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Simple Summary: Endometrial cancer (EC) mortality is directly associated with the presence of
poor prognostic factors. Molecular prognostic factors have been identified, but none are used in
clinical practice due to lack of validation studies. This study aims to validate a set of 255 prognostic
biomarkers previously identified in an extensive literature review and explore new prognostic
applications by analyzing them in The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor
Analysis Consortium (CPTAC) databases. A total of 30 biomarkers were validated and associated
to a histological type (n = 15), histological grade (n = 6), FIGO stage (n = 1), molecular classification
(n = 16), overall survival (n = 11), and recurrence-free survival (n = 5). Our results encourage further
studies of understudied biomarkers such as TPX2, and validates already broadly studied biomarkers
such as MSH6, MSH2, or L1CAM, among others. Finally, our results present a significant step to
advance the quest for biomarkers to accurately assess the risk of EC patients.

Abstract: Endometrial cancer (EC) mortality is directly associated with the presence of prognostic
factors. Current stratification systems are not accurate enough to predict the outcome of patients.
Therefore, identifying more accurate prognostic EC biomarkers is crucial. We aimed to validate 255
prognostic biomarkers identified in multiple studies and explore their prognostic application by
analyzing them in TCGA and CPTAC datasets. We analyzed the mRNA and proteomic expression
data to assess the statistical prognostic performance of the 255 proteins. Significant biomarkers related
to overall survival (OS) and recurrence-free survival (RFS) were combined and signatures generated.
A total of 30 biomarkers were associated either to one or more of the following prognostic factors:
histological type (n = 15), histological grade (n = 6), FIGO stage (n = 1), molecular classification
(n = 16), or they were associated to OS (n = 11), and RFS (n = 5). A prognostic signature composed of
11 proteins increased the accuracy to predict OS (AUC = 0.827). The study validates and identifies
new potential applications of 30 proteins as prognostic biomarkers and suggests to further study
under-studied biomarkers such as TPX2, and confirms already used biomarkers such as MSH6,
MSH2, or L1CAM. These results are expected to advance the quest for biomarkers to accurately
assess the risk of EC patients.

Keywords: endometrial cancer; prognostic biomarker; uterine cancer; high-risk; bioinformatics;
CPTAC; TCGA

1. Introduction

Endometrial cancer (EC) is the fourth most common cancer in women in developed
countries and the sixth in terms of mortality [1]. Unlike other cancers, in the last years EC
has been rising in both incidence and associated mortality. By 2040, incidence is expected
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to increase 23% and mortality will rise by 33% worldwide [2]. Although most women
diagnosed with EC are in early-stage disease and have a favorable outcome, the mortality
increases dramatically for women with recurrent or advanced disease and for women
diagnosed with a clinically aggressive tumor [3].

To manage the diagnosis, treatment, and follow-up of EC patients, multidisciplinary
evidence-based guidelines on selected clinically relevant questions have been developed
and updated over the years by the European Society for Medical Oncology (ESMO), the
European Society of Gynaecological Oncology (ESGO), the European Society for Radiother-
apy and Oncology (ESTRO) and the European Society of Pathology (ESP) consortiums [3,4].
These guidelines classify EC in different risk groups based on prognostic factors, including
histological subtype (endometrioid or non-endometrioid), tumor grade (low, intermediate
or high grade), depth of myometrial invasion, cervical involvement, tumor size, lympho-
vascular space invasion (LVSI), lymph node status (LNS), tumor spread, and recently, based
on molecular classification, which subdivides EC in four molecular groups: POLE ultramu-
tated, microsatellite stability instable (MSI) hypermutated, copy-number low (CN-LOW)
(microsatellite stable, MSS), and copy-number high (CN-HIGH) (serous-like) [4,5].

These prognostic factors should be determined at the moment of diagnosis since they
will guide an optimal surgical treatment, which is the cornerstone treatment for EC; and after
surgery, to provide the final diagnosis, stratification of the tumor, and guide the adjuvant
treatment [3,4]. While prognostic factors are accurately determined by the histopathological
examination of the tumor specimen after surgery, they are often inaccurately determined at
early steps of the diagnostic process and need to benefit from multiple approaches. Specifically,
histological subtype and tumor grade are assessed through the histopathological examina-
tion of an endometrial biopsy, while depth of myometrial invasion, tumor size, cervical
involvement, tumor spread, and LNS are determined though imaging techniques.

