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Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating disease 
with no molecular diagnostics and no treatment options. To identify potential markers of this illness, 
we profiled 48 patients and 52 controls for standard laboratory tests, plasma metabolomics, blood 
immuno-phenotyping and transcriptomics, and fecal microbiome analysis. Here, we identified a set of 
26 potential molecular markers that distinguished ME/CFS patients from healthy controls. Monocyte 
number, microbiome abundance, and lipoprotein profiles appeared to be the most informative 
markers. When we correlated these molecular changes to sleep and cognitive measurements of 
fatigue, we found that lipoprotein and microbiome profiles most closely correlated with sleep 
disruption while a different set of markers correlated with a cognitive parameter. Sleep, lipoprotein, 
and microbiome changes occur early during the course of illness suggesting that these markers can be 
examined in a larger cohort for potential biomarker application. Our study points to a cluster of sleep-
related molecular changes as a prominent feature of ME/CFS in our Japanese cohort.

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating disease with a 
spectrum of symptoms including unexplained fatigue, post-exertional malaise, impaired memory, pain, gastro-
intestinal and immune dysfunction, and sleep disturbance1,2. About 0.2 to 2.6% of the population, 75% being 
female, are estimated to be affected by ME/CFS3,4 with no treatment option, resulting in depression, absence 
from work, and social isolation. ME/CFS is currently diagnosed based on symptoms and there are currently no 
accepted molecular diagnostic tools5. This poses challenges to medical practitioners who often rely on molecular 
diagnostic tools and physical signs of illness for making diagnostic decisions.

In order to identify potential diagnostic markers for ME/CFS, researchers have relied on omics technologies 
to systematically profile molecular changes associated with ME/CFS. One of the first omics technologies to be 
applied was microarray, which measures the gene expression changes across thousands of genes in the genome. 
This technology led to the identification of gene expression markers for ME/CFS, particularly in peripheral 
blood mononuclear cells (PBMCs)6,7. However, a validation study in a different cohort failed to robustly separate 
patients from controls8. Additionally, a study in twin pairs has shown that no gene expression difference could 
be detected between ME/CFS patients and controls when controls were genetically matched9, suggesting that 
gene expression changes do not strongly reflect the disease state of ME/CFS.

The use of omics technologies in ME/CFS studies have recently shifted to metabolomics and microbiome 
analysis. Metabolomics studies using gas chromatography–, liquid chromatography–, or capillary electrode–mass 
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spectrometry (GC–MS, LC–MS, or CE–MS) in plasma samples have identified sets of metabolites that can 
robustly distinguish ME/CFS patients from healthy controls10–14. However, more studies are needed to identify 
common sets of metabolites that are altered in ME/CFS patients as the number of studies are still few. In com-
parison to metabolomics study, a larger number of fecal microbiome analysis have been conducted for ME/
CFS, which is summarized in a recent review15. Among the key differences detected, a decrease in Faecalibacte-
rium appears to be shared across several studies of ME/CFS. In addition to these technologies, global cytokine 
profiling16–19 and immunophenotyping20,21 have been performed in plasma and cerebrospinal fluid samples to 
identify immune biomarkers of ME/CFS. More recently, a proteomics survey of extracellular vesicles (EVs) was 
performed to identify EV-specific protein biomarker of ME/CFS22. All of these technologies survey biological 
samples from the periphery, which are readily accessible to medical practitioners.

In parallel to the advancement in omics technologies targeting the periphery, advances in imaging technolo-
gies have revealed key insights into molecular changes that occur in the brain of ME/CFS patients23–29. These 
studies have uncovered neuroinflammation30 related to the microglial activation by cytokines, neurotransmitter 
abnormalities31,32, costly and less efficient performance of frontal cortex33, as well as ‘brain fog’34. These imag-
ing technologies require trained specialists to perform the study and omics technologies still represent a more 
accessible platform for molecular diagnostics in most laboratories.

