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memory (Bourtchuladze et al., 1994). In Drosophila, seven spliced 
isoforms of CREB protein were identified: dCREB2-a, -b, -c, -d, 
-q, -r, and -s (Yin et al., 1995b). Olfactory memory formation was 
enhanced by overexpression of transcription activator dCREB2-a 
(Yin et al., 1995a), and impaired by overexpression of transcription 
repressor dCREB2-b lacking Q-domain (Yin et al., 1994; Perazzona 
et al., 2004). In Aplysia, at least three different CREB isoforms played 
competing roles in long-term memory formation (Bartsch et al., 
1998; Upadhya et al., 2004). Recently, Mohamed et al. (2005) and 
Liu et al. (2008) reported that inducing CREB1 gene expression by 
a direct CREB1 feedback loop leads to increased transcriptional 
activity for long-term synaptic facilitation in Aplysia. These stud-
ies clearly showed that spliced isoforms of CREB regulate the gene 
induction for memory formation, and thus the ratio between the 
levels of CREB activator and repressor isoforms is important for 
memory formation. To date, however, there has been no absolute 
quantitative comparison of the expression levels of CREB isoforms 
in relation to learning and memory formation.

We previously cloned Lymnaea CREB1 (LymCREB1) cDNA, 
which is a homolog of mammalian CREB, in the central nervous 
system (CNS) of mollusk L. stagnalis, and confirmed its expression 
and function for synaptic facilitation (Sadamoto et al., 2004a,b). 
In the present study, we focused on the LymCREB1 mRNA, and 
isolated its activator and repressor isoforms. We then quanti-
fied the expression levels of these isoforms in Lymnaea CNS by 
real-time RT-PCR. Finally, we examined their expression levels 

IntroductIon
Cyclic AMP-responsive element binding protein (CREB) is a 
transcription factor regulating a remarkable spectrum of cellular 
responses involved in developmental events, cell survival, neuronal 
differentiation, and memory formation in the brains of animal spe-
cies (Lonze and Ginty, 2002). CREB can activate the expression of 
target genes in a phosphorylation-dependent manner via dimeriza-
tion by binding to a cyclic AMP-responsive element (CRE) in their 
promoter regions (Montminy and Bilezikjian, 1987).

The CREB family gene is also known to be expressed in a vari-
ety of spliced isoforms, giving rise to functionally different CREB 
family proteins with the potential to either activate or repress tar-
get gene expression (Ruppert et al., 1992; Mayr and Montminy, 
2001; Blöcher et al., 2003). CREB activator isoforms contain the 
three functional domains, phosphorylation box (P-box) or kinase-
inducible domain containing several phosphorylation sites for vari-
ous kinases, transactivation domain (Q-domain) interacting with 
a component of the TFIID complex for basal transcription, and 
leucine zipper (bZIP) domain for DNA binding and dimerization. 
CREB repressor isoforms, lacking each one of P-box or Q-domain, 
have inhibitory effects on gene expression (Bartsch et al., 1998; 
Behr and Weinbauer, 2000; Blöcher et al., 2003, 2005; Poels and 
Vanden Broeck, 2004).

Spliced isoforms of CREB also have opposite effects on learn-
ing behavior. For example, mutant mice lacking the activator iso-
forms of CREB have deficiencies in long-term but not in short-term 
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after conditioned taste aversion (CTA) learning. Our present find-
ings suggest that the spliced isoforms of LymCREB1, including 
both the activator and repressor isoforms, were constitutively 
produced, and that their expression levels changed in a learning-
dependent manner.

MaterIals and Methods
anIMals
Specimens of L. stagnalis with a 20-mm shell (young adults: 
Sadamoto et al., 2000) were maintained in tap water and fed on 
lettuce under a 12:12-light–dark cycle at 20°C. All snails were 
anesthetized with 25% Listerine® before dissection (Kojima et al., 
1997). For RNA extraction, the isolated CNSs were frozen in liquid 
nitrogen.

IdentIfIcatIon of lymcreB1 IsoforMs
Standard molecular biological techniques were performed accord-
ing to Sambrook et al. (1989). For identifying the spliced isoforms of 
LymCREB1, a Lambda Zap II phage library for Lymnaea CNS was 
screened by low-stringency hybridization with an ApCREB1a cDNA 
fragment (Sadamoto et al., 2004a). PCR was also carried out using a 
sequence specific primer (5′-TCATGCATCTTTTTGACAGT-3′) for 
the terminal part of the LymCREB1-coding region and the vector-
specific SK primer (5′-TCTAGAACTAGTGGATC-3′).