The histological diagnosis is determined through the histopathological examination of
an endometrial biopsy, preferably obtained by aspiration [4]. It should be reviewed by an
expert pathologist to improve the accuracy of histological assessment and the reliability of
tumor grading. Although conventional pathological analysis is critical for tumor stratification,
it suffers from great interobserver variation [4]. A recent meta-analysis showed discrepancies
in 33% of cases between preoperative and postoperative grading. Clinically relevant down-
grading was reported in 26% and upgrading in 8% of the patient’s samples [6]. Additionally,
interobserver variability also depends on the sampling method. Diagnosis performed by
aspiration reached 73% agreement, while hysteroscopic biopsies had a significantly higher
agreement (89%) in comparison to dilatation and curettage (70%) [6]. Importantly, the subjec-
tive pathological analysis may result in either undertreatment or overtreatment of EC patients,
which may lead to comorbidities or even life-threatening risks.

Multiple imaging techniques are used to determine prognostic factors associated with
the stage of the disease. Transvaginal ultrasonography (TVUS), or magnetic resonance
imaging (MRI) will assess myometrial invasion, tumor size, and cervical invasion, while
computed tomography (CT), MRI or positron emission tomography (PET-CT) will evaluate
the lymph node status. However, these techniques are not sensitive enough, and they are
not able to determine LVSI, which is a strong predictor of nodal metastasis, recurrence,
and cancer-specific death [7,8]. Thus, LVSI is not studied at the time of diagnosis although
being an important prognostic factor to predict the outcome of the patients.

Lastly, the emerging molecular classification needs to be determined for the risk as-
sessment of EC patients. To simplify the whole molecular classification, the TransPORTEC
group proposed a surrogate classification which is highly effective for most of EC cases and
is based on the assessment of POLE sequencing, immunohistochemistry of mismatch repair
proteins (MMR-IHQ), and immunohistochemistry of the p53 (IHQ-p53) protein to classify EC
patients [9–11]. Nevertheless, this approach is not broadly implemented in most hospitals due
to methodological limitations and controversies for the evaluation of the test results [12–14].

Considering this inaccurate scenario for determining the risk classification of EC,
an important part of EC research is directed to the hunt for biomarkers, particularly to
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provide accurate information at the time of diagnosis. In Coll-de la Rubia E et al., 2020 [15],
we reviewed 2507 publications ranging from 1991 to February 2020 and compiled a total
number of 255 proteins described as prognostic EC biomarkers. Unfortunately, the vast
majority of these biomarkers have not been introduced in clinical practice, probably due to
a lack of validation in independent studies, reliability or existing evidence.

In this publication we aim to validate and identify new prognostic applications for
the 255 prognostic biomarkers described in Coll-de la Rubia E et al., 2020 [15] by performing
a statistical analysis using the accessible datasets of TCGA and CPTAC studies [5,16].
Validated proteins were combined to achieve higher accuracy to predict patient’s outcome,
and their biological significance was investigated.

2. Materials and Methods
2.1. Data Source

Expression data profiles of EC patients were collected from the TCGA database
though cBioPortal (https://www.cbioportal.org/, accessed on 27 June 2020). The RNA-Seq
expression data of 333 EC patients from the Uterine Corpus endometrial Carcinoma (TCGA,
Nature 2013) study (TCGA-RNAseq) was used. CPTAC—Uterine Corpus Endometrial
Carcinoma data was obtained from LinkedOmics database (http://www.linkedomics.
org/login.php, accessed on 10 June 2020). RNA-Seq (CPTAC-RNAseq) and proteomic
(CPTAC-proteome) data corresponding to 95 EC patients was used for the analysis. Table 1
details the clinical information of the EC patients used for the analysis of this study.

Table 1. Clinical, pathological, and molecular information of the patients. Detailed clinical, patholog-
ical, and molecular information of the patients included in this study.

