). The results of manual counting were
used as a reference to optimize the parameters of the automated
analysis, which was performed using the Halo Image Analysis
software. The immunofluorescence costainings were performed
at least in duplicate in three to five independent donors, and one
section for each donor was subjected to automated counting.
Overall, in each section 105 ± 41 total GCs were analyzed, cor-
responding to an average of 264,484 ± 112,297 GC cells/section.

Sc-gene expression profiling
Cell suspensions were diluted at the concentration of 1,000
cells/μl and analyzed using the Chromium Single Cell 39 Kit v2
and the ChromiumController (10x Genomics). Sequencing of the
libraries was performed on a NovaSeq6000 System (Illumina).
The FASTQ files were aligned to the human GRCh38 reference
genome using 10x Genomics Cell Ranger software v2.1.0 to
create unique molecular identifier count tables of gene expres-
sion for each sample. Unique molecular identifier counts were
normalized by library size. The six sequenced mRNA libraries
displayed an average of 6,347 ± 1,006 reads/cell and an average
of 1,893 ± 187 expressed genes/cell.

Counts from different patients were merged by log normal-
izing and scaling the data using the “NormalizeData” and “Sca-
leData” functions in the Seurat R package (Butler et al., 2018).
The “vars.to.regress” feature of the ScaleData function was used
to remove the batch effect between patients.

Individual samples or the batch-corrected data obtained from
Seurat were reduced to their top 50 principle components using
the Scikit-learn sklearn.decomposition.PCA Python package (pa-
rameters: n_components = 50, and random_state = PCA_
RANDOM_STATE; Pedregosa et al., 2011).

UMAP 2D projections were created from the principal com-
ponent analysis (PCA) matrix of the top 50 components using
the UMAP Python package (parameters: n_neighbors = 10,
mist_dist = 0.1, spread = 1, and metric = “correlation”; Becht
et al., 2018). To display relative gene expression on the UMAP
2D projections, expression values were taken from the batch and
scaled expression data and plotted as z-scores from −1.5 to +1.5,
such that they display low to high signal. The z-scored data do not
indicate absolute zero (i.e., low expression [dark blue] represents
the minimum expression of a gene, which is not necessarily zero).

The clustering of sc-expression profiles was performed using
the PhenoGraph Python package on the normalized data for
single samples or the batch-corrected data for merged samples
using default parameters to build a k-nearest neighbor graph
using the 20 nearest neighbors (k = 20; Levine et al., 2015).

Once clusters were identified, we used the MAST R package
to test for differentially expressed genes between individual
clusters or pairs of clusters (Finak et al., 2015).

Separation of cells in G0-G1 and S-G2-M was performed at
the level of clusters as defined by PhenoGraph. Each cluster was

assessed for expression of the reference genes PCNA, MKI67,
CDK1, and CDC20 and then assigned to the G0-G1 or S-G2-M
group. The two groups were reanalyzed independently by PCA,
cluster identification (PhenoGraph), and differential gene ex-
pression (MAST). The new clusters in each group were then
reassessed for the expression of the reference genes and, if
necessary, reassigned to the correct G0-G1 or S-G2-M group.
This iterative process was performed until all clusters in a group
displayed a uniform G0-G1 or S-G2-M phenotype.

CITE-seq
CITE-seq was performed as previously described (Stoeckius et
al., 2017). After sorting, total GC B cells (CD3−/IgD−/CD38+) from
one donor were incubated with TruStain FcX Fc blocking rea-
gent (BioLegend) for 10 min on ice and then stained with the
TotalSeq-A antibody cocktail (∼1 µg for each antibody) for
30 min on ice. The following antibodies were included in the
cocktail: CXCR4 (clone 12G5), CD83 (clone HB15e), CD9 (clone
HI9a; BioLegend), CCR6 (clone G034E3; BioLegend), CD69 (clone
FN50; BioLegend), and CD44 (clone IM7; BioLegend). Each an-
tibody was conjugated to a unique oligonucleotide bar code. The
sc suspension (>95% viable) was diluted at the concentration of
1,000 cells/μl and analyzed using the Chromium Single Cell 39
Kit v3 and the Chromium Controller. The antibody-derived tags
(ADTs) libraries were generated as detailed in the TotalSeq-A
Antibodies Hashing with 10x Single Cell 39 Reagent Kit v3 pro-
tocol (BioLegend). Briefly, during the cDNA amplification step,
the following ADT primer (0.2 µM) was used: 59-CCTTGGCAC
CCGAGAATTCC-39. After cDNA amplification ADT-derived
(<180 bp) and mRNA-derived (>300 bp) cDNA fractions were
size-selected using the SPRIselect Reagent (Beckman Coulter).
The ADT libraries were amplified, cleaned up, and subjected to
sequencing on a NovaSeq6000 System (Illumina).