GenoMIc Pcr and southern BlottInG
For determination of the LymCREB1 gene structure, the genomic 
DNA was isolated from Lymnaea ovotestis and genomic PCR was 
performed with the primers for the 5′- and 3′-ends of the coding 
region. To identify intron–exon junctions, the amplified products 
were further used as the template for secondary PCR with the prim-
ers for the intron–exon gaps predicted from the Aplysia CREB1 
genomic sequence (Bartsch et al., 1998). For Southern blot analysis, 
genomic DNA (10 μg) was digested with restriction enzymes (XhoI, 
SacI, and PstI, 30 U each), run on 1× TBE gel with 0.8% agar and 
transferred to a nylon membrane. The DNA fragment (465 bp) for 
intron B (see Figure 1) was a hexamer labeled with [α-32P]dCTP, 
and hybridized to the filter. The filter was washed in 1× SSC, 0.1% 
SDS at 55°C and autoradiographed.

rna extractIon and cdna synthesIs
The animals were anesthetized and the CNSs were dissected and 
immediately frozen in liquid nitrogen. Total RNA was isolated 
with TRIzol Reagent (Gibco BRL, Gaithersburg, MD, USA). After 
DNase I treatment (Toyobo, Osaka, Japan), total RNA samples were 
extracted by phenol chloroform extraction followed by ethanol 
precipitation, and dissolved in RNase-free water. The quantity and 
the purity of RNA were determined by measuring the absorbance 
at 260 and 280 nm. To minimize the risk of contamination of other 
ganglia or loss of samples, we ensured that the concentration of 
samples remained unchanged between collections (30–100 ng/μl). 
For cDNA synthesis, the total RNA sample (300 ng) was reverse-
transcribed in a 30-μl mixture containing 1× RT buffer (50 mM KCl, 
10 mM Tris–HCl, pH 8.3), 5.5 mM MgCl

2
, 0.5 mM dNTPs, 0.2 μM 

LymCREB1specific RT primer, 24 U RNase inhibitor and 100 U 
Multiscribe Reverse Transcriptase (PE Applied Biosystems, Foster 
City, CA, USA) according to the manufacturer’s instructions.

QuantItatIve Mrna analysIs By real-tIMe Pcr
After reverse transcription, the mRNA levels of LymCREB1 iso-
forms were determined by real-time PCR. The sequences of the 
primers were as follows:

isoform 1  sense 5′-GTTGGTGACGAAAAGTACGTAATTG-3′;
   antisense, 5′-CTCACATGGACCACTGAAATGC-3′;
isoform 2  sense, 5′-AAGTTGGTGACGAAAAACAT-3′;
   antisense, 5′-ACCGCAGCAACCCTAA-3′;
isoform 3  sense, 5′-TTATCAACTGGAGCGACAAC-3′;
   antisense, 5′-ACCGCAGCAACCCTAA-3′;
isoform 4  sense, 5′-AGCGACAACAGCTCGAGGTT-3′;
   antisense, 5′-GCTGTCAGCTGCAATGTTCCT-3′;
isoform 5  sense, 5′-GACGAAAAACATGTCAGCAG-3′;
   antisense, 5′-CTCCAAGGCAGGTTATGAG-3′;
isoform 6  sense, 5′-GGTGACGAAAAGTACGTAATTGGTT-3′;
   antisense, 5′-TGTGCTGTCAGCTGCAATGTT-3′;
isoform 7  sense, 5′-CAAAGTTGGTGACGAAAAGTTGCT-3′;
    antisense, 5′-TGGCTCTGACTACTGTTCGAATCA-3′.

The fluorescent probes (PE Applied Biosystems) were labeled 
with the reporter dye 6-carboxyfluorescein (FAM) at the 5′ end and 
with the quencher dye 6-carboxytetramethylrodamine (TAMRA) 
at the 3′ end (probe 1 for isoforms 1, 2, 3, and 5, 5′-TTTTCAATG
TCAGCTGTTCCAGGACCAT-3′ probe 2 for isoforms 4, 6 and 7, 
5′-CTGAATGATCTCTCATCTCCTGTTAAAATGGA-3′).