Characteristics TCGA RNA-Seq (n = 333) CPTAC RNA-Seq + Proteome
(n = 95)

Age 1

Mean 63.23 ± 10.91 63.19 ± 9.78
Maximum 90 86
Minimum 33 38

Histological type
Endometrioid 271 83

Serous 52 12
Mixed 10 0

Grade
Grade 1 79 37
Grade 2 90 38
Grade 3 164 8

FIGO stage 2

I 226 71
II 19 8
III 70 13
IV 16 3

NA 2 0

Molecular Classification 3

POLE 31 7
MSI 92 25

CN-low 110 43
CN-high 78 20

Overall Survival
0: Living 282 36

1: Deceased 51 7
1 Age: means and standard deviations are shown. 2 FIGO stage: Federation of Gynecologists and Obstetricians
for staging. 3 POLE: POLE ultramutated; MSI: microsatellite stable instable hypermutated; CN-low: copy number
low, endometrioid-like; CN-high: copy number high, serous-like.

https://www.cbioportal.org/
http://www.linkedomics.org/login.php
http://www.linkedomics.org/login.php
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2.2. Data Processing and Identification of Differentially Expressed Genes (DEGs) and
Proteins (DEPs)

The 255 proteins identified in Coll-de la Rubia E et al., 2020 [15] were subtracted from
the three datasets of expression data, which were separately analyzed using the limma
and reportROC packages of R software. The criteria of false discovery rate (FDR) adjusted
p-value < 0.25, | logFC | > 1, and Area Under the ROC Curve (AUC) > 0.75 were applied
to screen the DEGs and DEPs (DEG/Ps). The DEG/Ps that were overlapping in the
TCGA-RNAseq and [CPTAC-RNAseq OR CPTAC-proteome] EC datasets were named as
validated biomarkers.

2.3. Survival Analysis

We used the TCGA dataset to identify the potential genes with an impact on OS and
RFS. DEGs with FDR < 0.05 and AUC > 0.6 at time points of 12, 24, 36 or 48 months were
subsequently used to construct the Cox proportional hazards regression model to predict
OS and RFS.

2.4. Statistical Analysis

Comparisons between histological types (endometrioid EC vs. non-endometrioid EC)
and histological grade (low-grade -G1 and G2- EC vs. high-grade -G3- EC) were performed
using T Test. Tukey’s honest significance test was used to perform multiple comparisons
for FIGO stage (I vs. II vs. III vs. IV) and for molecular classification (POLE vs. MSI vs.
CN-LOW vs. CN-HIGH). An AUC value for each comparison was also calculated. The
univariate Cox proportional hazards regression analyses were completed using the survival
package of R software. AUC values were calculated using survivalROC package of R for
OS and RFS at time points 12, 24, 36 and 48 months. Risk scores for each patient were
calculated as follows:

Risc score =
n

∑
i = 1

expi ∗ coe fi

where “n” is the number of related prognostic genes, “expi” is the expression value of the
gene i, and “coefi” is the log hazard ratio (LHR) in univariate Cox regression analysis [17].
Then, the median risk value was used to divide the patients into high and low-risk groups,
while the Kaplan–Meier curve was applied to assess the survival difference between the
two groups using the log-rank test. Receiver operating characteristic (ROC) curves for
assessing the sensitivity and specificity of the prognostic signatures was generated using
the survivalROC package implemented in R.

2.5. Functional Analysis of DEG/Ps, Interactions, and Tractability Information

We used the Panther database to identify the biological processes and pathways asso-
ciated with the DEGs. A FDR of < 0.05 was considered as statistically significant [18]. We
reported the subcellular location of each protein using UNIPROT [19]. The potential rela-
tionship between DEGs encoding proteins was analyzed using the STRING database [20].
Finally, to assess the current available drugs against our DEG/Ps we used the Open Targets
Platform [21].

3. Results
3.1. Study Workflow

We recently used an exhaustive literature revision to compile a total number of 255 pro-
teins as potential prognostic protein biomarkers [15]. These were defined as proteins which
have been associated with one or more known clinical prognostic EC factors, including
histological subtype, tumor grade, depth of myometrial invasion, cervical involvement,
tumor size, LVSI, LNS, tumor spread; as well as the molecular classification, recurrence
and/or survival [15]. Most of these biomarkers have not been validated in independent
studies, jeopardizing their implementation in the clinical practice. To validate the poten-
tial of those proteins as EC prognostic biomarkers and unveil novel potential prognostic
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associations, we performed an in silico analysis of those proteins in 428 EC patients be-
longing to the CPTAC and TCGA studies. The workflow of this study is depictured in
Figure 1. Briefly, the 255 biomarkers were assessed in the RNA-Seq data of the TCGA
and CPTAC datasets, in addition to the proteomic data of the CPTAC dataset. The most
relevant prognostic factors, which are histological type, histological grade, FIGO stage, and
molecular classification, were analyzed using a differential expression analysis and the
calculation of the area under the ROC curve (AUC) values. Additionally, OS and RFS were
assessed using a Cox analysis. Statistically significant biomarkers were identified for each
parameter and dataset, and those that appeared significant in at least two datasets were
considered as validated biomarkers. Among the 255 potential prognostic biomarkers, only
30 biomarkers were validated, and those were further studied using functional analysis
and drug tractability studies.