The CITE-seq sequencing data, including mRNA and ADT
libraries, were processed using the Feature Barcoding tool in Cell
Ranger software v2.1.0 to produce gene and protein expression
tables. The CITE-seqmRNA libraries showed on average 10,764 ±
7,769 reads/cell and 2,655 ± 2,410 genes/cell.

Pseudo-temporal trajectory analysis
Pseudo-time analysis was performed using the Monocle 2.0 R
package (Trapnell et al., 2014). Genes differentially expressed
across PhenoGraph-identified clusters were used as an input
for the Monocle analysis. For the heat map representation of
pseudo-time genes, a time trace of each genewas taken using the
“plot_genes_in_pseudotime” function and dividing time into 100
equally sized bins. Time was measured by selecting the longest
path through the trajectory plot going from t = 0 to t = max.

Pseudo-spatial inference
We used novoSpaRc to reconstruct the spatial position of cells
based on their sc-expression profiles (Nitzan et al., 2019). The
probabilistic model was customized to assign cells to one of 326
zones in an oval-shaped virtual tissue representing a GC. The x,
y, and z data were plotted using the contourf function in the
Matplotlib library of Python3 (parameters: levels = 100, anti-
aliased = True) to generate a smooth contour plot of the most
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probable conformation of cells in the virtual tissue based on
their phenotype (Hunter, 2007). The graphical representation of
the inferred locations of GC subpopulations in an idealized GC
structure displays normalized confidence scores ranging from
1 (high confidence) to 0.

Gene set and pathway enrichment analyses
GSEAwas performed using GSEA 2.2.0with gene randomization
(Subramanian et al., 2005). Gene sets were compiled from the
significantly differentially expressed genes identified by com-
paring a given cluster with the remaining samples in the dataset.
Significantly differentially expressed genes were filtered to have
a log2 expression fold change ≥1.5. If these criteria yielded fewer
than 50 genes, the top 50 differentially expressed genes by fold
change were used as gene sets.

Pathway enrichment analysis was performed on the KEGG
(c2.cp.kegg.v6.2), BioCarta (c2.cp.biocarta.v6.2), and Hallmark
(h.all.v7.0) collections from the Molecular Signature Database
v6.2 (http://software.broadinstitute.org/gsea/msigdb/index.jsp;
Liberzon, 2014). A hypergeometric test assessing P(X ≥N)with a
Benjamini-Hochberg false discovery rate correction was used to
test enrichment in pathways using a background gene pool size
of 45,956 to match the Molecular Signature Database.

sc-COO tumor classifier
To classify DLBCL bulk RNAseq profiles, we developed a modi-
fied weighted-vote algorithm classifier (Golub et al., 1999). We
used MAST to identify differentially expressed genes in each
cluster identified in the sc-RNAseq data and divided them into
up- and down-regulated subsets. We next took bulk gene ex-
pression profiles for a large panel of DLBCL and z-scored each
gene per row. We used the relative expression of genes in a
heterogeneous panel as a proxy for measuring similarity to a
cluster. Using the sc-cluster signatures as reference, for each
sample we assigned to each gene a score of either +1, when its
expression trended in the same direction as the reference sig-
nature, or −1, when it did not. The classifier score for a cluster
signature was the normalized sum of its gene scores, ranging
from −1 to +1, with a positive score indicating similarity to the
phenotype of interest. We used bootstrapping to randomize the
classifier genes 1,000 times and to create a distribution to esti-
mate the P value of the classifier scores. We set the significance
level at 0.05 and only classified a sample as belonging to a cluster
phenotype if its absolute score was ≥0.3 (outside the 95% con-
fidence interval). If a sample was assigned tomore than one class
with a significant score, we used the best score (lowest P value).
When a sample displayed the same best score for two classes, we
used the call that was consistent in both classifications using the
top 50 and the top 40 gene signatures. Contiguous classes and/or
phenotypes were defined as follows: (1) contiguous class: when
classes are next to each other in the provided order of the GC
subpopulations; (2) same phenotype: when noncontiguous clas-
ses belong to the same phenotypic group (i.e., DZ-a and DZ-c);
and (3) contiguous phenotype: when noncontiguous classes are
developmentally linked (i.e., Int-d and PreM).