Despite the accumulation of omics data in ME/CFS, key challenges remain in integrating and interpreting 
these data. First, the performance of omics platforms cannot be compared to each other as the studies are con-
ducted in different sets of cohorts. Second, one cannot relate changes in molecular profile at one omics level, 
such as metabolite, to another omics level such as microbiome, when patients differ between studies. Therefore, 
in order to address these challenges, we set out to perform a deep phenotyping of ME/CFS using five molecular 
profiling platforms, accompanied by questionnaire and quantitative measures of fatigue. From our study, we 
identified 26 potential markers that distinguished ME/CFS patients from healthy controls. We found that mark-
ers from immunophenotyping, microbiome analysis, and lipoprotein profiling performed best in distinguishing 
patients from controls. When combined, these markers did not completely separate patients from controls sug-
gesting limitations of our profiling technologies. We also uncovered strong correlation between sleep disruption, 
lipoprotein profiles, and microbiome abundance suggesting that these markers form one of the core networks 
of ME/CFS. These changes were evident during the early course of illness suggesting that these markers may 
be studied in a larger cohort for biomarker application. Our study points to a cluster of sleep-related molecular 
changes as a prominent feature of ME/CFS in our Japanese cohort. 

Results
Overview of the study.  The goal of our study was twofold: (1) identify potential markers of myalgic 
encephalomyelitis/chronic fatigue syndrome (ME/CFS) across multiple omics platforms; and (2) uncover 
relationships between these markers for insights into the syndrome. We recruited 48 ME/CFS patients and 52 
healthy controls (Table S1) matched for age, gender, and BMI. ME/CFS patients were diagnosed based on the 
1994 Center for Disease Control clinical criteria (Fukuda criteria)1 and the International Consensus Criteria2. 
These cohorts underwent questionnaires, activity measurements, simple cognitive tests, as well as multi-omics 
profiling of blood and fecal samples (Fig. 1). To assess the severity of fatigue, we used Chalder fatigue scale35 and 
quality of sleep using Pittsburgh Sleep Quality Index Global (PSQIG) score36. To quantitatively measure sleep, 
we also performed 1-week actigraphy measurements37. For cognitive assessment, we administered simple math-
ematical problems. For molecular profiling, blood samples were taken in the morning after overnight fast and 
assessed for standard clinical laboratory tests, 1H-NMR metabolomics of plasma, FACS-based immunopheno-
typing of peripheral blood mononuclear cell (PBMC), and transcriptome analysis of whole blood. Fecal samples 
were collected at home and were sent for analysis of microbiota composition using 16S rRNA sequencing. Given 
the technical difficulties in several of the omics measurements as well as difficulties in obtaining enough patient 
materials, some of the measurements could not be completed (Fig. S1). For each platform, we used all available 
data to identify markers that distinguished ME/CFS patients from healthy controls. To compare markers across 
platforms, we restricted the analysis to individuals with complete data. In total, we evaluated 33 standard clinical 
laboratory tests (Table S1), 20 types of immune cell (Fig. S2), 31 metabolite profiles (Table S2), eight lipoprotein 
fractions (Table S3), expression levels of 820 gene sets, and relative abundance of 20 different bacterial genera 
(Fig. S3), resulting in over 70,000 data points.

Molecular phenotyping.  We first searched for molecular differences between ME/CFS patients and 
healthy controls for each of the platforms (Fig. 2). We identified differences in nine blood-based clinical labora-
tory tests (Fig. 2, Table S1), eight lipoprotein fractions (Fig. 2, Table S3), two immune cell types (Fig. 2, Fig. S2), 
and six different bacterial genera (Fig. 2, Fig. S3A) after adjusting for false discovery rate to 0.20 for each of the 
molecular platform. For microbiome analysis, alpha diversity did not significantly differ between patients and 
controls (Fig. S3B).

For whole blood transcriptomics, given that the expression level of individual genes is subject to technical and 
biological noise, we searched for sets of genes that were differentially expressed between patients and controls. 
This method provides greater statistical power and ease of biological interpretation as gene sets are defined using 
prior knowledge of pathways38,39. We used gene set annotations from pathway databases as well as list of genes 
that were differentially expressed in five prior studies of ME/CFS8,9,40–42. One gene set showed significant increase 
in ME/CFS patients compared to controls after adjusting for false discovery rate to 0.20 (Fig. S4). This gene set 
was previously found to be upregulated in chronic fatigue syndrome patients41.

Among the 26 molecular differences we identified, several of the markers were also discovered in other stud-
ies of ME/CFS. These included a decrease in uric acid12 and HDL43, and an increase in triglyceride13,43 for ME/
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CFS patients. An increase in monocyte number in ME/CFS patients were also identified in one study21 although 
several other studies did not find such difference44,45. Additionally, a decrease in Faecalibacterium46–48 and an 
increase in Coprobacillus46,48 were found in ME/CFS patients in previous studies as well as in our current study. 
Overall, we identified 26 potential markers of ME/CFS from five different molecular platforms including those 
identified in prior studies.