Literature. Prognostic 
proteomic biomarkers

255 biomarkers

DEG/Ps lists

Coll-de la Rubia E et al., J Clin Med, 2020

TCGARNAseq

Set Up

CPTACRNAseq

CPTACProt

Differential Expression Analysis
AUC calculation

FDR < 0.25; | logFC | > 2; AUC > 0.75

• Prognostic factors:
• Histological type
• Histological grade
• FIGO stage
• Molecular classification

Validated in two different 
cohorts of patients: 

TCGA- RNAseq
AND 

[CPTAC-Seq OR CPTAC-Prot]

Functional Analysis
Drug tractability

• Overall Survival
• Recurrence Free Survival

Cox
AUC calculation

FDR < 0.05; 
AUC > 0.6 (12, 24, 36 or 48 months)

DEG/Ps lists
14

TCGA- RNAseq

24

Models and protein 
panels of biomarkers

30

Figure 1. Workflow of the analysis. The 255 biomarkers compiled in Coll-de la Rubia E et al. 2020 [15] were assessed in two
independent cohorts of patients from the TCGA and CPTAC studies. RNA-Seq data from both cohorts and proteomic
data from the CPTAC cohort was used. Different prognostic factors were analyzed (histological type, histological grade,
FIGO stage, Molecular classification), as well as overall survival and recurrence free survival. Finally, 30 biomarkers were
identified as promising for the stratification of EC tumors.

Among the 30 validated biomarkers, we encountered proteins that were significant
for one or multiple prognostic parameters (Figure 2). TPX2 is protein associated with a
major number of prognostic parameters, including histological type and grade, molecular
classification, and OS and RFS. This protein was previously studied in Jiang T et al., 2018
where it was associated with worse prognosis [22], and recently its prognostic value in EC
was further demonstrated [23,24].
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Figure 2. Summary for the 30 validated biomarkers in the analysis. Prognostic factors or prognostic value described in Coll-
de la Rubia E et al., 2020 for each of these biomarkers [15] are highlighted in grey. Additionally, the specific prognostic factor
or prognostic value validated in our analysis are indicated for each protein. The color green represents prognostic factors
found in both: literature revision and statistical analysis, whereas the color blue represents new prognostic features not
described before in literature. HT: histological type; HG: histological grade; FIGO: FIGO stage; MC: molecular classification
defined by The Cancer Genome Atlas Network; OS: overall survival; RFS: recurrence-free survival.