The scoring results were also summarized in a heat map
format where samples were associated with the signature for

which they displayed the most significant (highest score, lowest
P value) similarity.

The classifier was applied to two distinct datasets of bulk
RNAseq expression profiles. The NCI-DLBCL dataset was
downloaded from https://portal.gdc.cancer.gov/projects/
NCICCR-DLBCL (Schmitz et al., 2018). These data were in the
form of alreadymapped BAM files on GRCh38. The BCCA-DLBCL
dataset was downloaded from https://www.ebi.ac.uk/ega/
datasets/EGAD00001003783 (Arthur et al., 2018; Ennishi et al.,
2019). These data were in the form of already mapped BAM files
on GRCh37. The alignment data from each dataset was converted
to gene expression data using featureCounts 1.6.3 (Liao et al.,
2014). The expression data were subsequently normalized to
transcripts per million mapped reads and variance stabilizing
transform using DESeq2 (Love et al., 2014). To remove outlier
samples, we filtered out samples where 90% of the signal (sum
of transcripts per million mapped reads for a sample) was con-
tained in <1,000 genes.

Genetic classification of DLBCL
The NCI-DLBCL dataset (Schmitz et al., 2018) was classified
based on previously reported genetic classes (Chapuy et al.,
2018) by performing nonnegative matrix factorization consen-
sus clustering described in (Chapuy et al., 2018). First, to make
the input matrix of the NCI-DLBCL samples for clustering, we
downloaded the mutation, copy number alteration, and fusion
gene datasets from the GDC Data Portal using gdc-client (ac-
cession ID: phs001444). Using these datasets, we prepared an
input matrix of 153 genomic features, including mutations in 85
candidate cancer genes, 65 somatic copy number alterations, and
three structural variants (available in the form of fusion genes).
Of note, the original classifier used the structural variants of
eight genes, out of which only MYC, BCL2, and BCL6 were
available for the NCI-DLBCL dataset. We then used the compu-
tational scripts for clustering from GitHub (https://github.com/
broadinstitute/DLBCL_Nat_Med_April_2018) on the input ma-
trix described above. The NCI-DLBCL dataset was classified in C1
to C5 using the default parameters as described by the developer
(Chapuy et al., 2018).

Statistical analysis
The MAST R package was used to identify differentially ex-
pressed genes in each cluster identified in the sc-RNAseq data.
For the gene set and pathway enrichment analysis, a hyper-
geometric test with a Benjamini-Hochberg false discovery rate
correction was used. GraphPad Prism v.6.0 was used to assess
the significance of tumor survival using the Mantel-Cox and
Gehan-Breslow-Wilcoxon tests.

Detailed information on the statistical test, number of repli-
cates/samples (defined as n) used in each experiment, and mea-
surement precision is described in theMaterials and methods and
is reported in the figure legends. Significance was associated to P
≤ 0.05.

Data availability
The DZ and LZ bulk RNAseq gene expression data are available
in the Gene Expression Omnibus database under accession no.
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GSE139833. sc-gene expression data are available under acces-
sion no. GSE139891.

Code availability
All analyses and visualizations were performed in R and Python
with the following open-source algorithms and tools as de-
scribed above: 10x Genomics Cell Ranger software v2.1.0
(https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/installation), Seurat (https://satijalab.
org/seurat/), Phenograph (https://github.com/jacoblevine/
PhenoGraph), UMAP (https://github.com/lmcinnes/umap),
MAST (https://bioconductor.org/packages/release/bioc/html/
MAST.html), DESeq2 (https://bioconductor.org/packages/
release/bioc/html/DESeq2.html), Monocle (http://cole-trapnell-
lab.github.io/monocle-release/), novoSpaRc (https://github.
com/rajewsky-lab/novosparc), the Scikit-learn implementations
of PCA, the Matplotlib contour function, featureCounts (https://
bioconductor.org/packages/release/bioc/html/Rsubread.
html), and GSEA (https://www.gsea-msigdb.org/gsea/index.jsp).
Computer code is available upon reasonable request.