Multi‑marker analysis.  We next examined whether a combination of 26 markers can help distinguish ME/
CFS patients from healthy controls. We used partial least square discriminatory analysis (PLS-DA) to project 
maximum separation between patients and controls using our 26 input markers. We found that while a subset 
of patients can be separated from controls (Fig. 3A), about half of the patients could not be separated from con-
trols suggesting limitations of our molecular profiling platforms or limitations of biological signals present in 
peripheral blood or fecal samples.

We next searched for molecular markers that best separated patients from controls using variable importance 
in projection (VIP) analysis (Fig. 3B). VIP scores estimate the importance of each marker in the PLS-DA pro-
jection. Among the 26 markers we identified, monocyte number, abundance of Coprobacillus, Eggerthella, and 
Blautia, and levels of triglyceride and VLDL performed best in distinguishing patients from controls (Fig. 3B). In 
particular, three out of six markers from microbiome analysis appeared at the top of the list. This may result from 
some of the bacterial genera being almost undetectable in one group but present in another group, thus giving 
rise to a robust separation between patients and controls. Overall, we found that while patients and controls could 
not be completely separated using our 26 molecular markers, the top markers came from immunophenotype, 
microbiome, and metabolomic platforms.

Non‑molecular measurements of fatigue.  In order to understand the relationship between fatigue and 
our 26 molecular markers, we quantified fatigue by Chalder fatigue scale, a questionnaire-based method that 
measures both physical and psychological fatigue35. We also assessed quality of sleep using questionnaire-based 
instrument, PSQIG score36. As expected, questionnaire-based assessment of fatigue and sleep quality showed 
the largest separation between patients and controls (Fig. S5), much more so than any of the molecular and 
non-molecular measurements we made. This is likely because ME/CFS is diagnosed based on self-reported 
symptoms of fatigue including unrefreshing sleep. To more objectively and quantitatively assess symptoms 
related to ME/CFS, we measured patterns of sleep and physical activity using actigraphy37. Among the four main 
measurements from actigraphy, we found the largest difference in number of awakening during total sleep and 
total sleep time within an average 24 h period (Fig. S5). To quantify cognitive performance, we administered a 
mathematical test consisting of simple addition of two numbers. We observed a difference in average time to 
solve math problem but not for percent of correct answer (Fig. S5). We therefore selected these measurements of 
fatigue-related parameters in our subsequent correlation analysis.

Correlation network.  To understand the relationships between fatigue-related measurements and our 
26 molecular markers, we performed Spearman rank correlation analysis (Fig. 4). We uncovered some of the 

Figure 1.   Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Schematics of 
the datasets collected from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients and healthy 
controls.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19933  | https://doi.org/10.1038/s41598-020-77105-y

www.nature.com/scientificreports/

expected correlations including positive correlation between triglyceride (clinical laboratory test) and LDL 
(metabolomics), negative correlation between HDL and LDL, and positive correlation between HDL from 
clinical laboratory test and HDL from 1H-NMR metabolomics. We also identified strong positive correlation 
between Coprobacillus and Eggerthella from the microbiome platform. Therefore, a handful of our 26 molecular 
markers captured overlapping information rather than 26 distinct sets of information. We also observed strong 
positive correlations between questionnaire-based scores (Chalder, PSQIG) and measures of sleep (total sleep 
awakening, total sleep time) and cognitive performance (time to solve math problem) (Fig. 4). This suggested 

Figure 2.   Molecular markers of ME/CFS. Top 26 molecular markers of myalgic encephalomyelitis/
chronic fatigue syndrome (ME/CFS) across five platforms (from the top: clinical lab tests, metabolome, 
immunophenotype, transcriptome, microbiome). For transcriptome data, gene sets with significant difference 
between ME/CFS patients and healthy controls (HC) (Fig. S4) are represented with geometric mean of the gene 
set expression level for illustrative purpose. P values were determined by two-tailed Mann–Whitney U-test. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. P-values were corrected for multiple testing using Benjamini–
Hochberg false discovery rate (FDR) method after FDR adjustment at 0.20. P values for transcriptome data 
using Gene Set Enrichment Analysis (GSEA) are indicated in Fig. S4. The number of ME/CFS patients and 
controls for each platform are summarized in Fig. S1.
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that self-assessment of fatigue and sleep quality were reflected in quantitative measures of sleep and cognitive 
performance using actigraphy and simple math tests.