The real-time PCR was performed using a GeneAmp 5700 
Sequence Detection System (PE Applied Biosystems) in 12.5 μl 
of reaction mixture (1× TaqMan Buffer A, 0.2 mM dNTPs, 0.31 U 
TaqMan Gold, 0.1 μM each of the forward and reverse primer, 
2 μM fluorescent probe, 3 μl of cDNA sample). PCR reaction was 
carried out at 95°C for 10 min, followed for 45 cycles of incuba-
tion at 95°C for 15 s and at annealing temperature for each primer 
set for 1 min (isoform 1, 62°C; isoform 2, 56°C; isoform 3, 56°C; 
isoform 4, 56°C; isoform 5, 56°C; isoform 6, 59°C; isoform 7, 
59°C). At each PCR cycle, accumulation of PCR products was 
detected by monitoring the increase in fluorescence of the reporter 
dye from the fluorescent probes. Cycle threshold detection was 
converted into the number of gene copies in the starting material, 
and a standard curve was constructed using the known amounts 
of standard cDNA.

cta and Backward condItIonInG
Animals were conditioned by a CTA conditioning procedure that 
was previously described (Sugai et al., 2006). Briefly, the conditioned 
stimulus (CS) and unconditioned stimulus (US) were a 10-mM 
sucrose solution and a 10-mM KCl solution, respectively, which were 
poured into the experimental dish for 15 s with a 15-s inter-stimulus 
interval. The pairing of the CS and the US was repeated 10 times 
with a 10-min inter-trial interval. After the conditioning session, the 
CS was applied to the lips and washed out by distilled water. Then, 
the feeding response was determined for 1 min. A naive (distilled 
water only) cohort was employed, and a backward conditioning 
(US–CS) cohort was also employed as an example of “improper” 
conditioning. The conditioning procedure was performed in a blind 
manner. Thirty minutes after conditioning, the CNSs were dissected 
and immediately frozen in liquid nitrogen for RNA extraction.
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were isolated from the cDNA library and three other kinds were 
further isolated by PCR. These seven identified clones were referred 
to as isoforms 1–7 (Figure 1A).

Sequence characterization of the LymCREB1 isoforms allowed 
their grouping into two classes: (I) isoforms 1, 2 and 3, which 
encode the whole LymCREB1 protein containing both a phos-
phorylation site (P-box) and a leucine zipper (bZIP) domain (264 
amino acids); and (II) isoforms 4, 5, 6, and 7, which encode a bZIP 
domain but not a P-box (167 amino acids). The P-box is the target 
region affected by several different kinase cascades and is required 
for induction of gene expression by a transcription factor. The bZIP 
domain is necessary for DNA binding and protein dimerization. 

statIstIcs
The data are expressed as the mean ± SEM. Statistical significance 
was examined by one-way ANOVA followed by the post hoc Scheffé 
test. In all analyses, values of P < 0.05 were considered to indicate 
statistical significance.

results
lymcreB1 IsoforMs In the Lymnaea cns
We first screened a Lambda Zap II phage library for Lymnaea CNS 
to identify the LymCREB1 mRNA isoforms. PCR was also per-
formed on the cDNA library with the vector specific primer (sense) 
and the sequence specific primer (antisense). Four kinds of clones 

FiguRE 1 | genomic organization of the LymCREB1 gene and its spliced 
mRNA isoforms. (A) The genomic DNA and seven identified isoforms produced by 
alternative splicing are shown as iso1 to iso7. Above: Squares represent exons 1–10 
and lines represent introns A–F. The numbers below the exons indicate the exon 
lengths (bp). The numbers in the parentheses above the introns indicate the intron 
lengths (kb). Below: Open boxes indicate non-coding regions; hatched boxes 
indicate coding regions. The identifying methodologies are shown on the right. 

(B) Intron and exon organization of the regions for alternative splicing in the 
LymCREB1 gene. The boxed sequences are the exons. The consensus sequence 
(GT/AG) for alternative splicing is underlined. (C) Southern blot analysis of the 
LymCREB1 gene. A 465-bp fragment labeled with 32P was hybridized to XhoI-, SacI- 
or PstI-digested genomic DNAs (10 μg per lane). A single fragment of approximately 
7, 19, or 5.5 kb in size was detected in the XhoI-, SacI-, and PstI-digested DNA, 
respectively. Numbers at the left of the figure represent the DNA size markers (kb).
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C
t
. All sets produced slopes close to the theoretical ideal of −3.3 

(−3.48 to −3.80). In this study, the specificity of PCR was deter-
mined in the 5′ end of primer sequence at exon–intron junction, 
and the lengths of amplicon were quite similar between isoforms 
as shown in Figure 2A. Thus, to confirm the specificity of primer 
sets, we examined the cross-reactivity of isoform-specific prim-
ers with improper targets using the standard cDNA samples. The 
concentrations of the cross-reactants were consistently below one-
thousandth of the concentrations of the target PCR product (data 
not shown).