3.2. Validated Prognostic Biomarkers in EC

Regarding histological subtype, a total of 20, 36 and 18 genes/proteins were differ-
entially expressed between endometrioid (EEC) and non-endometrioid (non-EEC) his-
tologies in the TCGA-RNAseq, CPTAC-RNAseq, and CPTAC-prot datasets, respectively
(Figure 3A). However, only 15 were validated in at least two datasets (Figure 3B–D). From
those, eight biomarkers were previously described—CCNE1, CDKN2A, ERBB2, ESR1,
L1CAM, PAX8, PIGR, VIM—and seven are newly associated to the histological subtype:
BUB1, CDC20, CDKN1A, HMGA1, S100A1, TPX2, UCHL1. The most confident biomarker
proteins (present in the three datasets) were ERBB2, L1CAM, PIGR and TPX2. Among
the non-endometrioid subtypes analyzed in the TCGA dataset, 62 non-EEC cases were
included, 10 cases of which were mixed subtype and 52 serous carcinomas. As seen in
supplementary Figure S1, while some of the biomarkers behaved similarly between the
non-endometrioid histologies, others such as CDC20, CDKN1A, ERBB2, HMGA1, L1CAM
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and PAX8 were expressed in mixed tumors as a mixture between SEC and EEC, similarly
to the nature of these tumors.
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Figure 3. Biomarkers related to histological type and histological grade. (A,E) Table of the proteins that were found
differentially expressed between: (A) endometrioid (EEC) and non-endometrioid (non-EEC), and (E) G1G2 and G3,
respectively, in any of the tested cohorts. Highlighted in yellow, the specific cohort in which that protein was found to be
differentially expressed between histologies and/or grades. Proteins highlighted in blue are those validated in more than
one cohort, and therefore, the ones that we considered as validated biomarkers. (B–D) Boxplots showing the expression
of the 15 validated biomarkers for histological type in each cohort of patients: TCGA RNA-Seq data, CPTAC RNA-Seq
data, and CPTAC proteomic data, respectively. (F–H) Boxplots showing the expression of the six validated biomarkers for
histological grade in each cohort of patients: TCGA RNA-Seq data, CPTAC RNA-Seq data, and CPTAC proteomic data,
respectively. Literature: literature revision from Coll-de la Rubia E et al., 2020 [15]; T_RNAseq: RNA-Seq data of the TCGA’s
cohort; C_RNAseq: RNA-Seq data of the CPTAC’s cohort; C_prot: proteomic data of the CPTAC’s cohort.

Regarding histological grade, six proteins in the TCGA-RNAseq cohort, 21 proteins
in the CPTAC-RNAseq cohort, and seven proteins in the CPTAC-prot cohort showed
different protein abundances between low-grade (grade 1 and grade 2) and high-grade
(grade 3) EC. From those, six proteins were validated in two datasets, and were also
previously described in other studies: ASRGL1, ATAD2, CDC20, and TPX2 (Figure 3E–H).
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Thus, highlighting their importance and the need of further validation of those in further
prospective clinical studies.

Regarding FIGO stage, three and 17 proteins showed differential abundances in the
TCGA and CPTAC cohorts of patients, respectively, 10 of which were previously described
in the literature. However, only PGR was validated in two cohorts of patients and its
performance was limited to the comparison between stage I and II (Figure S2A–D).

Finally, this study permitted identifying a significant number of biomarkers that
allow separating between different groups of the molecular classification. A total of 16
proteins (ATAD2, CAPG, CCNE1, CDKN2A, ESR1, HMGA1, L1CAM, MSH2, MSH6,
PAX8, S100A1, SCGB2A1, TMEFF2, TPX2, TRA2B, UCHL1) were confirmed, i.e., were
statistically significant in at least two datasets (Figure 4, Figure S2E–G). Specifically, L1CAM,
ATAD2, CAPG, CNNE1, CDKN2A, ESR1, HMGA1, MSH2, MSH6, PAX8, S100A, TPX2,
TRA2B, UCHL1, showed capacity to distinguish between CN-LOW vs. CN-HIGH; L1CAM,
CDKN2A, HMGA1, MSH6, TMEFF2, UCHL1 between MSI vs. CN-HIGH; and L1CAM
and CDKN2A to differentiate between POLE vs. CN-HIGH subgroups. Remarkably,
L1CAM seems to be the most informative biomarker to differentiate the CN-HIGH from
the other molecular groups.
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Figure 4. Biomarkers related to the molecular classification. Table of genes/proteins that were found differentially expressed
between any of the molecular subgroups in any of the tested cohorts (in grey). Highlighted in yellow, the specific cohort in
which each protein was found to be differentially expressed between subgroups and indicated the specific comparison. The
numbers indicate the specific comparison where each biomarker was found differential. Proteins highlighted in blue are
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Comparison between POLE mutated vs. microsatellite instability(MSI); 2: Comparison between POLE mutated vs. copy number low
(CN-Low); 3: Comparison between POLE mutated vs. copy number high (CN-High); 4: Comparison between microsatellite instability
(MSI) vs. copy number low (CN-Low); 5: Comparison between microsatellite instability (MSI) vs. copy number high (CN-High); 6:
copy number low (CN-Low) vs. copy number high (CN-High). T_RNAseq: RNA-Seq data of the cohort of the TCGA; C_RNAseq:
RNA-Seq data of the cohort of the CPTAC; C_prot: proteomic data of the cohort of the CPTAC.