Next, we asked which of the 26 molecular markers more closely correlated with measurements of sleep and 
cognitive performance (Fig. 5A). These two measures represent more objective assessment of symptoms associ-
ated with ME/CFS compared to questionnaire-based measures of sleep quality and psychological fatigue. We 
found that lipoprotein levels most closely correlated with number of awakening during sleep while monocyte 
number most closely correlated with the length of sleep (Fig. 5B). These results suggested that different molecular 
markers were associated with different aspects of sleep. Prior studies have shown that sleep apnea or insufficient 
sleep were associated with decreased HDL level49,50 suggesting that lipoprotein levels may reflect patterns of sleep 
disruption. We also observed strong negative correlation between Faecalibacterium abundance and number of 
awakening during sleep (Fig. 5B). For cognitive performance (time to solve math problems), a different set of 
markers showed strong correlation compared to those correlated with sleep. These included Coprobacillus and 
gene set from prior chronic fatigue syndrome study. These results suggested that lipoprotein levels, monocyte 
number, and Faecalibacterium abundance may reflect sleep-related changes in ME/CFS patients.

Medication and duration of illness.  We examined whether any of the 26 molecular markers in our study 
were affected by the use of medications. Among the ME/CFS patients with information on medication, those 
taking antidepressants (n = 9) showed no significant difference in 25 of the molecular markers when compared 
to patients not taking antidepressants (n = 36) (Mann–Whitney U-test; P > 0.05). The exception was a gene set 
that was previously elevated in chronic fatigue syndrome (CFS) patients (Fig. S6A). ME/CFS patients on antide-
pressants, when compared to patients not on antidepressants, showed higher expression level of the CFS marker 
gene set. Given that the original study in which the gene set was derived allowed patients to continue taking 
their prescribed medication45, the gene set may reflect the use of antidepressants among ME/CFS patients rather 
than the changes resulting from the syndrome itself. Antidepressant use did not affect sleep parameters or cog-
nitive performance (Fig. S6B). We also found that ME/CFS patients on sleeping pill (n = 9) showed lower total 
cholesterol level compared to patients not taking sleeping pill (n = 36) (Fig. S6C). Interestingly, the actigraphy 
measurement of sleep did not differ with the use of sleeping pill suggesting that the medication did not improve 
abnormal sleep but only restored total cholesterol level to healthy control level. We did not observe differences 
in the remaining 25 molecular markers based on the use of sleeping pill. We note that our analysis of medication 
use is limited as the number of patients on each medication was few.

To assess the diagnostic potential of our molecular markers, we examined whether our 26 molecular mark-
ers still showed significant difference during short-duration of ME/CFS. We separated patients into two groups 
(≤ 3 years, > 3 years) similar to prior biomarker study of ME/CFS18. We found that lipoprotein markers as well 

Figure 3.   Combinatorial analysis of molecular markers. Combination of top 26 molecular markers for 
distinguishing myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients from healthy controls 
(HC). (A) Partial least squares discriminant analysis (PLS-DA) of top 26 molecular markers. (B) Variable 
importance of projection (VIP) scores for distinguishing ME/CFS patients from HC based on component 1. 
ME/CFS patients (n = 22) and HC (n = 29) with complete molecular profiling across five platforms (clinical lab 
tests, metabolome, immunophenotype, transcriptome, microbiome) were used for the analysis.
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as sleep and cognitive measurements were already different during short-duration (≤ 3 years) of ME/CFS and 
were still different during long-duration (> 3 years) of illness (Fig. S7). We also found that microbiome changes 
were much more prominent during the short-duration of illness (≤ 3 years) compared to long-duration of illness 
(> 3 years) suggesting that microbiome markers may reflect temporary changes during the early phase of ME/
CFS (Fig. S7). For monocyte number, we did not observe significant changes during the short-duration of illness 
(≤ 3 years). Overall, we found that sleep, lipoprotein, and microbiome changes occurred during the early course 
of illness, an important criterion for future biomarker application.