We next summarized the patterns of the mRNA levels for the 
LymCREB1 isoforms in Lymnaea CNS (Figure 2A). The iso-
forms 1–3 coding the activator proteins were expressed at a simi-
lar level. The isoforms 4, 6, and 7 coding the repressor proteins 
were expressed at a relatively high level in comparison with the 
activator isoforms 1–3. Only isoform 5 was expressed at a low 

On the other hand, all isoforms contain an intact Q2-domain cor-
responding to those of mammalian CREB1 proteins (exon 6–10, 
residues 108–221). Following the previous reports (Bartsch et al., 
1998; Mayr and Montminy, 2001; Blöcher et al., 2003, 2005), the 
class (I) isoforms are referred to as an activator group for gene 
induction, and can evoke dimerization, binding to target DNA 
and phosphorylation, whereas the class (II) isoforms make up a 
repressor group, with the potential to form a heterodimer with the 
activator protein, resulting in interference with gene induction due 
to the lack of a P-box.

To determine the intron–exon structure of the LymCREB1 
gene, long-genomic PCR was performed with the primers for the 
LymCREB1-coding region. The 8-kb length of the obtained product 
was further used as the template for the determination of intron–
exon junctions. Investigation of the LymCREB1gene by genomic 
PCR revealed that the 5′UTR and protein-coding regions were 
fragmented into 10 alternatively spliced exons (Figure 1A). All of 
the 5′ and 3′ splice sites at the intron–exon junction conformed to 
the consensus splice site sequence (GT/AG).

The alternative splicing of LymCREB1 pre-mRNA transcripts 
resulted in the induction of transcriptional activators and repres-
sors due to the selective inclusion or exclusion of a portion of exon 
4 in which the AUG initiation codon for translation is located. In 
contrast to this alternatively spliced portion of the isoforms, the use 
of exons 7–10 appears to be a common feature in all the LymCREB1 
isoforms (Figure 1A). The sequence comparison of spliced isoforms 
showed that they alternate the transcription start site beginning at 
exon 1 or exon 3. Only isoform 5 contains another open reading 
frame that codes the N-terminal part (64 amino acids) of the whole 
LymCREB1 protein. Isoform 5 also includes an insert of exon 5 
(36 bp) resulting in a shift of the codon reading frame with the 
appearance of an early stop codon (Figure 1B; note that Figure 1B 
is written as the gene structure). In addition, the initiation codon 
AUG was found in exon 7 in isoforms 4–7.

To estimate the copy number of the LymCREB1 gene, Southern 
blotting of the digested Lymnaea genomic DNA was performed 
(Figure 1C). A single fragment of approximately 7, 19, or 5.5 kb 
in size was detected in the XhoI-, SacI-, and PstI-digested DNA, 
respectively. Together, these data indicate that all the LymCREB1 
isoforms come from a single-copy CREB1 gene in Lymnaea CNS.

QuantItatIve mrna analysIs of lymcreB1 IsoforMs By 
real-tIMe Pcr
Next, we examined the expression levels of LymCREB1 isoforms 
in Lymnaea CNS by real-time PCR (Wagatsuma et al., 2005). 
Because of the large homologous regions among the members 
of LymCREB1 isoforms, the primer sets were chosen in specific 
regions of each isoform to avoid cross-reactions with the other 
isoforms. The location of the primer sets used for PCR analysis of 
the LymCREB1 gene is shown in Figure 2A.