3.3. Validated Biomarkers Associated to OS and RFS in EC

Among the 255 biomarkers studied, a total of 11 and 5 genes presented significant
correlation with survival rates and recurrence, respectively (FDR < 0.05 and AUC > 0.6 at
time points of 12, 24, 36, and/or 48 months) in two datasets (Figure 5A,B). In particular,
the genes with significant association to OS were ASRGL1, ESR1, FASN, HDGF, MACC1,
MCM6, MCM7, MSH2, MSH6, PTK2, and TPX2, while the ones associated with RFS
were ATAD2, BUB1, MSH6, TPX2, and TRA2B. Among them, ASRGL1 and ESR1 were
characterized as low risk, while the remaining 14 were categorized as high-risk genes.
An increased prediction for OS and RFS was achieved by the development of biomarker
panels. This was performed by using all the significant genes associated to OS and RFS in
a Cox regression analysis. We used the prognostic signature to calculate a risk score (see
equation in materials and methods) for each patient, while the median value was used to
divide the patients into a high-risk (n = 166), and low-risk groups (n = 167) (Figure 5A,B).
An 11-protein model reached an AUC of 0.827 to predict OS, while a 5-protein model of
RFS reached an AUC of 0.712, both at 48 months’ time.
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Figure 5. Biomarkers related to overall survival and recurrence free survival and model performance. Best performing
individual biomarkers are shown for (A) overall survival (OS) and (B) recurrence free survival (RFS) for a period of 12, 24,
36, and 48 months, respectively. Additionally, models for both were performed. Regarding prediction of OS, a model of 11
proteins was used, (A) while a model of 5 proteins was used to predict RFS (B).

3.4. Biological Significance of the Validated Biomarkers

Gene ontology and KEGG enrichment analysis were used to explore the biological
functions of the initial 255 proteins, as well as the subgroup of the 30 proteins that were
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validated in this study. All of them were significantly associated to the following biological
processes: cellular processes, biological regulation, response to stimulus, signaling, and
metabolic processes. The set of validated genes had an increased association with repro-
ductive processes (Figure 6A). Additionally, we studied the function of those 30 validated
biomarkers. While BUB1, CCNE1, CDC20, CDKN1A, CDKN2A, MCM6, MCM7 and TPX2,
played a role in cell-cycle, proteins such as ERBB2, ESR1, L1CAM, PGR, PIGR, PTK2 are
molecules involved in the activation cascade that enhance the tumor growth. Interestingly,
14 out of the 30 proteins are described as proteins related to the epithelial-mesenchymal
transition (EMT), crucial for the malignant progression [25] (Figure S3).
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Figure 6. Functional analysis. Top 20 represented biological processes (A) and pathways (B) from the 255 proteins reviewed
in the literature (out of 56 pathways) and all the pathways related to the set of validated proteins. Highlighted in green and
yellow are the upregulated and downregulated pathways in relation to the literature, respectively, and in grey, the pathways
represented by the proteins compiled in Coll-de la Rubia E et al., 2020 [15]; (C) Subcellular location of the 30 validated
prognostic biomarkers; (D) String analysis of the 30 biomarkers.

Regarding the pathways analysis, the 255 proteins had a balanced association with
multiple pathways, in contrast to the 30 validated biomarkers having a strong relation
with the gonadotropin-releasing hormone receptor pathway, p53 pathway, p53 pathway
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feedback loops 2, interleukin signaling pathway, cell cycle, and integrin signaling pathway,
as shown in Figure 6B. Additionally, while downregulated validated biomarkers were
associated to interleukin signaling pathway among others, upregulated biomarkers were
associated to other pathways such as cell cycle, cadherin signaling pathway, angiogenesis,
integrin signaling pathway, VEGF signaling pathway, Parkinson disease, CCLR signaling
map, EGF receptor signaling pathway and FAS signaling pathway. The sub-cellular lo-
cation of the validated biomarkers was mainly in the nuclear and cytoplasm component
(Figure 6C). In Figure 6D, the STRING analysis of all validated biomarkers pointed to
MCM6, MCM7, CDC20, CCNE1, MSH2, CDKN1A, CDKN2A, ESR1 and ERBB2 at the core
of the interaction network. These are fundamental proteins involved in the most altered
described pathways triggering EC: ERK, PI3K, WNT, and transcription signaling pathways.
Moreover, these are key pathways widely described in cancer. Thus, to further support our
findings, we explored each of our 30 validated biomarkers and their prognostic association
between other types of cancer in The Human Protein Atlas. All but ESR1, PAX8, PGR,
TMEFF2, were associated with prognosis of breast, cervical, colorectal, head and neck, liver,
lung, melanoma, ovarian, pancreatic, renal, or urothelial cancers. Interestingly, proteins
such as CCNE1, FASN, HDGF, MCM7, PIGR, PTK2, or TRA2B have been described as
having a prognostic relation with some other type of gynecological cancer (breast, cervical
or ovarian cancer) (see Figure S3).