Discussion
To gain insights into molecular markers that best distinguish myalgic encephalomyelitis/chronic fatigue syn-
drome (ME/CFS) patients from healthy controls, we performed deep phenotyping of cases and controls using 
five molecular platforms, sleep and cognitive measurements, and questionnaire-based assessment of fatigue. Our 
analysis identified 26 potential molecular markers of ME/CFS. Among these, monocyte number, microbiome 
profiles, and lipoprotein profiles provided the highest information value in distinguishing patients from controls. 
Although these 26 markers could not completely separate patients from controls, a subset of these molecular 
platforms such as lipoprotein profiles and microbiome analysis, showed difference even during the early phases 
of illness (≤ 3 years). These platforms can be extended to a larger cohort with longitudinal design to assess the 
diagnostic performance of markers. Given that lipoprotein profiling is part of a routine clinical test and that 

Figure 4.   Correlation between top markers of ME/CFS. Blue and red colors indicate Spearman rank correlation 
value between a pair of markers. Stars (*) denote Spearman rank P-value of P < 0.05 after adjusting for multiple 
hypothesis testing using Benjamini–Hochberg false discovery rate (FDR) method set at FDR of 0.05. Circles 
denote type of data and molecular platform used. Correlation values were clustered using average linkage 
hierarchical clustering. The number of samples available for a given pair of measurement platforms, as described 
in Fig. S1, were used for the analysis.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19933  | https://doi.org/10.1038/s41598-020-77105-y

www.nature.com/scientificreports/

microbiome analysis is starting to be offered as a diagnostics service, these two platforms may be a promising 
diagnostic tool for ME/CFS.

One of the key advantages of deep phenotyping is that we can now start to uncover relationships between 
markers across platforms to gain insights into the syndrome. We found that self-assessment of fatigue (Chalder 
fatigue scale) was most closely correlated with more objective measurements of sleep (actigraphy) and cognitive 
performance (simple mathematical test). Interestingly, some of our top markers including elevated LDL were 
more closely correlated with sleep abnormality (sleep awakening) compared to cognitive performance. Previous 
study has shown that statin therapy, which is used to lower LDL level, is associated with decreased number of 
awakening during sleep51 suggesting that there may be a mechanistic link between sleep and lipoprotein pro-
file. With unrefreshing sleep being one of the symptoms and major complaints of ME/CFS patients, molecular 
markers that reflect sleep or altered circadian rhythm52 may serve as additional markers of ME/CFS. One note of 
caution is that the mathematical test in our study is an unvalidated tool and future study should include validated 
neuropsychological tools in correlating molecular changes to cognitive measurements. 

In relation to past studies, we uncovered several molecular markers that were previously reported in ME/CFS 
patients. These include decreased uric acid12, HDL43, and Faecalibacterium46–48, and increased triglyceride13,43, 
monocyte number21, and Coprobacillus46,48. However, there were also markers that were not identified in our 
study. Aside from the differences in cohort, these differences could result from the differences in the technologi-
cal platforms and source of biological samples used in our study. One main difference is we used whole blood 
instead of PBMC for transcriptome analysis which could elevate the contribution of non-immune cell, mainly 
red blood cells, to the gene expression profile. Another difference is we used 1H-NMR for metabolomics while 
many other studies use GC–MS, LC–MS, or CE–MS method. More studies are needed to assess the impact of 
technological platforms in detecting some of these reported markers.

One of the main limitations of our study is that some of the markers we identified reflect comorbidity asso-
ciated with ME/CFS rather than ME/CFS itself. In fact, several of the markers identified in our study are also 
markers of major depressive disorder including decreased uric acid, urea nitrogen, and total bilirubin53, and 
increased monocyte number54. Given that patients suffering from ME/CFS can sometimes develop depression as 
a result of unresolved debilitating fatigue55, it is possible that some of the markers captured comorbid depression. 

Figure 5.   Correlation between measured phenotypes and molecular markers of ME/CFS. (A) Spearman rank 
correlation between three measures related to fatigue (total sleep awakening, total sleep time, time to solve 
math problem) and molecular markers. Spearman rank correlation with P < 0.05 are indicated with red (positive 
correlation) or blue line (negative correlation). (B) Pairwise plot of sleep parameters versus molecular markers. 
Solid lines are regression lines and dotted lines are 95% confidence interval for the slope. Spearman rank 
correlation value (r) and corresponding P values are indicated. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
P-values were corrected for multiple testing using Benjamini–Hochberg false discovery rate (FDR) method 
after FDR adjustment at 0.20. The number of samples available for a given pair of measurement platforms, as 
described in Fig. S1, were used for the analysis.
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However, molecular markers that were different during the early phase of illness (≤ 3 years), such as decreased 
HDL, were not part of markers previously identified in major depressive disorder. HDL is elevated in patients with 
major depressive disorder53 while it is decreased in our ME/CFS cohort. It is important to note that depression 
which results from ME/CFS does not resolve with antidepressant fluoxetine and may represent a different form 
of depression than those of major depressive disorder56. Since the ME/CFS patients who joined the present study 
did not show a typical depression, future study of these markers in a larger cohort should include a considerable 
number of patients with comorbid depression to assess the specificity of our markers for ME/CFS.