To minimize the variability of reagents, all samples and stand-
ards were simultaneously reverse-transcribed in the solutions 
prepared from the same master mix. The amplification efficiency 
was determined for each primer-probe set as previously described 
(Bustin, 2000). Cycle threshold (C

t
) values were determined for a 

series of 10-fold dilutions of standard templates, and the results 

were plotted as the log of the initial target copy number versus 

FiguRE 2 | Determination of the mRNA copy numbers for LymCREB1 
isoforms. (A) Schematic presentation of the LymCREB1 genes and location 
of the primer sets used for PCR analysis of the LymCREB1 gene. (B) 
Messenger RNA quantification of LymCREB1 isoforms. Twenty-five 
nanograms of total RNA for each isoform was used for the reverse 
transcription and quantification (mean ± SEM, n = 6 each). The copy numbers 
of the activator isoforms are indicated by white bars and those of the 
repressor isoforms by hatched bars.
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Animals were exposed to 10 mM sucrose (CS), followed by an 
exposure to 10 mM KCl (US). The CS–US pairing for CTA learn-
ing was performed 10 times. We also applied backward condition-
ing in which the CS followed the US as a behavioral control, and 
prepared naive animals. Ten minutes after the conditioning, the 
animals were given a memory test session (i.e., presentation of the 
CS alone). We found that the feeding response elicited by the CS in 
the test session was significantly reduced (P < 0.01) in comparison 
with the feeding response in the test session given to the naive and 
backward-conditioned cohort (Figure 3B).

Thirty minutes after conditioning, the cerebral ganglia were 
dissected and used for mRNA quantification of each LymCREB1 
isoform. The cerebral ganglia in Lymnaea are known to play a criti-
cal role in feeding behavior, and to be candidate loci for  long-term 

level (21 ± 3), showing that this is a minor isoform in Lymnaea 
CNS. At the mRNA level, the ratio between activator isoforms 
and repressor isoforms for LymCREB1 was about 5:9 (the total 
number of isoforms 1–3 to that of isoforms 4–7) in Lymnaea CNS. 
The number of repressor isoforms was clearly greater than that 
of activator isoforms.

chanGe In the coPy nuMBers of lymcreB1 IsoforMs after 
condItIoned taste aversIon learnInG
To investigate the expression of LymCREB1 isoforms in association 
with learning and memory formation, we further examined the 
changes in the levels of LymCREB1 isoforms after CTA learning 
in Lymnaea (Kojima et al., 1997). The conditioning procedure is 
shown in Figure 3A.

FiguRE 3 | Quantification of mRNA copy numbers for LymCREB1 
isoforms after CTA learning or backward conditioning. (A) Training 
paradigm. (B) Behavioral change after taste aversion learning or backward 
conditioning (mean ± SEM; **P < 0.01; n = 30 naive animals, n = 30 
backward-conditioned animals, and n = 30 CTA-trained animals).  
(C) Messenger RNA quantification of LymCREB1 isoforms. Values are 

expressed as the mRNA copy number of cDNA per 25 ng input of total RNA 
(mean ± SEM; *P < 0.05; **P < 0.01; n = 8 naive animals, n = 10 backward-
conditioned animals, and n = 17 CTA-trained animals). The copy numbers for 
naive control animals are indicated by the white bars, those for backward-
conditioned animals by the hatched bars and those for CTA-trained animals by 
the black bars.
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that of activator isoforms in Lymnaea CNS; (3) the CTA learning 
was accompanied with an increase of LymCREB1 gene expression; 
and (4) the ratio between activator and repressor isoforms was not 
changed after CTA learning or backward conditioning compared 
to that of the naive control group.

exPressIon of actIvator and rePressor IsoforMs of lymcreB1
We here identified seven different isoforms of LymCREB1 aris-
ing from the single-copy gene in the CNS of Lymnaea (Figure 1). 
Alternative splicing produces a variety of functionally distinct iso-
forms from a single gene by use of different combinations of splice 

memory in CTA learning (Kojima et al., 1997; Sadamoto et al., 
2004a,b). After RNA extraction and reverse transcription, the cDNA 
from 25 ng total RNA was subjected to PCR analysis using the iso-
form-specific primer oligonucleotides. The results are summarized 
in Figure 3C. The mRNA copy number in isoform 5 for backward 
conditioning was too low for reliable quantification (<10 copies).