Online supplemental material
Fig. S1, related to Fig. 1, identifies GC B cell subpopulations by sc-
RNAseq and CITE-seq in distinct donors. Fig. S2, related to Fig. 2,
shows GC B cell developmental stages. Fig. S3, related to Fig. 5,
presents memory B cell precursors. Fig. S4, related to Fig. 7,
shows development of a classifier based on the sc-RNAseq gene
signatures. Fig. S5, related to Figs. 7, 8, and 9, shows how GC
B cell signatures define lymphoma subgroups. Table S1, related
to Fig. 2, shows cluster cell counts and results of differential
expression analysis in GC B cells in G0-G1. Table S2, related to
Fig. 2, lists differential expression genes obtained from the
analysis of GC B cells in G0-G1 and used in the GSEA reported in
Fig. S2, B–D. Table S3, related to Fig. 3, shows cluster cell counts,
results of differential expression analysis in DZ GC B cells in
S-G2-M and G0-G1, and their respective pathway enrichment
analyses. Table S4, related to Fig. 4, shows cluster cell counts,
results of differential expression analysis in LZ GC B cells in
S-G2-M and G0-G1, and their respective pathway enrichment
analyses. Table S5, related to Fig. 7, shows classification of
DLBCLs according to the sc-COO classifier, as well as DLBCL
identifiers, sc-COO class assignment, genetic subtypes, DHITsig
groups, sc-COO classes, score and P value for the top sc-COO
class, and sc-COO groups.
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Figure S1. Identification of GC B cell subpopulations by sc-RNAseq and CITE-seq in distinct donors. Related to Fig. 1. (A) Representative counterplots
and gating strategy from cytofluorimetric analysis of human GC (CD3−/IgD−/CD38+), DZ (CD3−/IgD−/CD38+/CD83lo/CXCR4hi), and LZ (CD3−/IgD−/CD38+/
CD83hi/CXCR4lo) B cells isolated from tonsil tissue are shown. (B)Overview of the computational steps used to analyze sc-RNAseq data indicating the software
tools used (black labels). (C) UMAP projection of 4,759 GC B cells (CD3−, IgD−, CD38+) isolated from Donor 1. Cells are colored by clusters identified by
PhenoGraph and assigned to one of the following groups: DZ, intermediate (INT), LZ, PreM, or PBL. UMAP projections colored by the z-scored expression of
CXCR4 (DZ), CD83 (LZ), CCR6 (PreM), and PRDM1 (PBL) are displayed below. (D) UMAP projection of 3,609 GC B cells (CD3−/IgD−/CD38+) isolated from Donor
2. Cells were clustered and colored using the same methods as for Donor 1. Below, the same gene expression markers described for Donor 1 are shown for
Donor 2. (E) CITE-seq analysis of 8,871 GC B cells (CD3−, IgD−, CD38+) isolated from Donor 3. Left: UMAP projection based on mRNA data. Cells were clustered
and colored using the same methods as for Donors 1 and 2. Right: UMAP projections colored by normalized z-scored mRNA expression (top) and center log
ratio normalized protein expression (bottom) as measured by ADTs for selected markers (CXCR4, CD83, CD9, CCR6, CD69, and CD44).
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Figure S2. GC B cell developmental stages. Related to Fig. 2. (A) UMAP projection of the 4,984 GC B cells (CD3−, IgD−, CD38+) in G0-G1 phases of the cell
cycle color coded to highlight the individual clusters identified by PhenoGraph (upper panels). The same UMAP projection showing the z-scored gene ex-
pression of selected markers (lower panels). (B) GSEA of sc-cluster gene signatures of DZ and LZ. (C) GSEA of intermediate (INT) subpopulations using the
expression profile of bulk purified human DZ versus LZ RNAseq samples. (D) GSEA of sc-cluster PreM gene signatures using the expression profile of bulk
purified human GC and memory RNAseq samples (left). GSEA of the sc-cluster PBL-b gene signatures using the expression profile of human GC versus tonsillar
plasma cells RNAseq samples from Gene Expression Omnibus accession no. GSE114816 (right). The gene signatures include all genes that display a log2 fold
change >1.5 or at least the top 50 differentially expressed genes. ES, enrichment score; NES, normalized enrichment score.
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Figure S3. Memory B cell precursors. Related to Fig. 5. (A) Heat map showing the fold change (log2) of selected genes in the PreM gene signature in the DZ
clusters (cells in G0-G1 phases of the cell cycle). (B)Heatmap showing the relative expression fold change (log2) of selected genes in the PreM gene signature in
the LZ clusters (cells in G0-G1 phases of the cell cycle). (C) Immunofluorescence analysis of BANK1 (red), CELF2 (cyan), and PAX5 (green) in tonsil tissue
sections. High magnification at the sc level shows costaining of BANK1/CELF2/PAX5 (insets). Bar plot shows the percentage of BANK1+ cells coexpressing the
indicated markers. The average and standard deviation were calculated from the cell counts of 570 GCs in five donors. (D) Immunofluorescence analysis of
BANK1 (red), CELF2 (cyan), and MEF2B (green) in tonsil tissue sections. High magnification (insets with yellow border) of the GC border shows the inner part of
the GC, marked by the thick dotted line, which has been considered for the analysis. Scale bar = 100 µm. Ox-Phos, oxidative phosphorylation.
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Figure S4. Development of a classifier based on the sc-RNAseq gene signatures. Related to Fig. 7. (A) Overview of sc-RNAseq classifier algorithm. (B)
Classification of purified normal B cell populations (GC, DZ, LZ, and Memory) using bulk gene expression profiles and the GC B cell sc-cluster gene signatures.
Each signature is identified by comparing a specific sc-cluster with the “Rest,”which refers to all other clusters. A normalized score from −1 (“Rest”) to 1 (cluster
of interest), depending on the similarity to each phenotype, is assigned to each sample. The gray area indicates the region that is not statistically significant
from a bootstrap test permuting gene in the signatures randomly 1,000 times. Samples with a more extreme absolute score outside the gray area were
assigned to either the cluster phenotype (positive score) or the “Rest” (negative score).
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Tables S1–S5 are provided as Excel files with multiple tabs. Table S1 (related to Fig. 2) shows cluster cell counts and results of the
differential expression analysis in GC B cells in G0-G1. Table S2 (related to Fig. 2) shows the differential expression gene lists
obtained from the analysis of GC B cells in G0-G1 and used in the GSEA reported in Fig. S2, B–D. Table S3 (related to Fig. 3) shows
cluster cell counts, results from the differential expression analysis in DZ GC B cells in S-G2-M and G0-G1, and their respective
pathway enrichment analyses. Table S4 (related to Fig. 4) shows cluster cell counts, results from the differential expression
analysis in LZ GC B cells in S-G2-M and G0-G1, and their respective pathway enrichment analyses. Table S5 (related to Fig. 7) shows
classification of DLBCL according to the sc-COO classifier, DLBCL identifiers, assignment to the COO subgroups, genetic classes,
DHITsig groups, sc-COO classes, score and P value for the top scoring sc-COO class, and sc-COO groups.