Another important comorbidity to note regarding our study is that ME/CFS is often accompanied by irritable 
bowel syndrome, which alters the composition of gut microbiota. Although we observed changes in the microbi-
ome profile during the early phase of illness (≤ 3 years), a previous study found that a decrease in Faecalibacterium 
was a top marker for ME/CFS with irritable bowel syndrome while a decrease in Bacteroides vulgatus was a top 
biomarker for ME/CFS without irritable bowel syndrome48. Therefore, several of the markers from our micro-
biome analysis may also reflect irritable bowel syndrome comorbidity. Future study of our microbiome markers 
should include a larger cohort with assessment of irritable bowel syndrome.

ME/CFS represents a collection of heterogeneous illness with diagnostic criteria meant to capture patients 
at the extreme end of the fatiguing illness5,23. Our deep phenotyping of ME/CFS in Japanese cohort revealed 
several molecular markers of illness that strongly correlated with sleep abnormality. Given that ME/CFS spans 
multiple symptoms1,2,23, some of the molecular markers identified in our study may reflect a subset of symptoms 
that were more prevalent in our cohort. This could influence whether potential biomarkers identified in our 
cohort can be applied to another cohort for ME/CFS. Although it remains unclear whether sleep abnormality 
is an over-represented symptom in our Japanese cohort compared to other cohorts, these molecular markers 
can still serve as measures of sleep-related changes in ME/CFS patients. Patients positive for these sleep-related 
molecular markers can then be recommended for more extensive analysis of sleep using actigraphy or polysom-
nography to objectively assess symptom related to unrefreshing sleep. In addition, with our extensive knowledge 
through PET molecular imaging and neurofunctional imaging23–34, the functional and molecular abnormality in 
the brain could be connected with these peripheral molecular markers. In our on-going studies, we have started 
the correlation studies among brain dysfunction, neuroinflammation detected by PET, and these molecular 
markers. Future studies that quantitatively measure symptoms related to fatigue and functional deterioration, 
including cognitive dysfunction and unrefreshing sleep, can help clarify the relationship between newly identified 
molecular markers and ME/CFS. These in turn could help untangle heterogeneity inherent in ME/CFS, which 
could aid in tailoring potential therapeutics for patient subgroups.

Materials and methods
Study design.  Study subjects included 48 myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) 
patients and 52 healthy controls, recruited at the Osaka City University Hospital Fatigue Clinical Center (Osaka, 
Japan). The study was approved by the ethics committees of Osaka City University Graduate School of Medicine 
(Approval No. 1498, 2151, 1499), and of RIKEN (Approval No. KOBE-IRB-11-13, YOKOHAMA-IRB-H24-17), 
and was conducted in accordance with the Declaration of Helsinki. All subjects, ME/CFS patients (n = 48) and 
healthy individuals (n = 52), provided written informed consent for participation in the study before enrolment. 
Healthy individuals were confirmed not to have abnormal results on any major clinical laboratory tests (hemo-
globin, CRP, albumin, triglycerides, glucose, AST, ALT, or cholesterol, etc.), not to be in the BMI range of ≥ 30 
or < 17, not to have subjective sleep problems, problems in daily life by fatigue, or be a shift worker. ME/CFS 
patients who visited the outpatient clinic of Osaka City University Hospital were randomly enrolled into the 
study. ME/CFS patients were diagnosed based on meeting both the 1994 Center for Disease Control clinical cri-
teria (Fukuda criteria)1 and the International Consensus Criteria2 by the specialists at the Osaka City University 
Hospital. All patients also fulfilled the diagnostic criteria of Systemic Exertion Intolerance Disease (SEID, 29). 
All subjects were non-smokers. Degree of physical and psychological fatigue were assessed using Chalder fatigue 
scale35. The quality of sleep was assessed using Pittsburgh Sleep Quality Index Global (PSQIG) score36. Chalder 
fatigue scale and PSQIG were not used as part of the diagnosis process.