A marked increase of LymCREB1 mRNA expression in each 
isoform was observed in CTA-trained animals compared with that 
of backward-conditioned animals (isoforms 1–4, P < 0.01; isoforms 
6 and 7, P < 0.05). In isoforms 2 and 4, there was a significant 
difference between the CTA-trained and naive animals (P < 0.05, 
respectively). On the other hand, in backward-conditioned animals, 
no significant changes in the expression of LymCREB1 mRNA were 
found in comparison with naive animals.

chanGes In lymcreB1 Gene transcrIPtIon and the ratIo 
Between actIvator and rePressor IsoforMs after cta 
learnInG
To examine the effect of CTA learning on LymCREB1 gene expres-
sion, the total gene expression of LymCREB1 was calculated by 
adding together the mRNA copy numbers for all isoforms, and the 
results for each animal group are summarized in Figure 4A.

The results clearly showed that CTA learning significantly 
increased the total LymCREB1 transcription levels (P < 0.05 between 
CTA-trained and naive animals, P < 0.01 between CTA-trained and 
backward-conditioned animals). On the other hand, backward con-
ditioning did not induce LymCREB1 gene expression even though 
the stimuli were the same as those used for CTA learning.

Finally, we examined the simple question of whether CTA learn-
ing changes the ratio between the activator and repressor isoforms. 
To calculate the effects of alternative splicing on CTA learning, 
we compared the ratios of the mRNA copy numbers of activator 
to repressor isoforms (Figure 4B). The copy numbers of activa-
tor or repressor isoforms were calculated by adding together the 
mRNA copy numbers of isoforms 1–3 or those of isoforms 4–7, 
respectively. The ratio of activator/repressor isoforms was then 
calculated for the naive control, backward-conditioned and CTA-
trained groups. No significant difference in the ratio was observed 
among the three groups (P = 0.28). These results showed that CTA 
learning increased LymCREB1 gene expression, but did not change 
the ratio between activator and repressor LymCREB1 isoforms, in 
the candidate loci for long-term memory.

dIscussIon
The transcription factor CREB is well known to play multiple roles 
in the gene regulation for numerous biological events. The complex 
function of CREB family proteins arises in part from the wide range 
of variation in their spliced isoforms, which allows them to interact 
with each other (Ruppert et al., 1992). Previous reports showed that 
alternatively spliced isoforms of CREB family protein have oppo-
site functions in the induction of long-lasting learning behavior, 
indicating that the expression level of each isoform is critical for 
memory formation (Bourtchuladze et al., 1994; Yin et al., 1994; 
Blöcher et al., 2003, 2005; Perazzona et al., 2004).

In the present study, we showed that (1) the activator and repres-
sor isoforms of LymCREB1 are present in Lymnaea CNS; (2) the 
mRNA copy number of repressor isoforms is much higher than 

FiguRE 4 | Summary of the LymCREB1 gene expression in Lymnaea 
CNSs after CTA learning and backward conditioning. Values are expressed 
as the mRNA copy number of cDNA per 25 ng input of total RNA 
(mean ± SEM; *P < 0.05; **P < 0.01; n = 8 for naive animals, n = 10 for 
backward-conditioned animals, and n = 17 for CTA-trained animals). The copy 
numbers for naive control animals are indicated by white bars, those for 
backward-conditioned animals by hatched bars and those for CTA-trained 
animals by black bars. (A) The total mRNA copy number for all LymCREB1 
isoforms after CTA learning or backward conditioning. The mRNA copy 
numbers of backward-conditioned animals were significantly lower than those 
of CTA-trained animals (P < 0.01). The LymCREB1 gene expression after 
backward conditioning was significantly lower than that of CTA-trained 
animals. (B) The ratio between the mRNA copy numbers of activator and 
repressor isoforms. The ratio between the copy numbers of activator and 
repressor isoforms was not significantly different among the three groups.
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backward-conditioned  animals (Figures 3B,C and 4A). Such con-
ditioning-specific regulation of CREB1 gene expression might also 
determine the function of CREB1 proteins in a learning-dependent 
manner. Finally, it is reasonable to assume that the change of CREB1 
expression in this study is small because CREB1 quantity should not 
be changed drastically. Transcription factor CREB1 is also included 
in variable biological phenomena, such as cell differentiation and 
cancer development, and the change of CREB1 has critical effects 
on those biological events. Thus, the change of CREB1 should not 
be like those of immediate early genes, such as c-Fos or CCAAT/
enhancer-binding protein (C/EBP). Supporting this idea, previous 
simulation with bifurcated analysis (Song et al., 2007) also showed 
an increase or a decrease of CREBs causes enormous effects on the 
continuous CREB-dependent gene regulation.