Finally, as part of our literature search, we identified chemical probes that have been
developed and are currently in different phases of clinical trials targeting some of our
validated biomarkers. Specifically, small molecules for different applications have been
developed against AURKB, ERBB2, ESR1, PGR, PLK1, and PTK2, as well as therapeutic
antibodies against ERBB2 and VIM. In addition, current treatment for EC includes medrox-
yprogesterone acetate, hydroxyprogesterone caproate, and megestrol acetate targeting PGR,
for inoperable patients or for advanced or recurrent tumors [26,27]. Their effectiveness
has been reported to increase with the combined use of estrogenic compounds such as
tamoxifen targeting ESR1 [28] (Figure S4).

4. Discussion

EC is the most common malignancy of the female genital tract. Its early diagnosis is
related to good prognosis and overall survival. During the diagnostic process, accurate
identification of prognostic factors is crucial for assessing the preoperative risk of recurrence
for each patient and guide the surgical treatment. Moreover, the assessment of prognostic
factors after surgery is needed for final staging and to guide the adjuvant treatment.
To increase the accuracy and objectivity on the diagnostic process, several studies have
discovered and described prognostic biomarker candidates, but none of them have reached
the clinical practice, mostly because of a lack of independent validation studies. This study
focused on the validation of previously described 255 prognostic EC biomarkers. Here
we performed an in silico validation of those biomarkers in two of the currently available
molecular EC studies, specifically the RNA sequencing data generated by the TCGA and
CPTAC and the proteomic data generated by the CPTAC, which compiled data from a
total of 428 EC patients. The results obtained here are based on those datasets, which
predominately include white and Non-Hispanic or Latino as the main representation for
race and ethnicity, respectively. Additionally, in a significant number of cases race and
ethnicity clinical data was not reported (60 and 154 cases, respectively). Knowing that
EC impacts differently in the overall survival depending on race [1], the discovery and
use of EC biomarkers, as well as other cancer biomarkers, could have a different behavior
depending on race. Thus, we encourage the scientific community to further investigate
and validate their biomarkers on this issue.

Our results revealed 30 biomarkers that show strong evidence for being prognostic EC
biomarkers. Remarkably, only ESR1, PGR, ERBB2, L1CAM, MSH2, and MSH6 have been
broadly studied as EC biomarkers in the literature [15]. This study adds 30 proteins that
may carry important prognostic information in EC and, therefore, should be prioritized
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for external validation studies. Most of the validated biomarkers discriminate histological
subtype and grade, molecular classification, OS and RFS. Regarding FIGO stage, we could
only validate PGR as a good prognostic factor, as described by others [29,30]. Among the
most outstanding biomarkers, the spindle assembly factor TPX2 merits further attention
since its differential expression allowed for the discrimination of all the prognostic factors
studied, except for the FIGO stage. TPX2 is a spindle assembly factor required for normal
assembly of mitotic spindles, which mediates AURKA localization to spindle microtubules.
It has been studied in a broad range of cancers as prognostic marker, including renal, liver,
pancreatic and lung cancers [31]. Importantly, TPX2 was also described as prognostic
biomarker in gynecological cancer such as breast cancer [32] or ovarian cancer [33]. Re-
garding EC, it was identified in two bioinformatics studies [22,34], and it has been further
investigated in vitro to demonstrate its prognostic ability [23,24,35,36].