Sample collection and processing.  Case and control subjects were fasted after 9:00 p.m. of the last night 
of the clinical test day (for at least 12 h) and peripheral blood was drawn between 9:00 am and 12:00 p.m. and 
collected into EDTA blood collection tubes. Blood samples were analyzed on automatic biochemical analyzer for 
biochemical parameters listed in Table S1. Whole blood was used for transcriptome analysis using Cap Analy-
sis of Gene Expression (CAGE). For FACS and metabolome analysis, 5 mL of blood was diluted with 30 mL 
of Dulbecco′s Phosphate Buffered Saline (D-PBS) in 50 mL Falcon tube and 15 mL of Ficoll Paque PLUS (GE 
Healthcare) were gently added, then centrifuged for 35 min at 400 × g at 20 °C. Top layer (plasma) was trans-
ferred to a new tube for metabolomics. For immunophenotype analysis, the middle layer containing lympho-
cytes and monocytes were transferred to a new 50 mL Falcon tube, filled up to 50 mL with D-PBS, centrifuged 
at 300 × g for 10 min at 20 °C. Supernatant was removed and the tube was refilled with D-PBS and centrifuga-
tion step was repeated. The resulting pellet was resuspended with 1 mL of 2% fetal calf serum (FCS)/D-PBS for 
antibody staining.

Actigraphy.  Activity and sleep patterns were monitored using actigraphy method57. Activity was moni-
tored in ME/CFS patients for seven days and healthy controls for three days by having subjects wear Acti-
Graph (Ambulatory Monitoring, Inc., USA) on non-dominant hand. The actigraph software using Cole–Kripke 
algorithm58 was used to calculate number of awakening during total sleep, total sleep time, total sleep efficiency, 
and total activity time within an average 24 h period.
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Simple mathematical tests.  Simple mathematical tasks consisting of addition of two single digit num-
bers were administered to case and control subjects for 5 min. Percentage of total correct answers and average 
time to solve mathematical problems were measured.

Immunophenotype.  To 50 μL of lymphocytes and monocytes in 2% FCS/D-PBS, antibodies (Table S4) 
were added at the indicated volume for 30 min at 4 °C. 1 mL of 2% FCS/D-PBS were added to stained cells, 
centrifuged at 1200 rpm for 5 min at 4 °C, washed with 2% FCS/D-PBS twice, and resuspended in 300 μL of 2% 
FCS/D-PBS, and analyzed using FACS Aria III (BD Bioscience). The gating strategy is shown in Fig. S8. Fraction 
of cells within each gating scheme was used for subsequent analysis.

Transcriptome analysis.  RNA from whole blood was obtained using Ribopure blood kit (Ambion). CAGE 
libraries were prepared as described previously59. CAGE libraries were sequenced with the 50 bases single-end 
mode on the Illumina HiSeq 2500 platform according to the manufacturer’s instructions (Illumina). The raw 
reads were processed in MOIRAI pipeline (Version 20121120)60 system as follows: ligation adaptor sequences 
were trimmed; rRNA-derived reads and a base called ’N’ were discarded by rRNAdust program, the processed 
reads were aligned to human reference genome (hg19) using BWA (Version: 0.7.10-r789)61, poorly mapped 
reads (mapping quality < 20) were discarded using SAMtools (Version: 0.1.18). The robust TSS sets identified in 
the FANTOM5 project were used as TSS reference, and the count of 5ʹ-end of remaining CAGE reads mapped 
on TSS regions were used as raw signal of promoter expression. The expression signals were normalized by 
relative log expression method in the edgeR package62. Promoter expression with at least 1 cpm for all subjects 
were selected for subsequent analysis. Gene set enrichment analysis was performed as described before39 using 
gene set annotation from curated pathways (v7.0: KEGG, BioCarta, Reactome). To obtain list of genes that were 
differentially expressed in previous studies of ME/CFS, we obtained gene list from publication8,41, or obtained 
dataset from NCBI GEO (GSE98139, GSE16059, GSE14577)9,40,42. For the three datasets from NCBI GEO, we 
filtered out genes that did not meet our filtering criteria. The criteria were normalized count of > 0 for GSE98139, 
expression value of > 6.6 (corresponding to Affymetrix expression value of 100) for GSE16059, and expression 
value of > 100 for GSE14577 for all samples within the dataset. Signal-to-noise ratios were calculated between 
cases and controls and top 100 up- and down-regulated genes were obtained as gene set. For GSEA, samples were 
permuted 1000 times using signal-to-noise ratio ranking to estimate P-value. For genes with multiple promot-
ers, promoter with highest expression value was selected so that one gene corresponded to one gene expression 
(promoter) data. For correlation analysis, geometric mean for genes assigned as “core enrichment” from GSEA 
were calculated to obtain a single numerical representation of gene expression levels within a gene set.