Isoform 5 was dissimilar to the previously reported ApCREB1 
isoforms (Bartsch et al., 1998), and the independent quantitative 
RT-PCR experiments showed that the expression level of isoform 5 
was extremely low in Lymnaea CNS (Figures 2B and 3C). Therefore, 
isoform 5 seems to possess less potential for gene regulation in the 
Lymnaea CNS. One possible explanation for the low level gene 
expression of isoform 5 was that it was due to the mechanism of 
“nonsense-mediated mRNA decay (NMD),” which is responsible for 
the degradation of incorrectly spliced mRNAs with disrupted open 
reading frames (Conti and Izaurralde, 2005). Isoform 5 includes 
exon 5, which results in a shift of the codon reading frame with 
the appearance of an early stop codon (Figure 1B), and appears 
to generate premature termination codons as the target of NMD 
(Conti and Izaurralde, 2005). More, exon 5 has a GT at its 5′-end 
(Figure 1C), which is the splice donor site. Thus, isoform 5 mRNA 
is thought to arise from a failure in processing, and to be degraded 
by NMD immediately. These results indicate that the N-terminal 
part of LymCREB1 (64 amino acids) coded by isoform 5 is not 
translated into a functional protein.

creB1 functIon for learnInG and MeMory In Lymnaea
Various investigations have been carried out on CREB1 function 
in long-lasting behavioral changes due to CREB1-dependent gene 
induction for memory formation in vertebrates and invertebrates 
(Bourtchuladze et al., 1994; Perazzona et al., 2004). Lymnaea have 
provided us with insight into the richness of cellular correlation with 
learning and memory (Sadamoto et al., 1998; Ito et al., 1999; Kemenes 
et al., 2006; Parvez et al., 2006), and we have previously reported the 
localization and the function of LymCREB1 for long-lasting facili-
tation in the key neuron of CTA learning (Sadamoto et al., 2000, 
2004a,b). In the present study, we found a significant difference in 
LymCREB1 gene expressions in the cerebral ganglia between CTA-
trained and backward-conditioned groups, and also found a non-
significant trend toward a difference between the CTA-trained and 
naive control groups (Figures 3C and 4A). Hence, we came to the 
conclusion that there is a possible pathway through which high expres-
sion of LymCREB1 is linked to the memory formation in CTA learn-
ing. Our observation is consistent with the previous reports in Aplysia 
that inducing CREB1 gene expression by a direct CREB1 feedback 
loop leads to increased transcriptional activity for long-term synaptic 
facilitation (Mohamed et al., 2005; Liu et al., 2008). Further, Ribeiro 
et al. (2003) reported that the appetitive learning of feeding behavior 
in Lymnaea increases phosphorylated-CREB1 in the cerebral ganglia 

junctions. In the CNS, all intron–exon junctions of LymCREB1 
feature the consensus splice site sequences (GT/AG), and the 
genomic structure is quite similar to that of the Aplysia CREB1 gene 
(ApCREB1) (Bartsch et al., 1998). However, we did not identify any 
mRNA isoform without exon 7, which corresponds to ApCREB1β 
as a repressor isoform of ApCREB1. The PCR method used here is 
appropriate to identify this type of isoform. Thus, there is a differ-
ence between species in the splicing of the CREB1 gene.

Further, we succeeded in determining the expression levels of the 
spliced isoforms of LymCREB1 using quantitative PCR methodol-
ogy (Figure 2). These results showed that the repressor isoforms 
are expressed more highly than the activators at the mRNA level, 
suggesting that the repressor isoforms also play a pivotal role for 
gene regulation due to the suppression of the function of activator 
isoforms via heterodimerization. There is clear evidence that differ-
ences in the activities or amounts of gene-specific splicing regula-
tors in distinct species as well as during development or in different 
tissues might account for species-, tissue-, and developmental stage-
specific differences in the patterns of splicing (Black, 2003). Thus, 
alternative splicing can regulate the ratio between the activator and 
repressor isoforms of LymCREB1, thereby determining the gene-
induction ability of LymCREB1 proteins. More, spliced isoforms 
can also interact or compete with other CREB family protein, such 
as CREB2 (Sadamoto et al., 2004a), which constitute the regulatory 
mechanism of CREB-dependent gene expression.