Figure S5. GC B cell signatures define lymphoma subgroups. Related to Figs 7, 8, and 9. (A) Distribution of the GCB, ABC, and unclassified (Unclass) DLBCL
groups from the combined NCI and BCCA datasets within each sc-cluster. (B) Enrichment analysis in the GC clusters defined by the sc-signatures of the genetic
classes reported in Schmitz et al., 2018 (left panel) or in Chapuy et al., 2018 (right panel) within the NCI-DLBCL dataset. (C) Kaplan-Meier plot for PFS analysis
of the COO subgroups in the NCI-DLBCL (upper panel) and BCCA-DLBCL (lower panel) datasets. P values were obtained using a Mantel-Cox test. (D–F) Kaplan-
Meier plots for PFS analysis of NCI-DLBCL (D), BCCA-DLBCL (E), and merged NCI+BCCA–DLBCL (F) samples grouped by classifier assignment to one of the
13 sc-COO clusters. (G) Enrichment analysis in the sc-COO subgroups of the DHITsig cases (Ennishi et al., 2019) in the GCB NCI-DLBCL and BCCA-DLBCL. (H)
Kaplan-Meier plot for PFS analysis of the DHITsig-positive (pos) and DHITsig-negative (neg) GCB NCI-DLBCL and BCCA-DLBCL cases. (I) DHITsig-positive cases
are grouped based on their sc-COO assignment. Groups I to V are defined as follows: Group I (DZ-a); Group II (DZ-b, DZ-c); Group III (INT-a, INT-b, INT-c); Group
IV (INT-d, INT-e, LZ-a); and Group V (LZ-b, PreM, PBL-a, PBL-b). EZB, DLBCL with EZH2 mutations and BCL2 translocations; MCD, DLBCL with co-occurrence
of MYD88L265P and CD79B mutations; BN2, DLBCL with BCL6 fusions and NOTCH2 mutations; N1, DLBCL with NOTCH1 mutations.
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