Metabolome analysis.  For metabolome analysis, 50 μL of deuterium oxide containing 5 mM DSS-d6 ref-
erence material (Wako) was added to 450 μL of plasma. Prepared samples were measured on an NMR spec-
trometer (Bruker Avance II 700; Bruker Biospin) at 298 K and 1H-NMR was measured using a Bruker standard 
program (noesypr1d) with 32,768 data points, 32 scans, 4 dummy scans, a 16-ppm spectral width, and 2 s relaxa-
tion delay as described63. Annotation of signals were made with two-dimensional J-resolved NMR measurement 
using Bruker standard program (jresgpprgf) with 32 data points for F1 and 16,384 data points for F2, 16 scans, 
16 dummy scans, a 50-Hz spectral width for F1, a 18-ppm spectral width for F2, and a 2  s relaxation delay 
as described64. For two-dimensional J-resolved NMR measurements, intensity values were normalized to total 
intensity, both across subjects and metabolites. Signals were annotated with SpinCouple program65 with refer-
ence to the Human Metabolome Database66. For annotation of lipoproteins, the diffusion-edited pulse program 
(ledbpgppr2s1d) was conducted with 66,560 data points, 64 scans, 4 dummy scans, a 16-ppm spectral width, and 
1 s relaxation delay. Then the diffusion-edited spectra were divided into 30 fractions in the –CH3 regions67 and 
fraction corresponding to HDL was assigned based on correlation to the clinical laboratory-based test result of 
HDL value using peak assignment in Table S3.

Fecal microbiome analysis.  Stool specimens were collected and sent to Osaka City University Hospital 
from the patients and healthy volunteers and stored at − 20 °C until the transfer of all fecal samples to RIKEN 
Yokohama Institute. DNA extraction, 16S rRNA sequencing, and analysis were performed as described before68. 
Freeze-dried fecal samples were suspended in 10% sodium dodecyl sulfate, 10 mM Tris–HCl, and 1 mM EDTA 
(pH 8.0), then disrupted with 0.1-mm zirconia/silica beads (BioSpec Products) by shaking at 1500  rpm for 
10 min. After centrifugation, bacterial DNA was purified using 25:24:1 phenol–chloroform–isoamyl alcohol and 
precipitated by ethanol and sodium acetate. The resulting DNA was treated with RNase A and precipitated by 
polyethylene glycol. The V1–V2 variable region of the 16S rRNA was PCR amplified using 27Fmod-338R primer 
pairs for 22 cycles, indexed using Nextera XT index primers, and sequenced on MiSeq (Illumina). 16S rRNA 
sequencing data were processed using QIIME software package69. An operational taxonomic unit (OTU) was 
defined at 97% similarity. OTU relative abundance below 0.05% were filtered to remove noise. OTU taxonomy 
was assigned based on comparison to Greengenes Database using RDP classifier with confidence level set at 
0.570.

Statistical analysis.  Differences between ME/CFS patients and healthy controls were analyzed using 
Mann–Whitney U test (GraphPad Prism) and corrected for multiple testing using Benjamini–Hochberg cor-
rection method71. For comparison of three or more sample groups, Kruskal–Wallis test was performed followed 
by Dunn’s multiple comparison post-test (GraphPad Prism). Power calculation was not performed prior to the 
initiation of the study as accepted methods to assess statistical power across multiple omics measurements did 
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not exist at the time. For correlation between markers, Spearman rank correlation were calculated (GraphPad 
Prism) and markers were clustered based on similarity in correlation value using average linkage hierarchical 
clustering. For multi-marker analysis, data were log transformed and normalized by sample median, and auto 
scaled. Separation between ME/CFS patients and healthy controls were visualized with partial least squares dis-
criminant analysis (PLSDA) and importance of markers for separating the two groups were evaluated using vari-
able importance in projection (VIP) score. Multi-marker analysis were performed using MetaboAnalyst 4.072.

Data availability
All data associated with this study are presented in the paper or the Supplementary Information.
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