Whether the spliced isoforms of LymCREB1 actually display 
the differences of translation efficiency remains to be determined. 
However, protein analysis using the antibodies for CREB1 cannot 
allow us to examine the expression levels of proteins because of the 
similarity of amino acid sequences of the isoform proteins. Previous 
reports have also shown that the variable isoforms of CREB1 are 
also seen in other species (Ruppert et al., 1992; Bartsch et al., 1998; 
Eisenhardt et al., 2003), but the translation efficiency was not con-
sidered in these studies. Messenger RNA stability, protein trans-
lation, and protein modification, including phosphorylation, are 
important mechanisms for CREB1 function, and future research 
discussing these factors can advance the present knowledge.

reGulatIon MechanIsM for the exPressIon levels of lymcreB1 
IsoforMs
The transcriptional regulation of CREB1 genes appears to be 
another important mechanism for maintaining appropriate levels 
of CREB1 proteins. Previous studies have reported that transcrip-
tion of the CREB1 gene is regulated by other transcription factors 
(Delfino and Walker, 1999; Shell et al., 2002), or by a feedback loop 
of CREB1 (Mohamed et al., 2005). In Lymnaea CNS, the expres-
sion levels of LymCREB1 isoforms did not show large variation 
between individuals (see the error bars in the data of Figures 2B 
and 3C), indicating the existence of mechanisms that regulate the 
expression of these isoforms. We also showed that the expression 
levels of all LymCREB1 isoforms were significantly increased after 
CTA learning but not after backward conditioning in candidate 
loci for memory formation of learning. These results enabled us to 
conclude that there exists a regulatory system of LymCREB1 expres-
sion that is sensitive to extracellular signals. More, the significant 
difference in LymCREB1 mRNA copy numbers was coincident 
with the difference in learning behavior between CTA-trained and 
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On the other hand, it is notable that there are other mechanisms 
involved in the regulation of CREB1 protein, such as proteolysis. 
Upadhya et al. (2004) previously reported that the protein deg-
radation of CREB1 repressor isoform occurs in neurons during 
induction of long-term facilitation. The final number of functional 
CREB1 molecules should be determined by several regulatory 
mechanisms, including gene regulation, translational regulation, 
and protein degradation.

Finally, we conclude that the procedure of CTA learning signifi-
cantly increased the gene expression of both activator and repres-
sor CREB1 isoforms in the candidate loci for memory formation, 
such as the cerebral ganglia. Our present study is the first to ana-
lyze the expression level of CREB1 isoforms quantitatively and 
accurately. Taken together with the previous results, our genetic 
analysis performed in the present study will enable us to design 
future studies to investigate the contribution of the CREB1 iso-
forms to the overall incidence of cellular or behavioral changes. 
Because of the conserved mechanism of CREB1-mediated gene 
regulation, our findings will further enhance understanding of the 
genetic bases for CREB1 functions in the tissues of a wide range 
of animal species.
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which is the same ganglia as we observed in the present study. It is 
interesting that CREB1 plays a role in the same ganglia for memory 
formation even though the learning behavior is different.

In the present study, we also found a non-significant trend 
toward a decrease of LymCREB1 gene expression after backward 
conditioning. This means that, even though the same stimuli as in 
the CTA learning were applied, there was a significant difference 
in the gene expression between CTA-trained and backward-con-
ditioning cohorts. We have previously reported that CTA learning 
was interfered after backward conditioning as a form of inhibitory 
learning (Sugai et al., 2007). A slight reduction in LymCREB1 gene 
expression may be one of the reasons for the inhibitory effect of 
backward conditioning. In support of this idea, Song et al. (2007) 
performed a bifurcation analysis using a computer simulation tech-
nique and showed that the number of CREB1 molecules reveals 
bimodal distribution in the bistability region. Thus, we now believe 
that backward-conditioning stimuli induce a shift to another stable 
state in the number of CREB1 molecules, and result in different 
learning behaviors, compared to CTA learning.

In contrast, the ratio between activator and repressor mRNA 
isoforms was not changed among the CTA-trained, backward-
conditioning, and naive control groups (Figure 4B). This means 
that the splicing pattern of LymCREB1 mRNA was not affected by 
CTA learning or backward conditioning. Thus, the LymCREB1-
regulated transcriptional switch was not changed after CTA learn-
ing at the mRNA level. However, our present analysis also showed 
that the activator and repressor LymCREB1 were both increased 
after CTA learning. The increase of CREB1 activator molecules was 
presumed to result in an enhancement of the function of CREB.
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