Another highlight in this study is the identification of biomarkers to classify EC
according to the molecular classification. This classification has acquired an increasing
relevance in this last year since it has been incorporated in the most recent clinical guideline
of EC to improve risk assessment [4]. Despite the existence of a simplified classification,
the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE), this molecular
classification is not implemented in all centers due to the technical complexity of analyzing
the POLE mutations. Our study identified 16 previously described biomarkers with high
discrimination potential regarding the molecular groups. We could accurately separate
the CN-HIGH group from the others by using the L1CAM biomarker. L1CAM was found
frequently expressed in the CN-HIGH group by Kommoss FK et al., 2018 [37] and they also
showed that the L1CAM status was predictive of worse outcome in tumors with no specific
molecular profile. More studies are needed to facilitate the classification of EC patients
within this molecular classification, particularly to identify the POLE group and the groups
classified as multiple classifiers.

Related to OS and RFS, we developed an 11-biomarker signature, including ASRGL1,
ESR1, FASN, HDGF, MACC1, MCM6, MCM7, MSH2, MSH6, PTK2, and TPX2, to predict
OS at 48 months with an AUC = 0.827. This model improved the accuracy for the best
performing biomarker alone at time points 12, 24, and 36 months. Contrary to this, the
model of 5 proteins, including ATAD2, BUB1, MSH6, TPX2, and TRA2B, that predicts RFS
only reached AUC = 0.712 at time point 48 months, and its performance was worse than the
best performing biomarker to predict RFS alone for time points 12 and 24 months. MSH6
and TPX2 were included in both models; thus, they are highly likely to have an impact
on the outcome of the patients. MSH6 is already a well-described protein required to
classify patients in the new molecular classification, specifically the MSI group. TPX2 was
highlighted in our study as a protein related to multiple prognostic factors. These findings
highlight the importance of designing new studies to assess the prognosis of EC patients.
Particularly, the need of studies specifically designed to identify biomarkers that can help
in the prediction of EC recurrence, as currently it is not clear which are the proteins highly
influencing the recurrence of the patients.

Moreover, the proteins validated in this study have been described to have an impor-
tant function in the biology of the tumors, having a role in the key pathways triggering
cancer such as ERK, PI3K, WNT, as well as transcription signaling pathways. To support
our findings, we also explored the prognostic role of these 30 biomarkers in other types
of cancer (such as of breast, cervical, colorectal, head and neck, liver, lung, melanoma,
ovarian, pancreatic, renal, or urothelial cancers), finding association of those with favorable
or unfavorable outcomes of the patients depending on the protein and the cancer type.

In summary, the 30 validated highlighted in this study have shown prognostic power
in at least three independent cohorts of patients and thus, they seem promising candidates
that merit further validation. Notably, their differential subcellular location should be
considered in the design of clinical studies. The cytoplasmic and cellular membrane
proteins such as ASRLG1, ATAD2, L1CAM, PGR, TPX2 or UCHL1 should be explored in
tissues, whereas secreted proteins such as HDGF, PIGR, SCGB2A1, or TMEFF2 might be
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easily measured in biofluids, opening the way for a less invasive diagnostic process. In fact,
some of the nuclear and cell membrane validated proteins (MSH2, MSH6 and L1CAM)
are already used in clinics to diagnose EC patients [3,38], while secreted proteins, such as
PIGR, have diagnostic value in uterine aspirates for discriminating between histological
subtypes [39].

Considering all the above mentioned, our results confirm that literature revision and
further in silico validation of the previously described biomarkers in currently available,
broadly documented, and considerable in size cohorts of patients such as the TCGA and
CPTAC datasets is a valid approach for prioritizing robust biomarkers in future studies.
Furthermore, we encourage researchers to validate the 30 biomarkers described in this
study in independent studies to achieve the main goal of improving the risk assessment
in EC.

5. Conclusions

In summary, this study validates and identifies new potential applications of 30 pro-
teins as prognostic biomarkers to discriminate for histological subtype and grade, FIGO
stage, molecular classification, overall and recurrence-free survival. A model combination
of 11-protein and 5-protein yield a higher accuracy to predict overall and recurrence-free
survival, respectively. Our results permit to advance the quest for biomarkers to accurately
assess the risk of EC patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13205052/s1, Figure S1: Boxplots of the described validated biomarkers for histological
type representing different non-endometrioid histologies as different entities, Figure S2: Biomarkers
related to FIGO stage with its respective boxplots, and molecular classification of the validated
biomarkers, Figure S3: Description of the functions of the proteins described as validated biomarkers
in our study, their relation to the epithelial-mesenchymal transition, and their prognostic behavior
in other types of cancer, Figure S4: Available drugs against validated proteins divided in small
molecules and antibodies.
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